RESUMEN
BACKGROUND: Cryptosporidium parvum is a common protozoan pathogen responsible for moderate to severe diarrhea in humans and animals. The C. parvum genome contains 22 genes encoding insulinase-like M16 proteases (INS) with diverse structures and sequences, suggesting that members of the protein family may have distinct biological functions in the life cycle of parasites. Here, we investigated the role of INS15 and INS16, two proteases encoded by neighboring genes with high sequence identity, in the growth and development of C. parvum in vivo and in vitro. METHODOLOGY/PRINCIPAL FINDINGS: INS15 and INS16 genes were tagged and knocked out using CRISPR/Cas9 technology in C. parvum IIdA20G1-HLJ isolate. The expression of INS15 and INS16 was determined by immunofluorescence analysis and immunoelectron microscopy. The effect of depletion of INS15 and INS16 on parasite growth and pathogenicity were assessed on HCT-8 cells and in interferon-γ knockout mice. Endogenous tagging showed that INS15 and INS16 expressed in the oocyst, trophozoite, meront and female gametes. INS15 also expressed in male gamonts, while INS16 was not detected in the male gamonts. Although depletion of the INS15 or INS16 gene affected late development of C. parvum in vitro, only depletion of INS15 significantly reduced parasite burden in infected mice. Mice infected with the INS15-depleted strain had reduced clinical signs, body weight, intestinal villus length to crypt height ratio, and survival time compared to infected with the tagging mutant. CONCLUSIONS/SIGNIFICANCE: The results of this study indicate that INS15 is mainly involved in the late development of C. parvum. Depletion of this gene attenuates the pathogenicity of this important zoonotic parasite.
Asunto(s)
Criptosporidiosis , Cryptosporidium parvum , Animales , Femenino , Humanos , Ratones , Sistemas CRISPR-Cas , Criptosporidiosis/parasitología , Cryptosporidium parvum/genética , Cryptosporidium parvum/patogenicidad , Cryptosporidium parvum/crecimiento & desarrollo , Técnicas de Inactivación de Genes , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismoRESUMEN
BACKGROUND: Cryptosporidium spp. are important zoonotic parasites that can cause moderate to severe diarrhea in humans and animals. Among the three Cryptosporidium species infecting the intestines of calves, Cryptosporidium parvum has a broad host range and causes severe diarrhea in calves, while Cryptosporidium bovis and Cryptosporidium ryanae mainly infect calves without obvious clinical symptoms. Comparative genomic analysis revealed differences in the copy number of genes encoding the nonfinancial disclosure quality (NFDQ) secretory protein family among the three species, suggesting that this protein family may be associated with the host range or pathogenicity of Cryptosporidium spp. To understand the function of cgd8_10 encoded NFDQ1, tagged and knockout strains were constructed and characterized in this study. METHODS: To determine the localization of NFDQ1, we used clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) technology to tag the C-terminus of NFDQ1 with three hemagglutinin epitopes (3 × HA). The tagged strain was constructed, and the genomic insertion was confirmed by polymerase chain reaction (PCR). Immunofluorescence assays were performed to observe the localization of NFDQ1 both in extracellular sporozoites and at various intracellular developmental stages. Immunoelectron microscopy was used to study the ultrastructural localization of NFDQ1. Then, the ΔNFDQ1 strain was generated by CRISPR/Cas9 and the in vitro growth assay on HCT-8 cells was used to analyze of phenotypic changes after knockout NFDQ1 in parasites. RESULTS: The NFDQ1 tagging and knockout stains were successfully constructed by CRISPR/Cas9 technology and the insertions of transgenic strains were validated by PCR. The expression of NFDQ1 was validated in parasite by western blot. Immunofluorescence and immune-electron microscopy assay showed that NFDQ1 expressed in both asexual and sexual stages of C. parvum, where it was localized to the cytoplasm of the parasite. Upon ablation of NFDQ1, the ΔNFDQ1 strain showed an apparent growth retardation during sexual replication in vitro. CONCLUSIONS: NFDQ1 is a cytoplasmic protein without specific localization to secretory organelles, and it may participate in C. parvum growth during sexual reproduction. Future study should determine the role of NFDQ1 following C. parvum infection in vivo.
Asunto(s)
Criptosporidiosis , Cryptosporidium parvum , Proteínas Protozoarias , Cryptosporidium parvum/genética , Animales , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Criptosporidiosis/parasitología , Bovinos , Esporozoítos/metabolismo , Humanos , Sistemas CRISPR-Cas , Enfermedades de los Bovinos/parasitologíaRESUMEN
Intestinal mucositis (IM) is one of the most serious side effects of the chemotherapeutic agent irinotecan (CPT-11). Astragalus membranaceus-Pueraria lobata decoction is from the ancient medical book Zhengzhihuibu, has been reported to be used for the treatment of diabetes and hypertension. However, the beneficial effect and mechanism of AP on chemotherapy intestinal mucositis (CIM) remain largely unknown. This study aimed to investigate the efficacy and mechanism of Astragalus membranaceus-Pueraria lobata decoction (AP) in treating CIM. The beneficial effect and mechanism of AP on chemotherapy intestinal mucositis (CIM) were detected using Drosophila model, and combination with RT qPCR, transcriptomics. AP supplementation could significantly alleviate the CPT-11-induced body injury in Drosophila, such as increasing the survival rate, recovering the impaired digestion, improving the movement, and repairing the reproduction and developmental processes. Administration of AP remarkably alleviated the IM caused by CPT-11, including inhibiting the excretion, repairing the intestinal atrophy, improving the acid-base homeostasis imbalance, and inhibiting the disruption of intestinal structure. Mechanistic studies revealed that the protective role of AP against CPT-11 induced intestinal injury was regulated mainly by inhibiting immune-related Toll and Imd pathways, and enhancing the antioxidant capacity. Taken together, these results suggest that AP may be a novel agent to relieve CIM.
Asunto(s)
Astragalus propinquus , Irinotecán , Animales , Astragalus propinquus/química , Irinotecán/farmacología , Mucositis/inducido químicamente , Mucositis/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Drosophila melanogaster/efectos de los fármacosRESUMEN
Virulence factor genes (VFGs) play pivotal roles in bacterial infections and have been identified within the human gut microbiota. However, their involvement in chronic diseases remains poorly understood. Here, we establish an expanded VFG database (VFDB 2.0) consisting of 62,332 nonredundant orthologues and alleles of VFGs using species-specific average nucleotide identity ( https://github.com/Wanting-Dong/MetaVF_toolkit/tree/main/databases ). We further develop the MetaVF toolkit, facilitating the precise identification of pathobiont-carried VFGs at the species level. A thorough characterization of VFGs for 5452 commensal isolates from healthy individuals reveals that only 11 of 301 species harbour these factors. Further analyses of VFGs within the gut microbiomes of nine chronic diseases reveal both common and disease-specific VFG features. Notably, in type 2 diabetes patients, long HiFi sequencing confirms that shared VF features are carried by pathobiont strains of Escherichia coli and Klebsiella pneumoniae. These findings underscore the critical importance of identifying and understanding VFGs in microbiome-associated diseases.
Asunto(s)
Microbioma Gastrointestinal , Factores de Virulencia , Humanos , Factores de Virulencia/genética , Enfermedad Crónica , Microbioma Gastrointestinal/genética , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/patogenicidad , Klebsiella pneumoniae/aislamiento & purificación , Diabetes Mellitus Tipo 2/microbiología , Diabetes Mellitus Tipo 2/genética , Escherichia coli/genética , Escherichia coli/patogenicidad , Escherichia coli/aislamiento & purificación , Bacterias/genética , Bacterias/clasificación , Bacterias/aislamiento & purificación , Bacterias/patogenicidad , Bases de Datos Genéticas , Infecciones Bacterianas/microbiologíaRESUMEN
Porous polydimethylsiloxane (PDMS) membrane is a crucial element in organs-on-chips fabrication, supplying a unique substrate that can be used for the generation of tissue-tissue interfaces, separate co-culture, biomimetic stretch application, etc. However, the existing methods of through-hole PDMS membrane production are largely limited by labor-consuming processes and/or expensive equipment. Here, we propose an accessible and low-cost strategy to fabricate through-hole PDMS membranes with good controllability, which is performed via combining wet-etching and spin-coating processes. The porous membrane is obtained by spin-coating OS-20 diluted PDMS on an etched glass template with a columnar array structure. The pore size and thickness of the PDMS membrane can be adjusted flexibly via optimizing the template structure and spinning speed. In particular, compared to the traditional vertical through-hole structure of porous membranes, the membranes prepared by this method feature a trumpet-shaped structure, which allows for the generation of some unique bionic structures on organs-on-chips. When the trumpet-shape faces upward, the endothelium spreads at the bottom of the porous membrane, and intestinal cells form a villous structure, achieving the same effect as traditional methods. Conversely, when the trumpet-shape faces downward, intestinal cells spontaneously form a crypt-like structure, which is challenging to achieve with other methods. The proposed approach is simple, flexible with good reproducibility, and low-cost, which provides a new way to facilitate the building of multifunctional organ-on-chip systems and accelerate their translational applications.
RESUMEN
Maternal exposure to nanoparticles during gestation poses potential risks to fetal development. The placenta, serving as a vital interface for maternal-fetal interaction, plays a pivotal role in shielding the fetus from direct nanoparticle exposure. However, the impact of nanoparticles on placental function is still poorly understood, primarily due to the absence of proper human placental models. In this study, we established a placenta-on-a-chip model capable of recapitulating nanoparticle exposure to assess potential nanotoxicity. The model was assembled by coculturing human trophoblast stem cells (hTSCs) and endothelial cells within a dynamic microsystem. hTSCs exhibited progressive differentiation into syncytiotrophoblasts under continuous fluid flow, forming a bilayered trophoblastic epithelium that mimicking both structural and functional aspects of human placental villi. Copper oxide nanoparticles (CuO NPs) were introduced into the trophoblastic side to simulate maternal blood exposure. Our findings revealed that CuO NPs hindered hTSCs differentiation, leading to diminished hormone secretion and impaired glucose transport. Subsequent analysis indicated that CuO NPs disrupted the autophagic flux in trophoblasts and induced apoptosis. Furthermore, the placenta-on-a-chip model exhibited inflammatory responses to CuO NP exposure, including maternal macrophage activation, inflammatory cytokine secretion, and endothelial barrier disruption. Dysfunction of the placental barrier and the ensuing inflammatory cascades may contribute to aberrant fetal development. Overall, our placenta-on-a-chip model offers a promising platform for assessing nanoparticle exposure-related risks and conducting toxicology studies.
Asunto(s)
Placenta , Células Madre , Trofoblastos , Humanos , Trofoblastos/efectos de los fármacos , Femenino , Embarazo , Placenta/efectos de los fármacos , Células Madre/efectos de los fármacos , Cobre/toxicidad , Diferenciación Celular/efectos de los fármacos , Nanopartículas del Metal/toxicidad , Dispositivos Laboratorio en un Chip , Apoptosis/efectos de los fármacos , Nanopartículas/toxicidadRESUMEN
Biological studies of the determinants of Cryptosporidium infectivity are lacking despite the fact that cryptosporidiosis is a major public health problem. Recently, the 60-kDa glycoprotein (GP60) has received attention because of its high sequence polymorphism and association with host infectivity of isolates and protection against reinfection. However, studies of GP60 function have been hampered by its heavy O-linked glycosylation. Here, we used advanced genetic tools to investigate the processing, fate, and function of GP60. Endogenous gene tagging showed that the GP60 cleavage products, GP40 and GP15, are both highly expressed on the surface of sporozoites, merozoites and male gametes. During invasion, GP40 translocates to the apical end of the zoites and remains detectable at the parasite-host interface. Deletion of the signal peptide, GPI anchor, and GP15 sequences affects the membrane localization of GP40. Deletion of the GP60 gene significantly reduces parasite growth and severity of infection, and replacement of the GP60 gene with sequence from an avirulent isolate reduces the pathogenicity of a highly infective isolate. These results have revealed dynamic changes in GP60 expression during parasite development. They further suggest that GP60 is a key protein mediating host infectivity and pathogenicity.
Asunto(s)
Criptosporidiosis , Cryptosporidium parvum , Proteínas Protozoarias , Cryptosporidium parvum/genética , Cryptosporidium parvum/patogenicidad , Cryptosporidium parvum/metabolismo , Animales , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Criptosporidiosis/parasitología , Interacciones Huésped-Parásitos , Ratones , Humanos , Esporozoítos/metabolismo , Esporozoítos/genética , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismoRESUMEN
Eimeria spp. are important coccidian parasites causing diarrhea and significant mortality in cattle worldwide. To date, at least 13 Eimeria species with varying pathogenicity have been identified in cattle. Efficient detection and identification of Eimeria spp. is therefore essential for the prevention and control of bovine coccidiosis. However, the commonly used microscopic examination for Eimeria spp. is time-consuming and requires considerable expertise. In this study, we aligned the nucleotide sequences of the small subunit (SSU) rRNA gene of common Eimeria species and developed a nested PCR assay targeting the polymorphic SSU rRNA region of Eimeria spp. from cattle. Initially, the SSU rRNA gene PCR assay was compared with microscopic examination for sensitivity and detection range of Eimeria species using fecal samples from dairy cattle. Of the 193 fecal samples, 131 (67.9â¯%) and 78 (40.4â¯%) were positive for Eimeria by PCR and microscopy, respectively. Sequence analysis of the PCR products identified six Eimeria species, including E. cylindrica (n = 76), E. bovis (n = 54), E. auburnensis (n = 30), E. zuernii (n = 25), E. wyomingensis (n = 10), E. canadensis (n = 1), and co-infections of 2-4 species (n = 55). In contrast, only the first four species and co-infections of 2-3 species were identified by microscopy. The PCR assay was able to detect as few as 50 Eimeria oocysts per gram of feces. Thus, the developed SSU rRNA gene PCR assay has a high sensitivity and allowed easy identification of at least six common Eimeria species and their co-infections in cattle. It should be useful in molecular epidemiological studies of bovine coccidiosis.
RESUMEN
BACKGROUND: The dimerizable Cre recombinase system (DiCre) exhibits increased leaky activity in Cryptosporidium, leading to unintended gene editing in the absence of induction. Therefore, optimization of the current DiCre technique is necessary for functional studies of essential Cryptosporidium genes. METHODS: Based on the results of transcriptomic analysis of Cryptosporidium parvum stages, seven promoters with different transcriptional capabilities were screened to drive the expression of Cre fragments (FKBP-Cre59 and FRB-Cre60). Transient transfection was performed to assess the effect of promoter strength on leakage activity. In vitro and in vivo experiments were performed to evaluate the leaky activity and cleavage efficiency of the optimized DiCre system by polymerase chain reaction (PCR), nanoluciferase, and fluorescence analyses. RESULTS: The use of promoters with lower transcriptional activity, such as pcgd6_4110 and pcgd3_260, as opposed to strong promoters such as pActin, pα-Tubulin, and pEnolase, reduced the leakage rate of the system from 35-75% to nearly undetectable levels, as verified by transient transfection. Subsequent in vitro and in vivo experiments using stable lines further demonstrated that the optimized DiCre system had no detectable leaky activity. The system achieved 71% cleavage efficiency in vitro. In mice, a single dose of the inducer resulted in a 10% conditional gene knockout and fluorescent protein expression in oocysts. These fluorescently tagged transgenic oocysts could be enriched by flow sorting for further infection studies. CONCLUSIONS: A DiCre conditional gene knockout system for Cryptosporidium with good cleavage efficiency and reduced leaky activity has been successfully established.
Asunto(s)
Cryptosporidium parvum , Edición Génica , Integrasas , Regiones Promotoras Genéticas , Edición Génica/métodos , Animales , Ratones , Integrasas/genética , Integrasas/metabolismo , Cryptosporidium parvum/genética , Cryptosporidium parvum/enzimología , Criptosporidiosis/parasitología , Cryptosporidium/genéticaRESUMEN
Plant-derived extracellular vesicles (PLEVs), as a type of naturally occurring lipid bilayer membrane structure, represent an emerging delivery vehicle with immense potential due to their ability to encapsulate hydrophobic and hydrophilic compounds, shield them from external environmental stresses, control release, exhibit biocompatibility, and demonstrate biodegradability. This comprehensive review analyzes engineering preparation strategies for natural vesicles, focusing on PLEVs and their purification and surface engineering. Furthermore, it encompasses the latest advancements in utilizing PLEVs to transport active components, serving as a nanotherapeutic system. The prospects and potential development of PLEVs are also discussed. It is anticipated that this work will not only address existing knowledge gaps concerning PLEVs but also provide valuable guidance for researchers in the fields of food science and biomedical studies, stimulating novel breakthroughs in plant-based therapeutic options.
Asunto(s)
Vesículas Extracelulares , Plantas , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/química , Plantas/química , Plantas/metabolismo , Humanos , AnimalesRESUMEN
A major bottleneck in the progress of Cryptosporidium research is the lack of accessible cryopreservation of Cryptosporidium oocysts. Here, we present a protocol for the cryopreservation of Cryptosporidium isolates using enteroids. We describe the steps for the establishment of enteroid cultures and cryopreservation of C. parvum-infected HCT-8 cultures. We then detail procedures for the recovery and propagation of frozen parasites using enteroids. For complete details on the use and execution of this protocol, please refer to Deng et al.1.
Asunto(s)
Criopreservación , Cryptosporidium , Criopreservación/métodos , Humanos , Cryptosporidium/aislamiento & purificación , Cryptosporidium/fisiología , Cryptosporidium parvum/aislamiento & purificación , Cryptosporidium parvum/fisiología , Oocistos/aislamiento & purificación , Oocistos/fisiología , Oocistos/citología , Criptosporidiosis/parasitologíaRESUMEN
Cryptosporidium spp., Giardia spp. and Enterocytozoon bieneusi are common zoonotic pathogens in humans and animals. Although rodents are important parts of the ecosystem and common hosts for these pathogens, little is known of the distribution, genetic diversity and zoonotic potential of these pathogens in wild rodents. A total of 442 fecal samples were collected from eleven wild rodent species in three provinces of China, and analyzed for these pathogens by PCR and DNA sequencing. The infection rates of Cryptosporidium spp., Giardia spp. and E. bieneusi were 19.9% (88/442), 19.8% (75/378) and 12.2% (54/442), respectively. Altogether, 23 known Cryptosporidium species/genotypes were identified and their distribution varied among different sampling locations or rodent species. Subtyping of the zoonotic Cryptosporidium species identified two novel subtype families XVe and XVf in C. viatorum, the subtype family XIIh and a novel subtype family XIIj in C. ubiquitum, and the subtype family IId in C. parvum. Three Giardia species were identified, including G. microti (n = 57), G. muris (n = 15) and G. duodenalis (n = 3), with G. duodenalis assemblages A and G identified in brown rats in urban areas of Guangdong. In addition, 13 E. bieneusi genotypes including eight known and five novel ones were identified, belonging to Groups 1, 2, 10, 14 and 15. Within nine genotypes in the zoonotic Group 1, common human-pathogenic genotypes D, Type IV, PigEbITS7 and Peru8 were detected only in brown rats and Lesser rice-field rats in urban areas of Guangdong. Apparent host adaptation and geographical differences were observed among Cryptosporidium spp., Giardia spp. and E. bieneusi genotypes in wild rodents in the present study. Furthermore, the zoonotic Cryptosporidium species and E. bieneusi genotypes commonly found here suggest a high zoonotic potential of these pathogens in wild rodents, especially in brown rats in urban areas. Hygiene and One Health measures should be implemented in urban streets and food stores to reduce the possible direct and indirect transmission of these rodent-related pathogens.
RESUMEN
BACKGROUND: Cryptosporidium spp. cause watery diarrhea in humans and animals, especially in infants and neonates. They parasitize the apical surface of the epithelial cells in the intestinal lumen. However, the pathogenesis of Cryptosporidium-induced diarrhea is not fully understood yet. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we infected C57BL/6j neonatal mice with C. parvum IIa and IId subtypes, and examined oocyst burden, pathological changes, and intestinal epithelial permeability during the infection. In addition, transcriptomic analyses were used to study the mechanism of diarrhea induced by the C. parvum IId subtype. The neonatal mice were sensitive to both C. parvum IIa and IId infection, but the IId subtype caused a wide oocyst shedding window and maintained the high oocyst burden in the mice compared with the IIa subtype. In addition, the mice infected with C. parvum IId resulted in severe intestinal damage at the peak of infection, leading to increased permeability of the epithelial barrier. The KEGG, GO and GSEA analyses revealed that the downregulation of adherens junction and cell junction molecules at 11 dpi. Meanwhile, E-cadherin, which is associated with adherens junction, was reduced at the protein level in mouse ileum at peak and late infection. CONCLUSIONS/SIGNIFICANCE: C. parvum IId infection causes more severe pathological damage than C. parvum IIa infection in neonatal mice. Furthermore, the impairment of the epithelial barrier during C. parvum IId infection results from the downregulation of intestinal junction proteins.
Asunto(s)
Animales Recién Nacidos , Criptosporidiosis , Cryptosporidium parvum , Regulación hacia Abajo , Mucosa Intestinal , Ratones Endogámicos C57BL , Animales , Cryptosporidium parvum/genética , Criptosporidiosis/parasitología , Criptosporidiosis/patología , Ratones , Mucosa Intestinal/parasitología , Mucosa Intestinal/patología , Cadherinas/metabolismo , Cadherinas/genética , Diarrea/parasitología , Células Epiteliales/parasitología , Femenino , Oocistos , Íleon/parasitología , Íleon/patología , Modelos Animales de EnfermedadRESUMEN
Cryptosporidium hominis and Cryptosporidium parvum are major causes of severe diarrhea. Comparative studies of them are hampered by the lack of effective cultivation and cryopreservation methods, especially for C. hominis. Here, we describe adapted murine enteroids for the cultivation and complete development of host-adapted C. parvum and C. hominis subtypes, producing oocysts infectious to mice. Using the system, we developed a cryopreservation method for Cryptosporidium isolates. In comparative RNA-seq analyses of C. hominis cultures, the enteroid system generated significantly more host and pathogen responses than the conventional HCT-8 cell system. In particular, the infection was shown to upregulate PI3K-Akt, Ras, TNF, NF-κB, IL-17, MAPK, and innate immunity signaling pathways and downregulate host cell metabolism, and had significantly higher expression of parasite genes involved in oocyst formation. Therefore, the enteroid system provides a valuable tool for comparative studies of the biology of divergent Cryptosporidium species and isolates.
RESUMEN
Cryptosporidium spp. are important diarrhea-associated pathogens in humans and livestock. Among the known species, Cryptosporidium xiaoi, which causes cryptosporidiosis in sheep and goats, was previously recognized as a genotype of the bovine-specific Cryptosporidium bovis based on their high sequence identity in the ssrRNA gene. However, the lack of genomic data has limited characterization of the genetic differences between the two closely related species. In this study, we sequenced the genomes of two C. xiaoi isolates and performed comparative genomic analysis to identify the sequence uniqueness of this ovine-adapted species compared with other Cryptosporidium spp. Our results showed that C. xiaoi is genetically related to C. bovis as shown by their 95.8% genomic identity and similar gene content. Consistent with this, both C. xiaoi and C. bovis appear to have fewer genes encoding mitochondrial metabolic enzymes and invasion-related protein families. However, they appear to possess several species-specific genes. Further analysis indicates that the sequence differences between these two Cryptosporidium spp. are mainly in 24 highly polymorphic genes, half of which are located in the subtelomeric regions. Some of these subtelomeric genes encode secretory proteins that have undergone positive selection. In addition, the genomes of two C. xiaoi isolates, identified as subtypes XXIIIf and XXIIIh, share 99.9% nucleotide sequence identity, with six highly divergent genes encoding putative secretory proteins. Therefore, these species-specific genes and sequence polymorphism in subtelomeric genes probably contribute to the different host preference of C. xiaoi and C. bovis.
Asunto(s)
Criptosporidiosis , Cryptosporidium , Genómica , Filogenia , Cryptosporidium/genética , Cryptosporidium/clasificación , Animales , Criptosporidiosis/parasitología , Ovinos , Cabras , Genoma de Protozoos , Bovinos , Especificidad del Huésped , Enfermedades de las Ovejas/parasitología , Enfermedades de las Cabras/parasitologíaRESUMEN
Trichomonas gallinae is a protozoa that parasitizes the upper gastrointestinal and respiratory tracts of various animals and birds, including Columbidae, Passeriformes, and Falconiformes. Polymerase chain reaction-based T. gallinae ITS1/5.8S/ITS2 gene typing yields inconsistent results owing to methodological differences. To standardize the statistical analysis of T. gallinae genotype distributions, this study employed MEGA-X software with the Tamamura 3-parameter (T92) + G model in the neighbor-joining method, with 2,000 bootstrap replicates, to calculate a systematic evolutionary tree. The resulting tree comprised 12 branches, ITS-OBT-Tg-1 to ITS-OBT-Tgl, with similar phylogenetic relationships. Relevant literature review yielded T. gallinae prevalence data in Columbidae. Statistical analysis was conducted from two perspectives: non-biological and biological factors, using chi-square tests and ordered logistic regression analysis. T. gallinae positivity rates differed significantly across diverse regions (χ2 = 4,609.9, P = 0.000, df = 4) and at various times (χ2 = 2,810.8, P = 0.000, df = 3). However, temperature and precipitation did not significantly affect T. gallinae positivity rates. Additionally, T. gallinae positivity rates differed significantly among diverse hosts (χ2 = 2,958.6, P = 0.000, df = 14) and by host age (χ2 = 478.5, P = 0.000, df = 2) and sex (χ2 = 96.00, P = 0.000, df = 1). This comprehensive analysis aimed to control T. gallinae transmission, reduce economic and species resource losses, and provide a foundation for future related research.
RESUMEN
The IOWA strain of Cryptosporidium parvum is widely used in studies of the biology and detection of the waterborne pathogens Cryptosporidium spp. While several lines of the strain have been sequenced, IOWA-II, the only reference of the original subtype (IIaA15G2R1), exhibits significant assembly errors. Here we generated a fully assembled genome of IOWA-CDC of this subtype using PacBio and Illumina technologies. In comparative analyses of seven IOWA lines maintained in different laboratories (including two sequenced in this study) and 56 field isolates, IOWA lines (IIaA17G2R1) with less virulence had mixed genomes closely related to IOWA-CDC but with multiple sequence introgressions from IOWA-II and unknown lineages. In addition, the IOWA-IIaA17G2R1 lines showed unique nucleotide substitutions and loss of a gene associated with host infectivity, which were not observed in other isolates analyzed. These genomic differences among IOWA lines could be the genetic determinants of phenotypic traits in C. parvum. These data provide a new reference for comparative genomic analyses of Cryptosporidium spp. and rich targets for the development of advanced source tracking tools.
Asunto(s)
Criptosporidiosis , Cryptosporidium parvum , Cryptosporidium , Humanos , Cryptosporidium parvum/genética , Cryptosporidium/genética , Genómica , VirulenciaRESUMEN
BACKGROUND: Cryptosporidium spp. are common protozoa causing diarrhea in humans and animals. There are currently only one FDA-approved drug and no vaccines for cryptosporidiosis, largely due to the limited knowledge of the molecular mechanisms involved in the invasion of the pathogens. Previous studies have shown that GP60, which is cleaved into GP40 and GP15 after expression, is an immunodominant mucin protein involved in the invasion of Cryptosporidium. The protein is highly O-glycosylated, and recombinant proteins expressed in prokaryotic systems are non-functional. Therefore, few studies have investigated the function of GP40 and GP15. METHODS: To obtain recombinant GP40 with correct post-translational modifications, we used CRISPR/Cas9 technology to insert GP40 and GP15 into the UPRT locus of Toxoplasma gondii, allowing heterologous expression of Cryptosporidium proteins. In addition, the Twin-Strep tag was inserted after GP40 for efficient purification of GP40. RESULTS: Western blotting and immunofluorescent microscopic analyses both indicated that GP40 and GP15 were stably expressed in T. gondii mutants. GP40 localized not only in the cytoplasm of tachyzoites but also in the parasitophorous vacuoles, while GP15 without the GPI anchor was expressed only in the cytoplasm. In addition, a large amount of recTgGP40 was purified using Strep-TactinXT supported by a visible band of ~ 50 kDa in SDS-PAGE. CONCLUSIONS: The establishment of a robust and efficient heterologous expression system of GP40 in T. gondii represents a novel approach and concept for investigating Cryptosporidium mucins, overcoming the limitations of previous studies that relied on unstable transient transfection, which involved complex steps and high costs.
Asunto(s)
Criptosporidiosis , Cryptosporidium parvum , Cryptosporidium , Toxoplasma , Humanos , Animales , Cryptosporidium parvum/metabolismo , Toxoplasma/genética , Toxoplasma/metabolismo , Proteínas Protozoarias/metabolismo , Mucinas/metabolismo , GlicoproteínasRESUMEN
Organ-on-a-chip technology has shown great potential in disease modeling and drug evaluation. However, traditional organ-on-a-chip devices are mostly pump-dependent with low throughput, which makes it difficult to leverage their advantages. In this study, we have developed a generic, pump-free organ-on-a-chip platform consisting of a 32-unit chip and an adjustable rocker, facilitating high-throughput dynamic cell culture with straightforward operation. By utilizing the rocker to induce periodic fluid forces, we can achieve fluidic conditions similar to those obtained with traditional pump-based systems. Through constructing a gut-on-a-chip model, we observed remarkable enhancements in the expression of barrier-associated proteins and the spatial distribution of differentiated intestinal cells compared to static culture. Furthermore, RNA sequencing analysis unveiled enriched pathways associated with cell proliferation, lipid transport, and drug metabolism, indicating the ability of the platform to mimic critical physiological processes. Additionally, we tested seven drugs that represent a range of high, medium, and low in vivo permeability using this model and found a strong correlation between their Papp values and human Fa, demonstrating the capability of this model for drug absorption evaluation. Our findings highlight the potential of this pump-free organ-on-a-chip platform as a valuable tool for advancing drug development and enabling personalized medicine.