Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
1.
Food Chem ; 457: 140102, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38905823

RESUMEN

Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) has been widely used for microbial analysis. However, due to the impenetrable shell of fungi the direct identification of fungi remains challenges. Targeting on this problem, the yeast Saccharomyces cerevisiae (S. cerevisiae) was selected as a model fungus, and a new fungal cell membrane disruption reagent C18-G1 was used before MALDI-MS detection. As a result, much more intensive peaks which distributed in wider m/z range of S. cerevisiae have been identified in comparison with the use of traditional fungal pretreatment methods. Furthermore, a differential peak at m/z 4993 between two subspecies of S. cerevisiae has been identified. The corresponding protein with exclusive sequence of the specific peak was obtained based on MS/MS fragments and database searching. In addition, the method was successfully applied for the discrimination of four commercial yeasts.

2.
Anal Chem ; 96(12): 4884-4890, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38494753

RESUMEN

The parallel double-stranded DNA (dsDNA) demonstrates potential utility in molecular biology, diagnosis, therapy, and molecular assembly. However, techniques for the characterization of parallel dsDNA are limited. Here, we demonstrate that a series of intensive characteristic Raman bands of three parallel dsDNAs, which are stabilized by reverse Hoogsteen A+·A+ base pairs or hemiprotonated C+·C, G·G minor groove edge, Hoogsteen A·A base pairs, or Hoogsteen T·A, C+·G base pairs, have been observed by surface-enhanced Raman spectroscopy (SERS) when the gold nanoparticles modified by bromine and magnesium ions (Au BMNPs) were used as substrates. The featured bands can not only accurately discriminate parallel dsDNA from antiparallel one but also identify the strand orientation within dsDNA. The proposed approach will have a significant impact on DNA analysis, especially in the detection and differentiation of various DNA conformations.


Asunto(s)
Oro , Nanopartículas del Metal , Oro/química , Espectrometría Raman , Bromuros , Nanopartículas del Metal/química , ADN/química
3.
Sci Total Environ ; 912: 168923, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38065485

RESUMEN

Cadmium (Cd) is a pervasive environmental pollutant. Increasing evidence suggests that Cd exposure during pregnancy can induce adverse neurodevelopmental outcomes. However, due to the limitations of neural cell and animal models, it is challenging to study the developmental neurotoxicity and underlying toxicity mechanism of long-term exposure to environmental pollutants during human brain development. In this study, chronic Cd exposure was performed in human mature cerebral organoids for 49 or 77 days. Our study found that prolonged exposure to Cd resulted in the inhibition of cerebral organoid growth and the disruption of neural differentiation and cortical layer organization. These potential consequences of chronic Cd exposure may include impaired GFAP expression, a reduction in SOX2+ neuronal progenitor cells, an increase in TUJ1+ immature neurons, as well as an initial increase and a subsequent decrease in both TBR2+ intermediate progenitors and CTIP2+ deep layer cortical neurons. Transcriptomic analyses revealed that long-term exposure to Cd disrupted zinc and copper ion homeostasis through excessive synthesis of metallothionein and disturbed synaptogenesis, as evidenced by inhibited postsynaptic protein. Our study employed mature cerebral organoids to evaluate the developmental neurotoxicity induced by long-term Cd exposure.


Asunto(s)
Contaminantes Ambientales , Células-Madre Neurales , Embarazo , Animales , Femenino , Humanos , Cadmio/metabolismo , Neuronas , Zinc/metabolismo , Contaminantes Ambientales/toxicidad , Contaminantes Ambientales/metabolismo , Organoides/metabolismo
4.
Blood ; 143(11): 1018-1031, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38127913

RESUMEN

ABSTRACT: Disordered erythropoiesis is a feature of many hematologic diseases, including sickle cell disease (SCD). However, very little is known about erythropoiesis in SCD. Here, we show that although bone marrow (BM) erythroid progenitors and erythroblasts in Hbbth3/+ thalassemia mice were increased more than twofold, they were expanded by only ∼40% in Townes sickle mice (SS). We further show that the colony-forming ability of SS erythroid progenitors was decreased and erythropoietin (EPO)/EPO receptor (EPOR) signaling was impaired in SS erythroid cells. Furthermore, SS mice exhibited reduced responses to EPO. Injection of mice with red cell lysates or hemin, mimicking hemolysis in SCD, led to suppression of erythropoiesis and reduced EPO/EPOR signaling, indicating hemolysis, a hallmark of SCD, and could contribute to the impaired erythropoiesis in SCD. In vitro hemin treatment did not affect Stat5 phosphorylation, suggesting that hemin-induced erythropoiesis suppression in vivo is via an indirect mechanism. Treatment with interferon α (IFNα), which is upregulated by hemolysis and elevated in SCD, led to suppression of mouse BM erythropoiesis in vivo and human erythropoiesis in vitro, along with inhibition of Stat5 phosphorylation. Notably, in sickle erythroid cells, IFN-1 signaling was activated and the expression of cytokine inducible SH2-containing protein (CISH), a negative regulator of EPO/EPOR signaling, was increased. CISH deletion in human erythroblasts partially rescued IFNα-mediated impairment of cell growth and EPOR signaling. Knocking out Ifnar1 in SS mice rescued the defective BM erythropoiesis and improved EPO/EPOR signaling. Our findings identify an unexpected role of hemolysis on the impaired erythropoiesis in SCD through inhibition of EPO/EPOR signaling via a heme-IFNα-CISH axis.


Asunto(s)
Anemia de Células Falciformes , Eritropoyesis , Ratones , Animales , Humanos , Eritropoyesis/fisiología , Factor de Transcripción STAT5/metabolismo , Hemólisis , Hemina/metabolismo , Receptores de Eritropoyetina/genética , Receptores de Eritropoyetina/metabolismo , Anemia de Células Falciformes/complicaciones
5.
Artículo en Inglés | MEDLINE | ID: mdl-37657739

RESUMEN

The fetal liver (FL) is the key erythropoietic organ during fetal development, but knowledge on human FL erythropoiesis is very limited. In this study, we sorted primary erythroblasts from FL cells and performed RNA sequencing (RNA-seq) analyses. We found that temporal gene expression patterns reflected changes in function during primary human FL terminal erythropoiesis. Notably, the expression of genes enriched in proteolysis and autophagy was up-regulated in orthochromatic erythroblasts (OrthoEs), suggesting the involvement of these pathways in enucleation. We also performed RNA-seq of in vitro cultured erythroblasts derived from FL CD34+ cells. Comparison of transcriptomes between the primary and cultured erythroblasts revealed significant differences, indicating impacts of the culture system on gene expression. Notably, the expression of lipid metabolism-related genes was increased in cultured erythroblasts. We further immortalized erythroid cell lines from FL and cord blood (CB) CD34+ cells (FL-iEry and CB-iEry, respectively). FL-iEry and CB-iEry were immortalized at the proerythroblast stage and can be induced to differentiate into OrthoEs, but their enucleation ability was very low. Comparison of the transcriptomes between OrthoEs with and without enucleation capability revealed the down-regulation of pathways involved in chromatin organization and mitophagy in OrthoEs without enucleation capacity, indicating that defects in chromatin organization and mitophagy contribute to the inability of OrthoEs to enucleate. Additionally, the expression of HBE1, HBZ, and HBG2 was up-regulated in FL-iEry compared with CB-iEry, and this up-regulation was accompanied by down-regulated expression of BCL11A and up-regulated expression of LIN28B and IGF2BP1. Our study provides new insights into human FL erythropoiesis and rich resources for future studies.

6.
Adv Sci (Weinh) ; 10(29): e2301004, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37635166

RESUMEN

A high-density Raman photometry based on a dual-recognition strategy is created for accurately quantifying acetylcholinesterase (AchE) activity in 24 brain regions of free-moving animals with network. A series of 5-ethynyl-1,2,3,3-tetramethyl-based molecules with different conjugated structures and substitute groups are designed and synthesized for specific recognition of AchE by Raman spectroscopy. After systematically evaluating the recognition ability toward AchE, 2-(4-((4-(dimethylamino)benzoyl)oxy)styryl)-5-ethynyl-1,3,3-trimethyl-3H-indol-1-ium (ET-5) is finally optimized for AchE determination, which shows the highest selectivity, the greatest sensitivity, and the fastest response time among the investigated seven molecules. More interestingly, using the developed probe for AchE with high accuracy and sensitivity, the optimized AchE regulated by nitric oxide (NO) is discovered for promoting the neurogenesis of neural stem cells (NSCs). Benefiting from the high-density photometry, it is found that the activity and distribution of AchE varied in 24 brain regions, and the levels of AchE activity in 24 brain regions of Alzheimer's mice (AD) are lower than those of normal mice. It is the first time that a functional network of AchE in 24 brain regions is established. It is also found that the loss of AchE functional network in AD mice is restored and reconstructed by the controlled release of AchE regulated by NO.


Asunto(s)
Enfermedad de Alzheimer , Células-Madre Neurales , Ratones , Animales , Acetilcolinesterasa/metabolismo , Encéfalo/metabolismo , Células-Madre Neurales/metabolismo , Fotometría
7.
J Inorg Biochem ; 247: 112333, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37480763

RESUMEN

The main challenge of cancer chemotherapy is the resistance of tumor cells to oxidative damage. Herein, we proposed a novel antitumor strategy: cyclic metal­ruthenium (Ru) complexes mediate reductive damage to kill tumor cells. We designed and synthesized Ru(II) complexes with ß-carboline as ligands: [Ru (phen)2(NO2-Ph-ßC)](PF6) (RußC-7) and [Ru(phen)2(1-Ph-ßC)](PF6) (RußC-8). In vitro experimental results showed that RußC-7 and RußC-8 can inhibit cell proliferation, promote mitochondrial abnormalities, and induce DNA damage. Interestingly, RußC-7 with SOD activity could reduce intracellular reactive oxygen species (ROS) levels, while RußC-8 has the opposite effect. Accordingly, this study identified the reductive damage mechanism of tumor apoptosis, and may provide a new ideas for the design of novel metal complexes.


Asunto(s)
Complejos de Coordinación , Rutenio , Humanos , Células HeLa , Rutenio/farmacología , Apoptosis , Proliferación Celular , Complejos de Coordinación/farmacología
8.
J Inorg Biochem ; 246: 112295, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37348172

RESUMEN

Two new ruthenium(II) complexes [Ru(dip)2(PPßC)]PF6 (Ru1, dip = 4,7-diphenyl-1,10-phenanthroline, PPßC = N-(1,10-phenanthrolin-5-yl)-1-phenyl-9H-pyrido[3,4-b]indole-3-carboxamide) and [Ru(phen)2(PPßC)]PF6 (Ru2, phen = 1, 10-phenanthroline) with ß-carboline derivative PPßC as the primary ligand, were designed and synthesized. Ru1 and Ru2 displayed higher antiproliferative activity than cisplatin against the test cancer cells, with IC50 values ranging from 0.5 to 3.6 µM. Moreover, Ru1 and Ru2 preferentially accumulated in mitochondria and caused a series of changes in mitochondrial events, including the depolarization of mitochondrial membrane potential, the damage of mitochondrial DNA, the depletion of cellular ATP, and the elevation of intracellular reactive oxygen species levels. Then, it induced caspase-3/7-mediated A549 cell apoptosis. More importantly, both complexes could act as topoisomerase I catalytic inhibitors to inhibit mitochondrial DNA synthesis. Accordingly, the developed Ru(II) complexes hold great potential to be developed as novel therapeutics for cancer treatment.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Rutenio , Humanos , Células A549 , Rutenio/farmacología , Rutenio/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/metabolismo , Mitocondrias/metabolismo , Apoptosis , ADN Mitocondrial/metabolismo , ADN Mitocondrial/farmacología , Complejos de Coordinación/farmacología , Complejos de Coordinación/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Línea Celular Tumoral
9.
Metallomics ; 15(6)2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37204038

RESUMEN

Natural products and metals play a crucial role in cancer research and the development of antitumor drugs. We designed and synthesized three new carboline-based cyclometalated iridium complexes [Ir(C-N)2(PPßC)](PF6), where PPßC = N-(1,10-phenanthrolin-5-yl)-1-phenyl-9H-pyrido[3,4-b]indole-3-carboxamide, C-N = 2-phenylpyridine (ppy, Ir1), 2-(2,4-difluorophenyl) pyridine (dfppy, Ir2), 7,8-benzoquinoline (bzq, Ir3), by combining iridium with ß-carboline derivative. These iridium complexes exhibited high potential antitumor effects after being promptly taken up by A549 cells. Accumulating in mitochondria rapidly and preferentially, Ir1-3 caused a series of changes in mitochondrial events, including the loss of mitochondrial membrane potential, the depletion of cellular ATP, and the elevation of reactive oxygen species, leading to significant death of A549 cells. Moreover, the activation of intracellular caspase pathway and apoptosis was further validated to contribute to iridium complexes-induced cytotoxicity. These novel iridium complexes exerted a prominent inhibitory effect on tumor growth in a three-dimensional multicellular tumor spheroid model.


Asunto(s)
Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Complejos de Coordinación , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Iridio/farmacología , Neoplasias Pulmonares/patología , Antineoplásicos/metabolismo , Carbolinas/farmacología , Carbolinas/metabolismo , Apoptosis , Mitocondrias/metabolismo , Complejos de Coordinación/farmacología , Complejos de Coordinación/uso terapéutico , Complejos de Coordinación/metabolismo , Línea Celular Tumoral , Especies Reactivas de Oxígeno/metabolismo , Proliferación Celular
10.
Ultrasonics ; 127: 106857, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36183495

RESUMEN

Acoustic transducers with graphene film have high sensitivity and wide bandwidth of frequency response as receivers. However, they exist in transmitting mode with low radiation performance. We propose an effective approach to enhance radiation performance of the graphene acoustic transducer by embedding a coil in insulating layer, and investigate the characteristics of graphene acoustic transducers by experiments. A graphene acoustic transducer is designed and fabricated. The highest receiving sensitivity of the transducer is -30 dB. The output sound pressure level of the transducer is more than 3 dB on average in the range of 2 âˆ¼ 16 kHz compared without a coil. And the sound pressure level increases by 6 dB on average in the range of 40 âˆ¼ 45 kHz. These results demonstrate that the graphene transducer maintains high receiving performance, and also improves acoustic radiation performance, which greatly expands its application field.

11.
Sensors (Basel) ; 22(22)2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-36433288

RESUMEN

The Maglev motor has the characteristics of high-speed and high-power density, and is widely used in compressors, molecular pumps and other high-speed rotating machinery. With the requirements of miniaturization and high speed of rotating machinery, the rotor of the maglev motor will operate above the bending critical speed, and the critical vibration control of the flexible rotor is facing challenges. In order to solve the problem of the critical vibration suppression of the maglev high-speed motor, the system model of the maglev motor is established, the rotordynamics of the flexible rotor are analyzed and the rotor model is modal truncated to reduce the order. Then, the µ-controller is designed, and the weighting functions are designed to deal with the modal uncertainty. Finally, an experimental platform of the maglev motor with the flexible rotor is built to verify the effect of the µ-control on the suppression of the critical vibration of the maglev rotor.


Asunto(s)
Corazón Auxiliar , Vibración , Diseño de Equipo , Magnetismo , Modalidades de Fisioterapia
12.
Phytother Res ; 2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36433866

RESUMEN

In recent years, metabolic reprogramming in liver fibrosis has become a research hotspot in the field of liver fibrosis at home and abroad. Liver fibrosis is a pathological change caused by chronic liver injury from a variety of causes. Liver fibrosis is a common pathological feature of many chronic liver diseases such as chronic hepatitis B, non-alcoholic steatohepatitis, and autoimmune hepatitis, as well as the pathogenesis of the disease. The development of chronic liver disease into cirrhosis must go through the pathological process of liver fibrosis, in which hepatic stellate cells (HSC) play an important role. Following liver injury, HSC are activated and transdifferentiated into scar-forming myofibroblasts, which drive the trauma healing response and which rely on the deposition of collagen-rich extracellular matrix to maintain tissue integrity. This reaction will continue without strict control, which will lead to excessive accumulation of matrix and liver fibrosis. The mechanisms and clinical studies of liver fibrosis have been the focus of research in liver diseases. In recent years, several studies have revealed the mechanism of HSC metabolic reprogramming and the impact of this process on liver fibrosis, in which glucose metabolic reprogramming plays an important role in the activation of HSC, and it mainly meets the energy demand of HSC activation by upregulating glycolysis. Glycolysis is the process by which one molecule of glucose is broken down into two molecules of pyruvate and produces energy and lactate under anaerobic conditions. Various factors have been found to be involved in regulating the glycolytic process of HSC, including glucose transport, intracellular processing of glucose, exosome secretion, and lactate production, etc. Inhibition of the glycolytic process of HSC can be an effective strategy against liver fibrosis. Currently, the combined action of multiple targets and links of Chinese medicine such as turmeric, comfrey, rhubarb and scutellaria baicalensis against the mechanism of liver fibrosis can effectively improve or even reverse liver fibrosis. This paper summarizes that turmeric extract curcumin, comfrey extract comfreyin, rhubarb, Subtle yang yu yin granules, Scutellaria baicalensis extract oroxylin A and cardamom extract cardamomin affect liver fibrosis by regulating gluconeogenic reprogramming. Therefore, studying the mechanism of action of TCM in regulating liver fibrosis through reprogramming of glucose metabolism is promising to explore new methods and approaches for Chinese Medicine modernization research.

13.
Int J Biol Macromol ; 222(Pt B): 2948-2956, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36243165

RESUMEN

G-quadruplexes (G4s) regulate a variety of physiological functions related to diseases and life elongation. Therefore, G4 binding ligands, such as potential drugs in gene therapy or molecular probes for biosensing and bioimaging, are receiving extensive attention. However, identifying the binding modes and interaction details between G4s and their ligands is very challenging. Recently, we demonstrated that surface-enhanced Raman scattering (SERS) could quickly provide structural details of G4s. Herein, three G4 binding ligands that interact with the separated G4 in different ways are selected as models to evaluate the feasibility of SERS analysis in studying G4-ligand interactions. As a result, adequate SERS information indicating the specific interactions between the G4s and the ligand is obtained via using Ag IANPs as substrates. The results demonstrate that SERS is a powerful tool for revealing comprehensive and specific ligand-DNA interactions with advantages such as speed, simplicity, trace sample amount requirement, and compatibility with aqueous samples.


Asunto(s)
G-Cuádruplex , Ligandos , Espectrometría Raman/métodos , ADN/química
14.
Zhongguo Zhong Yao Za Zhi ; 47(9): 2409-2418, 2022 May.
Artículo en Chino | MEDLINE | ID: mdl-35531688

RESUMEN

In recent years, liver fibrosis has become a hotspot in the field of liver diseases. MicroRNA(miRNA)-mediated Nod-like receptor pyrin domain containing 3(NLRP3) inflammasome activation is pivotal in the pathogenesis of liver fibrosis. The present study mainly discussed the role of miRNA-mediated NLRP3 inflammasome activation in the pathogenesis of liver fibrosis. Different miRNA molecules regulated liver fibrosis by mediating NLRP3 inflammasome activation, including miRNA-350-3 p(miR-350-3 p)/interleukin-6(IL-6)-mediated signal transducer and activator of transcription 3(STAT3)/c-myc signaling pathway, miR-148 a-induced autophagy and apoptosis of hepatic stellate cells via hedgehog signaling pathway, miR-155-mediated NLRP3 inflammasome by the negative feedback of the suppressor of cytokine signaling-1(SOCS-1), miR-181 a-mediated downstream NLRP3 inflammatory pathway activation through mitogen-activated protein kinase kinase(MEK)/extracellular signal-regulated kinase(ERK)/nuclear transcription factor κB(NF-κB) inflammatory pathway, miR-21-promoted expression of NF-κB and NLRP3 of RAW264.7 cells in mice by inhibiting tumor necrosis factor-α inducible protein 3(A20), and miR-20 b-promoted expression of IL-1ß and IL-18 by activating NLRP3 signaling pathway. Additionally, the anti-liver fibrosis mechanism of different active components in Chinese medicines(such as Curcumae Rhizoma, Glycyrrhizae Radix et Rhizoma, Aurantii Fructus, Polygoni Cuspidati Rhizoma et Radix, Moutan Cortex, Paeoniae Radix Alba, Epimedii Folium, and Cinnamomi Cortex) was also explored based on the anti-liver fibrosis effect of miRNA-mediated NLRP3 inflammasome activation.


Asunto(s)
Inflamasomas , MicroARNs , Animales , Proteínas Hedgehog , Inflamasomas/genética , Inflamasomas/metabolismo , Interleucina-6 , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/genética , Cirrosis Hepática/metabolismo , Medicina Tradicional China , Ratones , MicroARNs/genética , FN-kappa B/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Transducción de Señal
15.
Phys Chem Chem Phys ; 24(17): 10311-10317, 2022 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-35437563

RESUMEN

Intramolecular interactions are key factors for constructing the secondary conformations of biomolecules and they are also vital for biomolecular functions. Their effect on the surface-enhanced Raman spectroscopy (SERS) spectra is also important for reliable label-free detection. The current work focuses on three GCGC-quadruplexes as model molecules for SERS studies, which contain both the G-quartet and the GCGC-quartet. Their spectra are compared with the ones of the G-quadruplex and the duplex. The present work presents the specific effect of intramolecular interactions, including various Watson-Crick and Hoogsteen hydrogen bonds as well as base stacking, on the SERS signals of closely-related secondary conformations. The overall results indicated a significant influence on the direct label-free detection of DNA molecules and the SERS capability for secondary structural analysis.


Asunto(s)
G-Cuádruplex , ADN/química , Enlace de Hidrógeno , Espectrometría Raman/métodos
16.
Eur J Med Chem ; 236: 114335, 2022 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-35398732

RESUMEN

Targeted therapy showed broad application prospects in the treatment of various types of cancer. Through carriers such as aptamers, antibodies, proteins and peptides, targeted therapy can selectively deliver drugs into tumor cells. Compared with traditional treatment methods such as chemo- and radiotherapy, targeted drug delivery systems can reduce the toxic effects of drugs on normal cells and avoid adverse reactions. Herein, an aptamer-cyclometalated iridium(III) complex conjugate (ApIrC) has been designed and developed as a targeted anticancer agent. Owing to the targeting ability of aptamers, ApIrC specifically bound to nucleolin over-expressed on the surface of cancer cells and showed strong fluorescence signal for tumor imaging and diagnosis. ApIrC had more substantial cellular uptake in cancer cells than the iridium complex alone and exhibited favorable low toxicity to normal cells. After uptake by cells through endocytosis, ApIrC can selectively accumulated in mitochondria and induced caspase-3/7-dependent cell death. Remarkably, ApIrC can also specifically target 3D multicellular spheroids (MCSs) and show excellent tumor permeability. So, it can effectively reach the interior of MCSs and cause cell damage. To our knowledge, this is the first report of the aptamer-cyclometalated iridium(III) complex conjugate which studied for cancer targeted therapy. The developed conjugate has great potential to be developed as novel therapeutics for effective and low-toxic cancer treatment.


Asunto(s)
Antineoplásicos , Aptámeros de Nucleótidos , Neoplasias , Aptámeros de Nucleótidos/farmacología , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos/métodos , Iridio/farmacología , Mitocondrias , Neoplasias/tratamiento farmacológico
17.
J Cell Mol Med ; 26(8): 2404-2416, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35249258

RESUMEN

Red blood cells (RBCs) generated ex vivo have the potential to be used for transfusion. Human embryonic stem cells (ES) and induced pluripotent stem cells (iPS) possess unlimited self-renewal capacity and are the preferred cell sources to be used for ex vivo RBC generation. However, their applications are hindered by the facts that the expansion of ES/iPS-derived erythroid cells is limited and the enucleation of ES/iPS-derived erythroblasts is low compared to that derived from cord blood (CB) or peripheral blood (PB). To address this, we sought to investigate the underlying mechanisms by comparing the in vitro erythropoiesis profiles of CB CD34+ and ES CD34+ cells. We found that the limited expansion of ES CD34+ cell-derived erythroid cells was associated with defective cell cycle of erythroid progenitors. In exploring the cellular and molecular mechanisms for the impaired enucleation of ES CD34+ cell-derived orthochromatic erythroblasts (ES-ortho), we found the chromatin of ES-ortho was less condensed than that of CB CD34+ cell-derived orthochromatic erythroblasts (CB-ortho). At the molecular level, both RNA-seq and ATAC-seq analyses revealed that pathways involved in chromatin modification were down-regulated in ES-ortho. Additionally, the expression levels of molecules known to play important role in chromatin condensation or/and enucleation were significantly lower in ES-ortho compared to that in CB-ortho. Together, our findings have uncovered mechanisms for the limited expansion and impaired enucleation of ES CD34+ cell-derived erythroid cells and may help to improve ex vivo RBC production from stem cells.


Asunto(s)
Eritropoyesis , Sangre Fetal , Antígenos CD34/metabolismo , Diferenciación Celular , Cromatina/metabolismo , Células Madre Embrionarias/metabolismo , Células Eritroides , Humanos
18.
Spectrochim Acta A Mol Biomol Spectrosc ; 275: 121161, 2022 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-35306309

RESUMEN

The direct characterization of DNA nanogels at the atomic level is desirable and of great significance, however, has been challenging because of structural complexity and the larger size of nanogels. Herein, we demonstrated a simple, sensitive and reliable SERS (Surface-enhanced Raman spectroscopy)-based approach towards direct monitoring microstructures, such as three types of nanogels crosslinked by DNA G-quadruplex, i-motif and GC duplex. The achievement is attributed to the detection of featured Raman bands corresponding to the formation of Watson-Crick and Hoogsteen hydrogen bonds as well as C·C+ base pairs. Importantly, this work reveals that the silver nanoparticles attaching on the surface of nanogels can form local 'hotspots' and produce high-quality of Raman spectra under the assistance of iodide, aluminum ions and dichloromethane, therefore, shows great potential for wide applications in accurate characterization of various DNA nanostructures.


Asunto(s)
Nanopartículas del Metal , Espectrometría Raman , ADN/química , Yoduros , Nanopartículas del Metal/química , Nanogeles , Plata/química , Espectrometría Raman/métodos
19.
Biomed Chromatogr ; 36(4): e5319, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34984720

RESUMEN

Nowadays, cultivated variants and adulterants of Astragali Radix (AR) have flooded the market, causing the quality assurance of AR to be challenging. To address this issue, we combined network pharmacology with chromatographic fingerprinting and multicomponent quantitative analysis for the quality evaluation of AR. Specifically, through network pharmacology, a complete understanding of the active components and pharmacological activities of AR was established. In addition, establishing fingerprint profiles and multicomponent quantitation by high-performance liquid chromatography (HPLC) is convenient and comprehensive, and can more fully reflect the overall situation of the distribution of various chemical components. To evaluate and differentiate AR from different origins, hierarchical cluster analysis and principal component analysis were performed. The result showed that AR acts synergistically through multiple targets and pathways. The content of chemical components in AR from different origins varied significantly. Combining network pharmacology and multicomponent quantification results, astragaloside II and IV and formononetin can be used as quality markers for the quality control of AR. This study provides a comprehensive and reliable strategy for the quality evaluation of AR and identifies its quality markers to ensure the quality of the herb.


Asunto(s)
Planta del Astrágalo , Medicamentos Herbarios Chinos , Planta del Astrágalo/química , Astragalus propinquus , Cromatografía Líquida de Alta Presión/métodos , Medicamentos Herbarios Chinos/química , Farmacología en Red
20.
Bioorg Chem ; 119: 105516, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34856444

RESUMEN

Both ruthenium (Ru) and isoquinoline (IQ) compounds are regarded as potential anticancer drug candidates. Here, we report the synthesis and characterization of three novel cyclometalated Ru(II)-isoquinoline complexes: RuIQ-3, RuIQ-4, and RuIQ-5, and evaluation of their in vitro cytotoxicities against a panel of cell lines including A549/DDP, a cisplatin-resistant human lung cancer cell line. A549/DDP 3D multicellular tumor spheroids (MCTSs) were also used to detect the drug resistance reversal effect of Ru(II)-IQ complexes. Our results indicated that the cytotoxic activities against cancer cells of Ru(II)-IQ complexes, especially RuIQ-5, were superior compared with cisplatin. In addition, RuIQ-5 exhibited low toxicity towards both normal HBE cells in vitro and zebrafish embryos in vivo. Further investigation on cellular mechanism of action indicated that after absorption by A549/DDP cells, RuIQ-5 was mainly distributed in the nucleus, which is different from cisplatin. Besides, RuIQ-5 could induce apoptosis through mitochondrial dysfunction, reactive oxygen species (ROS) accumulation, ROS-mediated DNA damage, and cycle arrest at both S and G2/M phases. Moreover, RuIQ-5 could inhibit the overexpression of Nrf2 through regulation of Akt/GSK-3ß/Fyn signaling pathway and hindering the nuclear translocation of Nrf2. Based on these findings, we firmly believe that the studied Ru(II)-IQ complexes hold great promise as anticancer therapeutics with high effectiveness and low toxicity.


Asunto(s)
Antineoplásicos/farmacología , Cisplatino/farmacología , Complejos de Coordinación/farmacología , Isoquinolinas/farmacología , Rutenio/farmacología , Proteínas Adaptadoras Transductoras de Señales/antagonistas & inhibidores , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Cisplatino/química , Complejos de Coordinación/síntesis química , Complejos de Coordinación/química , Relación Dosis-Respuesta a Droga , Regulación hacia Abajo/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Glucógeno Sintasa Quinasa 3 beta/antagonistas & inhibidores , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Humanos , Isoquinolinas/química , Estructura Molecular , Factor 2 Relacionado con NF-E2/antagonistas & inhibidores , Factor 2 Relacionado con NF-E2/metabolismo , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/metabolismo , Rutenio/química , Relación Estructura-Actividad , Células Tumorales Cultivadas , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA