Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
ACS Cent Sci ; 10(2): 358-366, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38435533

RESUMEN

Encapsulating enzymes within metal-organic frameworks has enhanced their structural stability and interface tunability for catalysis. However, the small apertures of the frameworks restrict their effectiveness to small organic molecules. Herein, we present a green strategy directed by visible linker micelles for the aqueous synthesis of MAF-6 that enables enzymes for the catalytic asymmetric synthesis of chiral molecules. Due to the large pore aperture (7.6 Å), double the aperture size of benchmark ZIF-8 (3.4 Å), MAF-6 allows encapsulated enzyme BCL to access larger substrates and do so faster. Through the optimization of surfactants' effect during synthesis, BCL@MAF-6-SDS (SDS = sodium dodecyl sulfate) displayed a catalytic efficiency (Kcat/Km) that was 420 times greater than that of BCL@ZIF-8. This biocomposite efficiently catalyzed the synthesis of drug precursor molecules with 94-99% enantioselectivity and nearly quantitative yields. These findings represent a deeper understanding of de novo synthetic encapsulation of enzyme in MOFs, thereby unfolding the great potential of enzyme@MAF catalysts for asymmetric synthesis of organics and pharmaceuticals.

2.
Physiol Plant ; 176(2): e14242, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38439528

RESUMEN

The CONSTANS/CONSTANS-Like (CO/COL) family has been shown to play important roles in flowering, stress tolerance, fruit development and ripening in higher plants. In this study, three COL genes, MiCOL6, MiCOL7A and MiCOL7B, which each contain only one CCT domain, were isolated from mango (Mangifera indica), and their functions were investigated. MiCOL7A and MiCOL7B were expressed mainly at 20 days after flowering (DAF), and all three genes were highly expressed during the flowering induction period. The expression levels of the three genes were affected by light conditions, but only MiCOL6 exhibited a clear circadian rhythm. Overexpression of MiCOL6 promoted earlier flowering, while overexpression of MiCOL7A or MiCOL7B delayed flowering compared to that in the control lines of Arabidopsis thaliana under long-day (LD) and short-day (SD) conditions. Overexpressing MiCOL6, MiCOL7A or MiCOL7B in transgenic plants increased superoxide dismutase (SOD) and proline levels, decreased malondialdehyde (MAD) levels, and improved survival under drought and salt stress. In addition, yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) analyses showed that the MiCOL6, MiCOL7A and MiCOL7B proteins interact with several stress- and flower-related proteins. This work demonstrates the functions of MiCOL6, MiCOL7A and MiCOL7B and provides a foundation for further research on the role of mango COL genes in flowering regulation and the abiotic stress response.


Asunto(s)
Arabidopsis , Mangifera , Mangifera/genética , Arabidopsis/genética , Ritmo Circadiano , Sequías , Flores/genética , Saccharomyces cerevisiae
3.
Front Public Health ; 12: 1338052, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38389948

RESUMEN

Isolation policies are an effective measure in epidemiological models for the prediction and prevention of infectious diseases. In this paper, we use a multi-agent modeling approach to construct an infectious disease model that considers the influence of isolation policies. The model analyzes the impact of isolation policies on various stages of epidemic from two perspectives: the external environment and agents behavior. It utilizes multiple variables to simulate the extent to which isolation policies influence the spread of the pandemic. Empirical evidence indicates that the progression of the epidemic is primarily driven by factors such as public willingness and regulatory intensity. The improved model, in comparison to traditional infectious disease models, offers greater flexibility and accuracy, addressing the need for frequent modifications in fundamental models within complex environments. Meanwhile, we introduce "swarm entropy" to evaluate infection intensity under various policies. By linking isolation policies with swarm entropy, considering population structure, we quantify the effectiveness of these isolation measures. It provides a novel approach for complex population simulations. These findings have facilitated the enhancement of control strategies and provided decision-makers with guidance in combating the transmission of infectious diseases.


Asunto(s)
Enfermedades Transmisibles , Pandemias , Humanos , Entropía , Pandemias/prevención & control , Políticas , Enfermedades Transmisibles/epidemiología
4.
iScience ; 27(1): 108729, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38230259

RESUMEN

CircRNAs are implicated in colorectal cancer (CRC) development and progression. Protein O-fucosyltransferase 1 (POFUT1) plays an oncogenic role via activating Notch1 signaling in CRC. However, the roles of circPOFUT1, which is originated from POFUT1, have not been investigated. Our study showed circPOFUT1 was highly expressed in CRC tissues and cells. CircPOFUT1 enhanced the proliferation, migration and invasion of CRC cells, and promoted tumor growth and liver metastasis in vivo. It also reinforced stemness and chemoresistance of CRC cells. Mechanistically, circPOFUT1 regulated the function of E2F7 via sponging miR-653-5p, thereby transcriptionally inducing WDR66 expression and further promoting metastasis in CRC. On the other hand, circPOFUT1 promoted stemness and chemoresistance of CRC cells via stabilizing BMI1 in an IGF2BP1-dependent manner. In conclusion, circPOFUT1 fosters CRC metastasis and chemoresistance via decoying miR-653-5p/E2F7/WDR66 axis and stabilizing BMI1.

5.
J Hazard Mater ; 460: 132365, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37639791

RESUMEN

For the purpose of searching for efficient photocatalysts to deal with recalcitrant organic micropollutants in wastewater, here an in-situ supramolecule self-assembly-thermal polymerization strategy is developed to prepare a series of porous cyclopentadiene (CPD) unit-incorporated g-C3N4 ultrathin nanosheets (CCPD-g-C3N4). The CCPD-g-C3N4 demonstrate CPD unit doping level-dependent and remarkably enhanced visible-light photocatalytic oxidation efficiency towards two organic micropollutants, acetaminophen and methylparaben, in which the optimized CCPD-g-C3N4-2 shows 6.1 and 3.5 times higher acetaminophen and methylparaben degradation rate than bulk g-C3N4; moreover, CCPD-g-C3N4-2 is still robust and efficient in the treatment of five mixed organic micropollutants in pharmaceutical wastewater, and the satisfactory micropollutant removal efficiency is obtained in a wide pH window and the presence of high concentrations of inorganic anions and cations as well as dissolved organic matters. Theoretical calculation combined with experimental test reveal that CCPD-g-C3N4 can significantly reduce ecological risk of the target pollutant after the photocatalytic degradation reaction. Such enhanced photocatalytic oxidation efficiency is dominated by the accelerated charge carrier separation dynamics and extended visible-light response region due to the incorporation of CPD units, which finally lead to the generation of abundant reactive oxygen species to degrade and mineralize target micropollutants efficiently.

6.
Plant Sci ; 335: 111826, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37574138

RESUMEN

CONSTANS (CO) is the key gene in the photoperiodic pathway that regulates flowering in plants. In this paper, a CONSTANS-like 14A (COL14A) gene was obtained from mango, and its expression patterns and functions were characterized. Sequence analysis shows that MiCOL14A-JH has an additional A base, which leads to code shifting in subsequent coding boxes and loss of the CCT domain. The MiCOL14A-JH and MiCOL14A-GQ genes both belonged to group Ⅲ of the CO/COL gene family. Analysis of tissue expression patterns showed that MiCOL14A was expressed in all tissues, with the highest expression in the leaves of seedling, followed by lower expression levels in the flowers and stems of adult leaves. However, there was no significant difference between different mango varieties. At different development stages of flowering, the expression level of MiCOL14A-GQ was the highest in the leaves before floral induction period, and the lowest at flowering stage, while the highest expression level of MiCOL14A-JH appeared in the leaves at flowering stage. The transgenic functional analysis showed that both MiCOL14A-GQ and MiCOL14A-JH induced delayed flowering of transgenic Arabidopsis. In addition, MiCOL14A-JH enhanced the resistance of transgenic Arabidopsis to drought stress, while MiCOL14A-GQ increased the sensitivity of transgenic Arabidopsis to salt stress. Further proteinprotein interaction analysis showed that MiCOL14A-JH directly interacted with MYB30-INTERACTING E3 LIGASE 1 (MiMIEL1), CBL-interacting protein kinase 9 (MiCIPK9) and zinc-finger protein 4 (MiZFP4), but MiCOL14A-GQ could not interact with these three stress-related proteins. Together, our results demonstrated that MiCOL14A-JH and MiCOL14A-GQ not only regulate flowering but also play a role in the abiotic stress response in mango, and the lack of the CCT domain affects the proteinprotein interaction, thus affecting the gene response to stress. The insertion of an A base can provide a possible detection site for mango resistance breeding.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Mangifera , Arabidopsis/metabolismo , Mangifera/genética , Mangifera/metabolismo , Sequías , Fitomejoramiento , Proteínas de Arabidopsis/metabolismo , Fotoperiodo , Flores , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
7.
Int J Biol Sci ; 19(12): 3781-3803, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37564198

RESUMEN

Circular RNAs (circRNAs) are covalently closed RNA structures that play multiple roles in tumorigenesis and progression. Compared with exon‒intron circRNAs, the biological functions and implications of intergenic circRNAs in human cancer are still poorly understood. Here, we performed circRNA microarray analysis and identified an intergenic circRNA, circ_0007379, that was significantly downregulated in patients with colorectal cancer (CRC). The biogenesis of circ_0007379 was mediated by reverse complementary matches (RCMs) and was negatively regulated by the RNA helicase DHX9. Functionally, circ_0007379 suppressed CRC cell growth and metastasis in cell culture as well as in patient-derived organoid and xenograft models. Mechanistically, circ_0007379 acted as a scaffold to facilitate the processing of both pri-miR-320a and pre-miR-320a in a KSRP-dependent manner, leading to miR-320a maturation and subsequent repression of transcription factor RUNX1 expression. Thus, our findings establish a previously unrecognized function of circRNA in inhibiting CRC progression.


Asunto(s)
Neoplasias Colorrectales , MicroARNs , Humanos , Carcinogénesis/genética , Proliferación Celular/genética , Neoplasias Colorrectales/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , ARN Circular/genética , ARN Circular/metabolismo , Animales
8.
Cancers (Basel) ; 15(12)2023 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-37370759

RESUMEN

Increasing evidence has implicated that circular RNAs (circRNAs) exert important roles in colorectal cancer (CRC) occurrence and progression. However, the role of a novel circRNA, circUHRF2, remains unknown in CRC. Our work aimed at identifying the functional roles of circUHRF2 in CRC and illustrating the potential mechanisms. As assessed by quantitative real-time PCR (qRT-PCR), circUHRF2 and methyltransferase-like 3 (METTL3) were highly expressed in CRC specimens and cells. Sanger sequencing and RNase R assays were performed to verify the ring structure of circUHRF2. Notably, aberrantly increased expression of circUHRF2 was positively correlated with poor prognosis of CRC patients. Functional experiments indicated that CRC stemness, migration, and epithelial-mesenchymal transition (EMT) were suppressed by the knockdown of circUHRF2 or METTL3. Mechanistically, METTL3 enhanced circUHRF2 expression through N6-methyladenine (m6A) modification. Rescue experiments showed that overexpression of circUHRF2 reversed the repressive effect of METTL3 silencing on CRC progression. Moreover, circUHRF2 inhibited the loss of DEAD-box helicase 27 (DDX27) protein via promoting the interaction between insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) and DDX27 mRNA. DDX27 knockdown repressed CRC malignant properties, which was counteracted by circUHRF2 overexpression. The in vivo assays in nude mice demonstrated that circUHRF2 or METTL3 silencing exerted a suppressive effect on CRC growth and liver metastasis via repressing DDX27 protein expression. Taken together, METTL3-mediated m6A modification upregulated circUHRF2 and subsequently inhibited loss of DDX27 protein via recruitment of IGF2BP1, which conferred CRC stemness and metastasis. These findings shed light on CRC pathogenesis and suggest circUHRF2 as a novel target for CRC treatment.

9.
Angew Chem Int Ed Engl ; 62(29): e202305942, 2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37150744

RESUMEN

Glassy and liquid state metal-organic frameworks (MOFs) are emerging type of materials subjected to intense research for their rich physical and chemical properties. In this report, we obtained the first glassy MOF that involves metal-carboxylate cluster building units via multi-stage structural transformations. This MOF is composed of linear [Mn3 (COO)6 ] node and flexible pyridyl-ethenylbenzoic linker. The crystalline MOF was first perturbed by vapor hydration and thermal dehydration to give an amorphous state, which can go through a glass transition at 505 K into a super-cooled liquid. The super-cooled liquid state is stable through a wide temperature range of 40 K and has the largest fragility index of 105, giving a broad processing window. Remarkably, the super-cooled liquid can not only be quenched into glass, but also recrystallize into the initial MOF when heated to a higher temperature above 558 K. The mechanism of the multi-stage structural transformations was studied by systematic characterizations of in situ X-ray diffraction, calorimetry, rheological, spectroscopic and pair-distribution function analysis. These multi-stage transformations not only represent a rare example of high temperature coordinative recognition and self-assembly, but also provide new MOF processing strategy through crystal-amorphous-liquid-crystal transformations.

10.
Small ; 19(24): e2208012, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36899451

RESUMEN

Acetamide- or formamide-assisted in situ strategy is designed to synthesize carbon atom self-doped g-C3 N4 (AHCNx ) or nitrogen vacancy-modified g-C3 N4 (FHCNx ). Different from the direct copolymerization route that suffers from the problem of mismatched physical properties of acetamide (or formamide) with urea, the synthesis of AHCNx (or FHCNx ) starts from a crucial preorganization step of acetamide (or formamide) with urea via freeze drying-hydrothermal treatment so that the chemical structures as well as C-doping level in AHCNx and N-vacancy concentration in FHCNx can be precisely regulated. By using various structural characterization methods, well-defined AHCNx and FHCNx structures are proposed. At the optimal C-doping level in AHCNx or N-vacancy concentration in FHCNx , both AHCNx and FHCNx exhibit remarkably improved visible-light photocatalytic performance in oxidation of emerging organic pollutants (acetaminophen and methylparaben) and reduction of proton to H2 in comparison of unmodified g-C3 N4 . Combination of the experimental results with theoretical calculations, it is confirmed that AHCNx and FHCNx show different charge separation and transfer mechanisms, while the enhanced visible-light harvesting capacity and the localized charge distributions on HOMO and LUMO are responsible for this excellent photocatalytic redox performance of AHCNx and FHCNx .

11.
Plant Sci ; 327: 111541, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36417961

RESUMEN

The CO/COL gene family plays an important role in regulating photoperiod-dependent flowering time in plants. In this study, two COL2 gene homologs, MiCOL2A and MiCOL2B, were isolated from 'SiJiMi' mango, and their expression patterns and functions were characterized. The MiCOL2A and MiCOL2B genes both belonged to the group Ⅰ of CO/COL gene family. MiCOL2A and MiCOL2B exhibited distinct circadian rhythms and were highly expressed in leaves during the flowering induction period. Subcellular localization analysis revealed that MiCOL2A and MiCOL2B are localized in the nucleus. The overexpression of MiCOL2A and MiCOL2B significantly delayed flowering time in Arabidopsis under both long-day (LD) and short-day (SD) conditions. The MiCOL2A and MiCOL2B overexpression Arabidopsis plants exhibited more tolerance to slat and drought stress after abiotic stress treatments, with greater ROS scavenging capacity and protective enzyme activity, less cell damage and death and higher expression of stress response genes than wild type plants. Bimolecular fluorescence complementation (BiFC) analysis showed that MiCOL2A and MiCOL2B interacted with several stress-related proteins, including zinc finger protein 4 (MiZFP4), MYB30-INTERACTING E3 LIGASE 1 (MiMIEL1) and RING zinc finger protein 34 (MiRZFP34). The results indicate that MiCOL2A and MiCOL2B are not only involved in flowering time but also play a positive role in abiotic stress responses in plants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Unión al ADN , Regulación de la Expresión Génica de las Plantas , Mangifera , Plantas Modificadas Genéticamente , Estrés Fisiológico , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Unión al ADN/genética , Flores/genética , Flores/crecimiento & desarrollo , Mangifera/genética , Fotoperiodo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Estrés Fisiológico/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
12.
Cancers (Basel) ; 14(24)2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36551532

RESUMEN

Transcription factors are frequently aberrantly reactivated in various cancers, including colorectal cancer (CRC). However, as a transcription factor, the role of GMEB2 in cancer is still unclear, and further studies are needed. Here, we aimed to identify the function and mechanism of GMEB2 in regulating the malignant progression of CRC. GMEB2 was found to be highly expressed in online data analyses. We demonstrated that GMEB2 was markedly upregulated at both the mRNA and protein levels in CRC cells and tissues. GMEB2 knockdown inhibited CRC cell growth in vitro and in vivo. Mechanistically, as a transcription factor, GMEB2 transactivated the ADRM1 promoter to increase its transcription. Rescue experiments showed that ADRM1 downregulation partially reversed the promoting effects of GMEB2 on CRC growth in vitro. Moreover, the GMEB2/ADRM1 axis induced nuclear translocation of NF-κB, thus activating NF-κB signalling. Finally, we further revealed that YTHDF1 recognized and bound to the m6A site on GMEB2 mRNA, which enhanced its stability. Taken together, our findings reveal the crucial role and regulatory mechanism of GMEB2 in CRC for the first time and provide a novel potential therapeutic target for CRC therapy.

13.
Cancers (Basel) ; 14(24)2022 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-36551703

RESUMEN

BACKGROUND: Colorectal cancer (CRC) is one of the most commonly diagnosed cancers with high incidence and poor prognosis worldwide. Circ_RNF13 is upregulated in CRC; however, the biological roles and downstream signaling of circ_RNF13 remain undefined. METHODS: The characterization of circ_RNF13 was determined by Sanger sequencing, qRT-PCR, subcellular fractionation assay, and RNA FISH. Western blot analysis and qRT-PCR were employed to detect the expression of the key molecules and stemness markers in CRC tumor samples and cells. The stem-like activities of CRC cells were assessed by sphere formation assay, flow cytometry, and immunofluorescence (IF). Cell viability was monitored by CCK-8 assay. The chemosensitivity of CRC cells was assessed by colony formation and cell apoptosis assays. Bioinformatics analysis, RIP assay, RNA pull-down assay, and FISH/IF staining were used to detect the association between circ_RNF13 and TRIM24. The transcriptional regulation of DDX27 was investigated by ChIP assay, and the post-translational regulation of TRIM24 was detected by Co-IP. The in vitro findings were verified in a xenograft model. RESULTS: circ_RNF13 and DDX27 were elevated in CRC tumor samples and cells. Knockdown of circ_RNF13 or DDX27 inhibited stemness and increased chemosensitivity in CRC cells. Mechanistically, circ_RNF13 regulated DDX27 expression via TRIM24-mediated transcriptional regulation, and circ_RNF13 stabilized TRIM24 via suppressing FBXW7-mediated TRIM24 degradation. In vivo studies revealed that the knockdown of circ_RNF13 impaired stemness and enhanced the chemosensitivity of CRC in the xenograft model. CONCLUSION: circ_RNF13 regulated the stemness and chemosensitivity of CRC by transcriptional regulation of DDX27 mediated by TRIM24 stabilization.

14.
Front Plant Sci ; 13: 1028987, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36325546

RESUMEN

CONSTANS/CONSTANS-like (CO/COL) transcription factors play a vital role in the photoperiodic flowering pathway. However, the biological functions of COL genes in mango are unclear. In this study, we identified 31 COL genes from the 'Jin Huang' mango genome and divided them into three groups according to the specific gene structure and protein domain characteristics. These 31 MiCOL genes were heterogeneously distributed on 14 chromosomes. Expression pattern analysis showed that most MiCOL genes were mainly expressed in leaves and stems and during the floral induction period, followed by the floral differentiation period. The expression of COL genes was induced by drought and salt stress, but the expression patterns of different genes were different, which may suggest that MiCOL genes are involved in the abiotic stress response of mango. Under salt and drought conditions, two MiCOL9 genes can improve the resistance of Arabidopsis by improving the scavenging ability of ROS and proline accumulation and reducing the MDA content. Additionally, overexpression of MiCOL9 genes significantly inhibited flowering in transgenic Arabidopsis. This work provides an important foundation for understanding the biological roles of mango COL genes in plant growth, development and stress responses.

15.
Front Bioeng Biotechnol ; 10: 1004921, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36199364

RESUMEN

Tumor hypoxia is responsible for the reduced therapeutic efficacy of type II photodynamic therapy (PDT) because of the dependence of cellular oxygen during 1O2 generation. Type I PDT may be a better strategy to overcome the disadvantages of hypoxia for enhanced theranostics. Herein, a new semiconducting polymer PDPP was synthesized and encapsulated with hydrophilic PEG-PDPA to enhance the electron transfer for type I PDT. PDPP NPs show a high superoxide radical generation ability with DHR123 as a probe. In vitro MTT assay indicates PDPP NPs with considerably high phototoxicity on human cervical cancer cells (HeLa) with a low half-maximal inhibitory concentration (IC50) of 6.1 µg/ml. Furthermore, an in vivo study demonstrates that PDPP NPs can lead to complete tumor suppression with the help of laser, compared with the control and dark groups. The biosafety is confirmed by the H&E analysis of the normal tissues (the heart, liver, spleen, lungs, and kidney). The results provide a strategy to design nanosystems for type I PDT and PTT synergistic therapy.

17.
Int J Mol Sci ; 23(6)2022 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-35328495

RESUMEN

CONSTANS (CO) is an important regulator of photoperiodic flowering and functions at a key position in the flowering regulatory network. Here, two CO homologs, MiCOL16A and MiCOL16B, were isolated from "SiJiMi" mango to elucidate the mechanisms controlling mango flowering. The MiCOL16A and MiCOL16B genes were highly expressed in the leaves and expressed at low levels in the buds and flowers. The expression levels of MiCOL16A and MiCOL16B increased during the flowering induction period but decreased during the flower organ development and flowering periods. The MiCOL16A gene was expressed in accordance with the circadian rhythm, and MiCOL16B expression was affected by diurnal variation, albeit not regularly. Both the MiCOL16A and MiCOL16B proteins were localized in the nucleus of cells and exerted transcriptional activity through their MR domains in yeast. Overexpression of both the MiCOL16A and MiCOL16B genes significantly repressed flowering in Arabidopsis under short-day (SD) and long-day (LD) conditions because they repressed the expression of AtFT and AtSOC1. This research also revealed that overexpression of MiCOL16A and MiCOL16B improved the salt and drought tolerance of Arabidopsis, conferring longer roots and higher survival rates to overexpression lines under drought and salt stress. Together, our results demonstrated that MiCOL16A and MiCOL16B not only regulate flowering but also play a role in the abiotic stress response in mango.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Mangifera , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Ritmo Circadiano , Flores , Regulación de la Expresión Génica de las Plantas , Mangifera/genética , Mangifera/metabolismo , Fotoperiodo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
18.
Mol Cancer ; 21(1): 80, 2022 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-35305647

RESUMEN

BACKGROUND: Previous studies have shown that the N6-methyladenosine (m6A) modification enhances the binding ability of mRNAs/long noncoding RNAs (lncRNAs) to microRNAs (miRNAs), but the impact of this modification on the competitive endogenous RNA (ceRNA) function of circular RNAs (circRNAs) is unclear. METHODS: We used a human circRNA microarray to detect the expression profiles of circRNAs in 3 pairs of cancer and paracancerous tissues from patients with colorectal cancer (CRC) and 3 pairs of peripheral blood specimens from patients with CRC and healthy individuals. The circRNAs highly expressed in both peripheral blood and tumour tissues of patients with CRC, including circALG1, were screened. A quantitative reverse-transcription polymerase chain reaction (qRT-PCR) analysis of an expanded sample size was performed to detect the expression level of circALG1 in peripheral blood and tumour tissues of patients with CRC and determine its correlation with clinicopathological features, and circRNA loop-forming validation and stability assays were then conducted. Transwell assays and a nude mouse cancer metastasis model were used to study the function of circALG1 in CRC and the role of altered m6A modification levels on the regulation of circALG1 function. qRT-PCR, western blot (WB), Transwell, RNA-binding protein immunoprecipitation (RIP), RNA antisense purification (RAP), and dual-luciferase reporter gene assays were performed to analyse the ceRNA mechanism of circALG1 and the effect of the m6A modification of circALG1 on the ceRNA function of this circRNA. RESULTS: CircALG1 was highly expressed in both the peripheral blood and tumour tissues of patients with CRC and was closely associated with CRC metastasis. CircALG1 overexpression promoted the migration and invasion of CRC cells, and circALG1 silencing and reduction of the circALG1 m6A modification level inhibited CRC cell migration and invasion. In vivo experiments further confirmed the prometastatic role of circALG1 in CRC. Further mechanistic studies showed that circALG1 upregulated the expression of placental growth factor (PGF) by binding to miR-342-5p and that m6A modification enhanced the binding of circALG1 to miR-342-5p and promoted its ceRNA function. CONCLUSION: M6A modification enhances the binding ability of circALG1 to miR-342-5p to promote the ceRNA function of circALG1, and circALG1 could be a potential therapeutic target in and a prognostic marker for CRC.


Asunto(s)
Neoplasias Colorrectales , MicroARNs , Animales , Femenino , Humanos , Ratones , Adenosina/análogos & derivados , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Neoplasias Colorrectales/patología , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , MicroARNs/metabolismo , Factor de Crecimiento Placentario/genética , Factor de Crecimiento Placentario/metabolismo , ARN Circular/genética
19.
J Clin Pharm Ther ; 47(8): 1201-1211, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35347725

RESUMEN

WHAT IS KNOWN AND OBJECTIVE: Medication safety problem has always been the focus of healthcare providers and public health community scholars. As the backbone of the future society, the mastery of college students' knowledge to use medicine will directly affect the level of medication literacy (ML) of the public in the future. The purpose of this study was to investigate the current ML of college students in Shanxi Province and to identify its related factors. METHODS: A cluster random sampling method was utilized to select 800 college students from 10 universities in Shanxi province as participants from 21 March to 10 April 2020. After quality control, 763 valid questionnaires were collected (effective rate 95.4%). This study applied the ML scale adapted from the 14-item health literacy scale (HLS-14) to estimate ML, which contains functional ML, communicative ML and critical ML dimensions to estimate the ML situation. Then, we used structural equation modelling (SEM) to test the hypothesized relationship among three dimensions of ML, self-evaluated health status and safety medication science popularization activities on campus. RESULTS AND DISCUSSION: The results showed that the reliability and validity of the ML scale were good. The average score of ML level of college students in Shanxi Province was 44 points, and the interquartile range was 40-48 points (full score is 65 points). The proportion of high ML level was estimated at as low as 26.7%. 73.1% participants had an average level, and only 1 participant (0.1%) had a low level of ML. Univariate analysis showed that the ML level was significantly influenced by gender, universities, field of study, academic performance and ethnic group (p < 0.05). SEM showed that functional ML (λ = 0.01) and communicative ML (λ = 0.75) had a direct positive association with critical ML. Meanwhile, the model also had a mediating effect. Functional ML had an indirect positive association with critical ML through the mediating effect of communicative ML (λ = 0.11). In addition, both self-evaluated health status and safety medication science popularization activities on campus had an indirect positive association with critical ML through the mediating effect of functional ML and communicative ML. WHAT IS NEW AND CONCLUSION: The study revealed that the ML of most college students in Shanxi Province was at the average level. Among them, medical college student (including pharmacy, nursing, public health, preventive medicine, basic medicine and clinical medicine students), the Han nationality students (the students of China's majority ethnic group), students of good self-evaluated health status, and students who were more exposed to safety medication science popularization activities had a relatively higher ML level. Moreover, it highlighted the importance of self-evaluated health status and safety medication science popularization activities on campus to ML.


Asunto(s)
Alfabetización en Salud , Estudiantes , China , Estudios Transversales , Alfabetización en Salud/métodos , Humanos , Reproducibilidad de los Resultados , Encuestas y Cuestionarios , Universidades
20.
Plant Physiol Biochem ; 172: 125-135, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35065373

RESUMEN

The CONSTANS-LIKE1 (COL1) gene plays an important role in the regulation of photoperiodic flowering in plants. In this study, two COL1 homolog genes, MiCOL1A and MiCOL1B, were isolated from mango (Mangifera indica L.). The open reading frames of MiCOL1A and MiCOL1B are 852 and 822 bp in length and encode 284 and 274 amino acids, respectively. The MiCOL1A and MiCOL1B proteins contain only one CCT domain and belong to the CO/COL group IV protein family. MiCOL1A and MiCOL1B were expressed both in vegetative and reproductive organs but with expression level differences. MiCOL1A was highly expressed in juvenile and adult leaves, but MiCOL1B was highly expressed in flowers. Seasonal expression analysis showed that MiCOL1A and MiCOL1B have similar expression patterns and higher expression levels during flower induction and flower organ differentiation periods. However, MiCOL1A and MiCOL1B exhibited unstable patterns in circadian expression analysis. MiCOL1A and MiCOL1B were localized in the nucleus and had transcriptional activation activity in yeast. Overexpression of MiCOL1A and MiCOL1B resulted in significantly delayed flowering time in Arabidopsis. Furthermore, we also found that overexpression of MiCOL1A and MiCOL1B enhanced drought tolerance in transgenic Arabidopsis. The results demonstrated that MiCOL1A and MiCOL1B are not only involved in flowering regulation but also play a role in the stress response of plants.


Asunto(s)
Flores/fisiología , Mangifera , Proteínas de Plantas , Arabidopsis/genética , Arabidopsis/fisiología , Regulación de la Expresión Génica de las Plantas , Mangifera/genética , Mangifera/fisiología , Fotoperiodo , Proteínas de Plantas/genética , Proteínas de Plantas/fisiología , Plantas Modificadas Genéticamente/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA