Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 180
Filtrar
1.
J Hazard Mater ; 478: 135394, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39128148

RESUMEN

Evidence of the associations between long-term exposure to PM2.5 and O3 and human blood lipid concentrations is abundant yet inconclusive. Whether clean air policies could improve lipid profiles remains unclear. In total, 2979312 participants from a Chinese nationwide prospective study were included. For cross-sectional analyses, linear mixed-effects models were utilized to assess the associations of pollutants with lipid profiles (TC, LDL-C, TG, HDL-C). For longitudinal analyses, a quasi-experimental design and difference-in-differences models were employed to investigate the impact of China's Clean Air Act. In the cross-sectional analyses, each IQR increase in PM2.5 was associated with 2.49 % (95 % CI: 2.36 %, 2.62 %), 2.51 % (95 % CI: 2.26 %, 2.75 %), 3.94 % (95 % CI: 3.65 %, 4.23 %), and 1.54 % (95 % CI: 1.38 %, 1.70 %) increases in TC, LDL-C, TG, and HDL-C, respectively. For each IQR increase in O3, TC, LDL-C, TG, and HDL-C changed by 1.06 % (95 % CI: 0.95 %, 1.17 %), 1.21 % (95 % CI: 1.01 %, 1.42 %), 1.78 % (95 % CI: 1.54 %, 2.02 %), and -0.63 % (95 % CI: -0.76 %, -0.49 %), respectively. Longitudinal analyses showed that the intervention group experienced greater TC, LDL-C, and HDL-C reductions (1.77 %, 4.26 %, and 7.70 %, respectively). Our findings suggest that clean air policies could improve lipid metabolism and should be implemented in countries with heavy air pollution burdens.

2.
Neuron ; 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39121859

RESUMEN

Primary familial brain calcification (PFBC) is a genetic neurological disease, yet no effective treatment is currently available. Here, we identified five novel intronic variants in SLC20A2 gene from six PFBC families. Three of these variants increased aberrant SLC20A2 pre-mRNA splicing by altering the binding affinity of splicing machineries to newly characterized cryptic exons, ultimately causing premature termination of SLC20A2 translation. Inhibiting the cryptic-exon incorporation with splice-switching ASOs increased the expression levels of functional SLC20A2 in cells carrying SLC20A2 mutations. Moreover, by knocking in a humanized SLC20A2 intron 2 sequence carrying a PFBC-associated intronic variant, the SLC20A2-KI mice exhibited increased inorganic phosphate (Pi) levels in cerebrospinal fluid (CSF) and progressive brain calcification. Intracerebroventricular administration of ASOs to these SLC20A2-KI mice reduced CSF Pi levels and suppressed brain calcification. Together, our findings expand the genetic etiology of PFBC and demonstrate ASO-mediated splice modulation as a potential therapy for PFBC patients with SLC20A2 haploinsufficiency.

3.
BMC Psychiatry ; 24(1): 500, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38992650

RESUMEN

BACKGROUNDS: Cognitive problems are common symptoms among individuals with stress-related exhaustion. It is still unknown whether these individuals are at a higher risk of developing dementia later. This study aims to examine the relationship between midlife stress-related exhaustion and dementia incidence. METHODS: A population sample of 777 women (aged 38, 46, 50 and 54 years) without dementia at baseline was followed over 50 years, from 1968 to 2019. Stress-related exhaustion was based on information from the psychiatric examination in 1968/69. Information on dementia incidence between 1968 and 2019 was obtained from neuropsychiatric examinations, key-informant interviews, and hospital registry. Dementia was diagnosed according to the DSM-III-R criteria. A subgroup of non-demented women (n = 284) was examined for cognitive functions by the Gottfries-Bråne-Steen scale 24 years after baseline. RESULTS: Stress-related exhaustion in midlife was associated with higher risk for development of dementia before age 75 (Hazard ratio and 95% confidence interval: 2.95 and 1.35-6.44). The association remained after adjustment for age, major depression, and anxiety disorder. Mean age of dementia onset was younger for women with stress-related exhaustion than women without stress (mean ± SD, 76 ± 9 vs. 82 ± 8 . p = 0.009). Women with stress-related exhaustion in midlife still showed more cognitive impairments 24 years later compared with women without stress (Odds ratio and 95% confidence interval: 2.64 and 1.15-6.06). CONCLUSIONS: We found that women with stress-related exhaustion in midlife were at a higher risk to develop dementia at relatively younger age. These women showed persistently lower cognitive functions over years even without dementia. Present study results need to be interpreted with caution due to small sample size and should be confirmed in future studies with larger sample size. Our study findings may imply the importance of long-term follow-up regarding cognitive function among individuals with stress-related exhaustion.


Asunto(s)
Demencia , Estrés Psicológico , Humanos , Femenino , Demencia/epidemiología , Persona de Mediana Edad , Estudios Longitudinales , Incidencia , Estrés Psicológico/complicaciones , Estrés Psicológico/epidemiología , Adulto , Anciano , Fatiga/epidemiología , Factores de Riesgo , Disfunción Cognitiva/epidemiología
4.
Anal Chem ; 96(25): 10256-10263, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38865612

RESUMEN

Assembling small molecules at liquid/solid interfaces is relatively common and contributes to many unique properties of the interface. However, such an assembling process can be dynamic depending on the concentration of the molecule and the properties of the solid and liquid themselves, which poses serious challenges on the accurate evaluation of the assembling processes. Herein, we report a convenient way for in situ and real-time monitoring of assembling-disassembling of small-molecule surfactants on the surface of microchannels using pulsed streaming potential (SP) measurement based on the variation of surface charge. With this technique, five distinctive kinetic regimes, each responsible for a characteristic molecular behavior, can be differentiated during a typical assembling-disassembling cycle. Significant difference of the assembling-disassembling process was clearly reflected for surfactants with hydrophobic tails of only a two -CH2- difference (C16TAB/C18TAB and D10DAB/D12DAB). The relative SP (Er) value is positively correlated with the molecular weight at a concentration of 0.1 mM for the same kinds of surfactants. Moreover, the assembling kinetics of D10DAB exhibits an "overshoot effect" at high concentration, which means morphology adjustment. The consequences of such assembling/disassembling of these molecules for electrophoretic separation, protein immobilization, and photocatalysis in a microchannel were investigated through dynamic characterization, which proves its potential as a tool for dynamic solid/liquid interface characterization.

5.
Chem Res Toxicol ; 37(7): 1104-1112, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38885202

RESUMEN

Chlortoluron (CTU) is an herbicide extensively used in agricultural settings for crop cultivation. Its presence in water has been identified as a pollutant detrimental to aquatic species. The objective of the present study was to explore the metabolic activation and hepatotoxicity of CTU. Through human and rat liver microsomal incubations supplemented with CTU, nicotinamide adenine dinucleotide phosphate (NADPH), and either glutathione or N-acetyl cysteine, a benzylic alcohol metabolite (M1) was discerned, alongside a phenol metabolite (M2), a glutathione conjugate (M3), and an N-acetyl cysteine conjugate (M4). In rats exposed to CTU, biliary M3 and urinary M4 were detected in their bile and urine, respectively. The generation of M1 was detected in the presence of NADPH. The observation of M3 and M4 suggests the formation of an iminoquinone methide intermediate arising from the oxidation of M1. CYP3A4 was found to be the principal enzyme catalyzing the metabolic activation of CTU. Furthermore, CTU exhibited cytotoxic properties in cultured rat primary hepatocytes in a concentration-dependent pattern. Concomitant treatment of hepatocytes with ketoconazole mitigated their susceptibility to the cytotoxic effects of CTU.


Asunto(s)
Citocromo P-450 CYP3A , Hepatocitos , Microsomas Hepáticos , Animales , Ratas , Citocromo P-450 CYP3A/metabolismo , Humanos , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Masculino , Microsomas Hepáticos/metabolismo , Ratas Sprague-Dawley , Activación Metabólica , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Estructura Molecular , Herbicidas/toxicidad , Herbicidas/metabolismo , Relación Dosis-Respuesta a Droga
6.
Sensors (Basel) ; 24(7)2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38610431

RESUMEN

InGaAs detection systems have been increasingly used in the aerospace field, and due to the high signal-to-noise ratio requirements of short-wave infrared quantitative payloads, there is an urgent need for methods for the rapid and precise evaluation and the optimal design of these systems. The rigid-flex printed circuit board (PCB) is a vital component of InGaAs detectors, as its grid ground plane design parameters impact parasitic capacitance and thus affect weak infrared analog signals. To address the time-intensive and costly nature of design optimization achieved with simulations and experimental measurements, we propose an innovative method based on a neural network to predict the scattering parameters of rigid-flex boards for InGaAs detection links. This is the first study in which the effects of rigid-flex boards on weak infrared detection signals have been considered. We first obtained sufficient samples with software simulation. A backpropagation (BP) neural network prediction model was trained on existing sample sets and then verified on a rigid-flex board used in a crucial aerospace short-wave infrared quantitative mission. The model efficiently and accurately predicted high-speed interconnect scattering parameters under various rigid-flex board grid plane parameter conditions. The prediction error was less than 1% compared with a 3D field solver, indicating an overcoming of the iterative optimization inefficiency and showing improved design quality for InGaAs detection circuits.

7.
J Transl Med ; 22(1): 401, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38689341

RESUMEN

BACKGROUND: The cancer microbiota was considered the main risk factor for cancer progression. We had proved that Fusobacterium periodonticum (F.p) was higher abundance in Esophageal cancer(EC)tissues. Bioinformation analysis found that BCT was a key virulence protein of F.p. However, little is known about the role and mechanism of BCT in EC. This study aimed to recognize the key virulence protein of F.p and explore the mechanism of BCT in promoting EC. METHODS: We constructed a eukaryotic expression vector and purified the recombinant protein BCT. CCK8 used to analyzed the activity of EC after treated by different concentration of BCT. UPLC-MS/MS and ELISA used to detect the metabonomics and metabolites. The ability of migration and invasion was completed by transwell assay. RT-QPCR, WB used to analyze the expression of relevant genes. RESULTS: Our data showed that BCT was higher expression in EC tumor tissues (p < 0.05) and BCT in 20 µg/mL promoted the survival, invasion and migration of EC cells (EC109) (p < 0.05). Meanwhile, UPLC-MS/MS results suggested that BCT resulted in an augmentation of hypotaurine metabolism, arachidonic acid metabolism, glycolysis/gluconeogenesis, tryptophan metabolism, citrate cycle activity in EC109. The metabolic changes resulted in decreasing in glucose and pyruvate levels but increase in lactate dehydrogenase (LDH) activity and lactic acid (LA) as well as the expression of glucose transporter 1, Hexokinase 2, LDH which regulated the glycolysis were all changed (p < 0.05). The BCT treatment upregulated the expression of TLR4, Akt, HIF-1α (p < 0.05) which regulated the production of LA. Furthermore, LA stimulation promoted the expression of GPR81, Wnt, and ß-catenin (p < 0.05), thereby inducing EMT and metastasis in EC109 cells. CONCLUSION: Altogether, these findings identified that impact of BCT in regulation of glycolysis in EC109 and its involves the TLR4/Akt/HIF-1α pathway. Meanwhile, glycolysis increasing the release of LA and promote the EMT of EC109 by GPR81/Wnt/ß-catenin signaling pathway. In summary, our findings underscore the potential of targeting BCT as an innovative strategy to mitigate the development of EC.


Asunto(s)
Movimiento Celular , Transición Epitelial-Mesenquimal , Neoplasias Esofágicas , Fusobacterium , Glucosa , Ácido Láctico , Humanos , Neoplasias Esofágicas/patología , Neoplasias Esofágicas/metabolismo , Ácido Láctico/metabolismo , Línea Celular Tumoral , Glucosa/metabolismo , Fusobacterium/metabolismo , Proteínas Bacterianas/metabolismo , Invasividad Neoplásica , Regulación Neoplásica de la Expresión Génica
8.
Free Radic Biol Med ; 213: 512-522, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38301975

RESUMEN

Trace metal zinc is involved in key processes of solid tumors by its antioxidant properties, while the role of zinc at the onset of esophageal squamous cell carcinoma (ESCC) remains controversial. This study aimed to determine whether zinc is associated with the ESCC and underlying molecular events involving malignant progression. Based on a case-control study, we found serum and urine zinc were decreased and correlated with ESCC progression. Thus, an in vitro model for zinc deficiency (ZD) was established, and we found that ZD contributed to the proliferation, migration, and invasion of EC109 cells. Untargeted metabolomics identified 59 upregulated metabolites and 6 downregulated metabolites, among which glycolysis and ferroptosis-related oxidation of chain fatty acids might play crucial steps in ZD-treated molecular events. Interestingly, ZD disrupted redox homeostasis and enhanced cytosolic Fe2+ of EC109 cells, while lipid peroxidation, the key marker of ferroptosis occurrence, was decreased after ZD treatment. The mechanism underlying these changes may involve ZD-enhanced ESCC glycolysis and lactate production, which confer ferroptosis resistance by inhibiting of p-AMPK and leading to the upregulation of SREBP1 and SCD1 to enhance the production of anti-ferroptosis monounsaturated fatty acids.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Ferroptosis , Desnutrición , Humanos , Carcinoma de Células Escamosas de Esófago/genética , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas/metabolismo , Ácido Láctico , Estudios de Casos y Controles , Ferroptosis/genética , Zinc/metabolismo , Proliferación Celular , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica
10.
Toxicol Sci ; 199(1): 12-28, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38291902

RESUMEN

Intensified sanitation practices amid the recent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreak might result in the increased release of chloramine disinfectants into surface water, significantly promoting the formation of nitrosamine disinfection by-products (DBPs) in drinking water. Unfortunately, these nitrosamine DBPs exhibit significant genotoxic, carcinogenic, and mutagenic properties, whereas chlorinating disinfectants remain in global practice. The current review provides valuable insights into the occurrence, identification, contamination status, exposure limits, and toxicity of the new unregulated disinfection by-products (nitrosamine DBPs) in drinking water. As a result, concentrations of nitrosamine DBPs far exceed allowable limits in drinking water, and prolonged exposure has the potential to cause metabolic disorders, a critical step in tumor initiation and progression. Importantly, based on recent research, we have concluded the role of nitrosamines DBPs in different metabolic pathways. Remarkably, nitrosamine DBPs can induce chronic inflammation and initiate tumors by activating sphingolipid and polyunsaturated fatty acid metabolism. Regarding amino acid and nucleotide metabolism, nitrosamine DBPs can inhibit tryptophan metabolism and de novo nucleotide synthesis. Moreover, inhibition of de novo nucleotide synthesis fails to repair DNA damage induced by nitrosamines. Additionally, the accumulation of lactate induced by nitrosamine DBPs may act as a pivotal signaling molecule in communication within the tumor microenvironment. However, with the advancement of tumor metabolomics, understanding the role of nitrosamine DBPs in causing cancer by inducing metabolic abnormalities significantly lags behind, and specific mechanisms of toxic effects are not clearly defined. Urgently, further studies exploring this promising area are needed.


Asunto(s)
Desinfectantes , Agua Potable , Neoplasias , Nitrosaminas , Humanos , Nitrosaminas/toxicidad , Desinfectantes/toxicidad , Neoplasias/inducido químicamente , Neoplasias/metabolismo , Contaminantes Químicos del Agua/toxicidad , Animales , Desinfección , Purificación del Agua , COVID-19 , Carcinógenos/toxicidad
11.
Am J Hum Genet ; 111(1): 181-199, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-38181733

RESUMEN

Human humoral immune responses to SARS-CoV-2 vaccines exhibit substantial inter-individual variability and have been linked to vaccine efficacy. To elucidate the underlying mechanism behind this variability, we conducted a genome-wide association study (GWAS) on the anti-spike IgG serostatus of UK Biobank participants who were previously uninfected by SARS-CoV-2 and had received either the first dose (n = 54,066) or the second dose (n = 46,232) of COVID-19 vaccines. Our analysis revealed significant genome-wide associations between the IgG antibody serostatus following the initial vaccine and human leukocyte antigen (HLA) class II alleles. Specifically, the HLA-DRB1∗13:02 allele (MAF = 4.0%, OR = 0.75, p = 2.34e-16) demonstrated the most statistically significant protective effect against IgG seronegativity. This protective effect was driven by an alteration from arginine (Arg) to glutamic acid (Glu) at position 71 on HLA-DRß1 (p = 1.88e-25), leading to a change in the electrostatic potential of pocket 4 of the peptide binding groove. Notably, the impact of HLA alleles on IgG responses was cell type specific, and we observed a shared genetic predisposition between IgG status and susceptibility/severity of COVID-19. These results were replicated within independent cohorts where IgG serostatus was assayed by two different antibody serology tests. Our findings provide insights into the biological mechanism underlying individual variation in responses to COVID-19 vaccines and highlight the need to consider the influence of constitutive genetics when designing vaccination strategies for optimizing protection and control of infectious disease across diverse populations.


Asunto(s)
COVID-19 , Inmunoglobulina G , Humanos , Formación de Anticuerpos/genética , Vacunas contra la COVID-19 , Estudio de Asociación del Genoma Completo , COVID-19/genética , COVID-19/prevención & control , SARS-CoV-2 , Vacunación
12.
Molecules ; 29(2)2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38257283

RESUMEN

Obesity has become a major disease that endangers human health. Studies have shown that dietary interventions can reduce the prevalence of obesity and diabetes. Resistant starch (RS) exerts anti-obesity effects, alleviates metabolic syndrome, and maintains intestinal health. However, different RS types have different physical and chemical properties. Current research on RS has focused mainly on RS types 2, 3, and 4, with few studies on RS1. Therefore, this study aimed to investigate the effect of RS1 on obesity and gut microbiota structure in mice. In this study, we investigated the effect of potato RS type 1 (PRS1) on obesity and inflammation. Mouse weights, as well as their food intake, blood glucose, and lipid indexes, were assessed, and inflammatory factors were measured in the blood and tissues of the mice. We also analyzed the expression levels of related genes using PCR, with 16S rRNA sequencing used to study intestinal microbiota changes in the mice. Finally, the level of short-chain fatty acids was determined. The results indicated that PRS1 promoted host obesity and weight gain and increased blood glucose and inflammatory cytokine levels by altering the gut microbiota structure.


Asunto(s)
Microbioma Gastrointestinal , Solanum tuberosum , Humanos , Animales , Ratones , Almidón Resistente , Dieta Alta en Grasa/efectos adversos , Glucemia , ARN Ribosómico 16S , Almidón/farmacología , Obesidad/etiología
13.
PLoS Genet ; 20(1): e1011037, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38206971

RESUMEN

Explicitly sharing individual level data in genomics studies has many merits comparing to sharing summary statistics, including more strict QCs, common statistical analyses, relative identification and improved statistical power in GWAS, but it is hampered by privacy or ethical constraints. In this study, we developed encG-reg, a regression approach that can detect relatives of various degrees based on encrypted genomic data, which is immune of ethical constraints. The encryption properties of encG-reg are based on the random matrix theory by masking the original genotypic matrix without sacrificing precision of individual-level genotype data. We established a connection between the dimension of a random matrix, which masked genotype matrices, and the required precision of a study for encrypted genotype data. encG-reg has false positive and false negative rates equivalent to sharing original individual level data, and is computationally efficient when searching relatives. We split the UK Biobank into their respective centers, and then encrypted the genotype data. We observed that the relatives estimated using encG-reg was equivalently accurate with the estimation by KING, which is a widely used software but requires original genotype data. In a more complex application, we launched a finely devised multi-center collaboration across 5 research institutes in China, covering 9 cohorts of 54,092 GWAS samples. encG-reg again identified true relatives existing across the cohorts with even different ethnic backgrounds and genotypic qualities. Our study clearly demonstrates that encrypted genomic data can be used for data sharing without loss of information or data sharing barrier.


Asunto(s)
Estudio de Asociación del Genoma Completo , Privacidad , Humanos , Estudio de Asociación del Genoma Completo/métodos , Genotipo , Programas Informáticos , Genómica
14.
Stroke Vasc Neurol ; 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38296585

RESUMEN

BACKGROUND AND AIMS: Observational studies have implicated the involvement of gut microbiome in stroke development. Conversely, stroke may disrupt the gut microbiome balance, potentially causing systemic infections exacerbated brain infarction. However, the causal relationship remains controversial or unknown. To investigate bidirectional causality and potential ethnic differences, we conducted a bidirectional two-sample Mendelian randomisation (MR) study in both East Asian (EAS) and European (EU) populations. METHODS: Leveraging the hitherto largest genome-wide association study (GWAS) summary data from the MiBioGen Consortium (n=18 340, EU) and BGI (n=2524, EAS) for the gut microbiome, stroke GWAS data from the GIGASTROKE Consortium(264 655 EAS and 1 308 460 EU), we conducted bidirectional MR and sensitivity analyses separately for the EAS and EU population. RESULTS: We identified nominally significant associations between 85 gut microbiomes taxa in EAS and 64 gut microbiomes taxa in EU with stroke or its subtypes. Following multiple testing, we observed that genetically determined 1 SD increase in the relative abundance of species Bacteroides pectinophilus decreased the risk of cardioembolic stroke onset by 28% (OR 0.72 (95% CI 0.62 to 0.84); p=4.22e-5), and that genetically determined 1 SD increase in class Negativicutes resulted in a 0.76% risk increase in small vessel stroke in EAS. No significant causal association was identified in the EU population and the reverse MR analysis. CONCLUSION: Our study revealed subtype-specific and population-specific causal associations between gut microbiome and stroke risk among EAS and EU populations. The identified causality holds promise for developing a new stroke prevention strategy, warrants further mechanistic validation and necessitates clinical trial studies.

15.
Blood ; 143(15): 1528-1538, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38064665

RESUMEN

ABSTRACT: Platelet count reduction occurs throughout pregnancy, with 5% to 12% of pregnant women being diagnosed with gestational thrombocytopenia (GT), characterized by a more marked decrease in platelet count during pregnancy. However, the underlying biological mechanism behind these phenomena remains unclear. Here, we used sequencing data from noninvasive prenatal testing of 100 186 Chinese pregnant individuals and conducted, to our knowledge, the hitherto largest-scale genome-wide association studies on platelet counts during 5 periods of pregnancy (the first, second, and third trimesters, delivery, and the postpartum period) as well as 2 GT statuses (GT platelet count < 150 × 109/L and severe GT platelet count < 100 × 109/L). Our analysis revealed 138 genome-wide significant loci, explaining 10.4% to 12.1% of the observed variation. Interestingly, we identified previously unknown changes in genetic effects on platelet counts during pregnancy for variants present in PEAR1 and CBL, with PEAR1 variants specifically associated with a faster decline in platelet counts. Furthermore, we found that variants present in PEAR1 and TUBB1 increased susceptibility to GT and severe GT. Our study provides insight into the genetic basis of platelet counts and GT in pregnancy, highlighting the critical role of PEAR1 in decreasing platelet counts during pregnancy and the occurrence of GT. Those with pregnancies carrying specific variants associated with declining platelet counts may experience a more pronounced decrease, thereby elevating the risk of GT. These findings lay the groundwork for further investigation into the biological mechanisms and causal implications of GT.


Asunto(s)
Complicaciones Hematológicas del Embarazo , Trombocitopenia , Embarazo , Femenino , Humanos , Recuento de Plaquetas , Estudio de Asociación del Genoma Completo , Complicaciones Hematológicas del Embarazo/genética , Complicaciones Hematológicas del Embarazo/diagnóstico , Trombocitopenia/complicaciones , Periodo Posparto , Receptores de Superficie Celular
16.
Ann Diagn Pathol ; 68: 152225, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38016303

RESUMEN

BACKGROUND: The combination of immune checkpoint inhibitors (ICIs) with anti-angiogenic drugs has shown promising anticancer effects. However, ICIs can trigger immune-mediated hepatitis (IMH). We aimed to clarify whether the combined use of anti-angiogenic drugs and ICIs would increase the severity of IMH. METHODS: One hundred IMH patients (ICI monotherapy vs. ICI plus anti-angiogenic therapy 30 vs. 70) were retrospectively enrolled. Clinicopathological parameters were compared between the two groups. RESULTS: IMH mainly showed variable degrees of panlobular hepatitis (84 %), while some cases presented mixed cholangio-hepatitic (14 %) or cholangitic (2 %) pattern. The incidence of moderate-severe injury was not significantly different between the two groups (combination vs. monotherapy 38.6 % vs. 20.0 %, p = 0.109). Specifically, the rates of marked lobular injury and portal inflammation were higher in the combination group than in the monotherapy cohort (p < 0.005), while the frequencies of interface hepatitis, bile duct injury, histiocytosis aggregates, and endothelialitis were comparable between the two groups (p > 0.05). Compared to mild IMH cases, severe IMH cases showed higher immunostaining expression levels of PD-L1 (60.7 % vs. 19.4 %, p < 0.0001). Treatments and outcomes of IMH were not significantly different between the two groups (p > 0.05). CONCLUSIONS: Compared to ICI monotherapy, the administration of anti-angiogenic drugs in combination with ICIs was not associated with increased hepatotoxicity.


Asunto(s)
Hepatitis , Inhibidores de Puntos de Control Inmunológico , Humanos , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Inhibidores de la Angiogénesis/efectos adversos , Estudios Retrospectivos , Inmunoterapia/efectos adversos
17.
Sensors (Basel) ; 23(19)2023 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-37836883

RESUMEN

Outliers can be generated in the power system due to aging system equipment, faulty sensors, incorrect line connections, etc. The existence of these outliers will pose a threat to the safe operation of the power system, reduce the quality of the data, affect the completeness and accuracy of the data, and thus affect the monitoring analysis and control of the power system. Therefore, timely identification and treatment of outliers are essential to ensure stable and reliable operation of the power system. In this paper, we consider the problem of detecting and localizing outliers in power systems. The paper proposes a Minorization-Maximization (MM) algorithm for outlier detection and localization and an estimation of unknown parameters of the Gaussian mixture model (GMM). To verify the performance of the method, we conduct simulation experiments by simulating different test scenarios in the IEEE 14-bus system. Numerical examples show that in the presence of outliers, the MM algorithm can detect outliers better than the traditional algorithm and can accurately locate outliers with a probability of more than 95%. Therefore, the algorithm provides an effective method for the handling of outliers in the power system, which helps to improve the monitoring analyzing and controlling ability of the power system and to ensure the stable and reliable operation of the power system.

18.
Eur J Pharmacol ; 960: 176103, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37852570

RESUMEN

The mast cell is an important cellular component that plays a crucial role in the crosstalk between innate and adaptive immune responses within the tumor microenvironment (TME). Recently, numerous studies have indicated that mast cells related to tumors play a dual role in regulating cancers, with conflicting results seemingly determined by the degranulation medium. As such, mast cells are an ignored but very promising potential target for cancer immunotherapy based on their immunomodulatory function. In this review, we present a comprehensive overview of the roles and mechanisms of mast cells in diverse cancer types. Firstly, we evaluated the infiltration density and location of mast cells on tumor progression. Secondly, mast cells are activated by the TME and subsequently release a range of inflammatory mediators, cytokines, chemokines, and lipid products that modulate their pro-or anti-tumor functions. Thirdly, activated mast cells engage in intercellular communication with other immune or stromal cells to modulate the immune status or promote tumor development. Finally, we deliberated on the clinical significance of targeting mast cells as a therapeutic approach to restrict tumor initiation and progression. Overall, our review aims to provide insights for future research on the role of mast cells in tumors and their potential as therapeutic targets for cancer treatment.


Asunto(s)
Mastocitos , Neoplasias , Humanos , Mastocitos/metabolismo , Microambiente Tumoral , Neoplasias/patología , Inmunoterapia/métodos , Presentación de Antígeno
19.
Int J Mol Sci ; 24(19)2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37834044

RESUMEN

Ferroptosis is a newly characterized form of programmed cell death. The fundamental biochemical feature of ferroptosis is the lethal accumulation of iron-catalyzed lipid peroxidation. It has gradually been recognized that ferroptosis is implicated in the pathogenesis of a variety of human diseases. Increasing evidence has shed light on ferroptosis regulation by amino acid metabolism. Herein, we report that arginine deprivation potently inhibits erastin-induced ferroptosis, but not RSL3-induced ferroptosis, in several types of mammalian cells. Arginine presence reduces the intracellular glutathione (GSH) level by sustaining the biosynthesis of fumarate, which functions as a reactive α,ß-unsaturated electrophilic metabolite and covalently binds to GSH to generate succinicGSH. siRNA-mediated knockdown of argininosuccinate lyase, the critical urea cycle enzyme directly catalyzing the biosynthesis of fumarate, significantly decreases cellular fumarate and thus relieves erastin-induced ferroptosis in the presence of arginine. Furthermore, fumarate is decreased during erastin exposure, suggesting that a protective mechanism exists to decelerate GSH depletion in response to pro-ferroptotic insult. Collectively, this study reveals the ferroptosis regulation by the arginine metabolism and expands the biochemical functionalities of arginine.


Asunto(s)
Ferroptosis , Animales , Humanos , Apoptosis , Piperazinas/farmacología , Peroxidación de Lípido/fisiología , Mamíferos
20.
BMJ Open ; 13(10): e072803, 2023 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-37802622

RESUMEN

OBJECTIVE: To examine the association between midlife tobacco smoking and late-life brain atrophy and white matter lesions. METHODS: The study includes 369 women from the Prospective Population Study of Women in Gothenburg, Sweden. Cigarette smoking was reported at baseline 1968 (mean age=44 years) and at follow-up in 1974-1975 and 1980-1981. CT of the brain was conducted 32 years after baseline examination (mean age=76 years) to evaluate cortical atrophy and white matter lesions. Multiple logistic regressions estimated associations between midlife smoking and late-life brain lesions. The final analyses were adjusted for alcohol consumption and several other covariates. RESULTS: Smoking in 1968-1969 (adjusted OR 1.85; 95% CI 1.12 to 3.04), in 1974-1975 (OR 2.37; 95% CI 1.39 to 4.04) and in 1980-1981 (OR 2.47; 95% CI 1.41 to 4.33) were associated with late-life frontal lobe atrophy (2000-2001). The strongest association was observed in women who reported smoking at all three midlife examinations (OR 2.63; 95% CI 1.44 to 4.78) and in those with more frequent alcohol consumption (OR 6.02; 95% CI 1.74 to 20.84). Smoking in 1980-1981 was also associated with late-life parietal lobe atrophy (OR 1.99; 95% CI 1.10 to 3.58). There were no associations between smoking and atrophy in the temporal or occipital lobe, or with white matter lesions. CONCLUSION: Longstanding tobacco smoking was mainly associated with atrophy in the frontal lobe cortex. A long-term stimulation of nicotine receptors in the frontal neural pathway might be harmful for targeted brain cell.


Asunto(s)
Encéfalo , Lóbulo Frontal , Humanos , Femenino , Adulto , Anciano , Estudios de Seguimiento , Estudios Prospectivos , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Lóbulo Frontal/diagnóstico por imagen , Atrofia/patología , Fumar/efectos adversos , Fumar/epidemiología , Imagen por Resonancia Magnética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA