Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 24(20): 6192-6200, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38666542

RESUMEN

Creating artificial synapses that can interact with biological neural systems is critical for developing advanced intelligent systems. However, there are still many difficulties, including device morphology and fluid selection. Based on Micro-Electro-Mechanical System technologies, we utilized two immiscible electrolytes to form a liquid/liquid interface at the tip of a funnel nanochannel, effectively enabling a wafer-level fabrication, interactions between multiple information carriers, and electron-to-chemical signal transitions. The distinctive ionic transport properties successfully achieved a hysteresis in ionic transport, resulting in adjustable multistage conductance gradient and synaptic functions. Notably, the device is similar to biological systems in terms of structure and signal carriers, especially for the low operating voltage (200 mV), which matches the biological neural potential (∼110 mV). This work lays the foundation for realizing the function of iontronics neuromorphic computing at ultralow operating voltages and in-memory computing, which can break the limits of information barriers for brain-machine interfaces.


Asunto(s)
Nanotecnología , Sinapsis , Sinapsis/fisiología , Nanotecnología/instrumentación , Electrólitos/química , Nanoestructuras/química , Neuronas/fisiología , Conductividad Eléctrica
2.
Sensors (Basel) ; 23(21)2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37960677

RESUMEN

Vancomycin (VAN), a glycopeptide antibiotic, is the preferred therapeutic agent for treating Gram-positive bacteria. Rapid and precise quantification of VAN levels in cerebrospinal fluid (CSF) and plasma is crucial for optimized drug administration, particularly among elderly patients. Herein, we introduce a novel clinical test strip utilizing colloidal gold competitive immunoassay technology for the expedient detection of VAN. This test strip enables the detection of VAN concentrations in clinical samples such as plasma within 10 min and has a limit of detection of 10.3 ng/mL, with an inhibitory concentration 50% (IC50) value of 44.5 ng/mL. Furthermore, we used the test strip for pharmacokinetic analysis of VAN in the CSF and plasma of beagle dogs. Our results provide valuable insights into the fluctuations of the drug concentration in the CSF and plasma over a 24 h period after a single intravenous dose of 12 mg/kg. The test strip results were compared with the results obtained via liquid chromatography-mass spectrometry methods, and the measured VAN concentrations in the CSF and plasma via both of the methods showed excellent agreement.


Asunto(s)
Oro Coloide , Vancomicina , Humanos , Perros , Animales , Anciano , Vancomicina/líquido cefalorraquídeo , Oro Coloide/química , Inmunoensayo/métodos , Antibacterianos , Cromatografía Liquida/métodos
3.
Polymers (Basel) ; 15(5)2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36904490

RESUMEN

Parylene C has been widely used in the fields of microelectromechanical systems (MEMS) and electronic device encapsulation because of its unique properties, such as biocompatibility and conformal coverage. However, its poor adhesion and low thermal stability limit its use in a wider range of applications. This study proposes a novel method for improving the thermal stability and enhancing the adhesion between Parylene and Si by copolymerizing Parylene C with Parylene F. The successful preparation of Parylene copolymer films containing different ratios of Parylene C and Parylene F was confirmed using Fourier-transform infrared spectroscopy and surface energy calculations. The proposed method resulted in the copolymer film having an adhesion 10.4 times stronger than that of the Parylene C homopolymer film. Furthermore, the friction coefficients and cell culture capability of the Parylene copolymer films were tested. The results indicated no degradation compared with the Parylene C homopolymer film. This copolymerization method significantly expands the applications of Parylene materials.

4.
Nanoscale ; 12(22): 11899-11907, 2020 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-32236224

RESUMEN

In recent decades, the ionic current rectification (ICR) property of asymmetric nanochannels has been widely explored in applications of energy conversion, gas separation, water purification and bioanalysis/sensors. How to fabricate nanofluidic devices with a high ICR characteristic remains of critical importance to the development of nanofluidics. Herein, we fabricated an asymmetric MOFs/PAA hybrid via in situ synthesis of a zeolitic imidazole framework (ZIF-90) on porous anodic alumina (PAA) nanochannels. The introduction of asymmetric geometry and charge distribution provides the hybrid with ultrahigh ionic rectification, which can be easily measured using an electrochemical detector. This rectification mechanism is elucidated via finite element simulation, which proves that asymmetric geometry as well as the protonation and deprotonation under varied pH values dominates the ICR property. With the advantages of low cost and facile fabrication while supporting high ionic current rectification, the prepared MOFs/PAA hybrid can be considered as a significant paradigm in nanofluidic systems and has potential applications in the fields of new ionic devices and energy conversion systems.

5.
Microsyst Nanoeng ; 6: 86, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-34567696

RESUMEN

Interpretation of cell-cell and cell-microenvironment interactions is critical for both advancing knowledge of basic biology and promoting applications of regenerative medicine. Cell patterning has been widely investigated in previous studies. However, the reported methods cannot simultaneously realize precise control of cell alignment and adhesion/spreading with a high efficiency at a high throughput. Here, a novel solid lift-off method with a micropore array as a shadow mask was proposed. Efficient and precise control of cell alignment and adhesion/spreading are simultaneously achieved via an ingeniously designed shadow mask, which contains large micropores (capture pores) in central areas and small micropores (spreading pores) in surrounding areas contributing to capture/alignment and adhesion/spreading control, respectively. The solid lift-off functions as follows: (1) protein micropattern generates through both the capture and spreading pores, (2) cell capture/alignment control is realized through the capture pores, and (3) cell adhesion/spreading is controlled through previously generated protein micropatterns after lift-off of the shadow mask. High-throughput (2.4-3.2 × 104 cells/cm2) cell alignments were achieved with high efficiencies (86.2 ± 3.2%, 56.7 ± 9.4% and 51.1 ± 4.0% for single-cell, double-cell, and triple-cell alignments, respectively). Precise control of cell spreading and applications for regulating cell skeletons and cell-cell junctions were investigated and verified using murine skeletal muscle myoblasts. To the best of our knowledge, this is the first report to demonstrate highly efficient and controllable multicell alignment and adhesion/spreading simultaneously via a simple solid lift-off operation. This study successfully fills a gap in literatures and promotes the effective and reproducible application of cell patterning in the fields of both basic mechanism studies and applied medicine.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA