Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Magn Reson Med ; 90(6): 2572-2591, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37667645

RESUMEN

PURPOSE: Developing a general framework with a novel stochastic offset strategy for the design of optimized RF pulses and time-varying spatially non-linear ΔB0 shim array fields for restricted slice excitation and refocusing with refined magnetization profiles within the intervals of the fixed voxels. METHODS: Our framework uses the decomposition property of the Bloch equations to enable joint design of RF-pulses and shim array fields for restricted slice excitation and refocusing with auto-differentiation optimization. Bloch simulations are performed independently on orthogonal basis vectors, Mx, My, and Mz, which enables designs for arbitrary initial magnetizations. Requirements for refocusing pulse designs are derived from the extended phase graph formalism obviating time-consuming sub-voxel isochromatic simulations to model the effects of crusher gradients. To refine resultant slice-profiles because of voxelwise optimization functions, we propose an algorithm that stochastically offsets spatial points at which loss is computed during optimization. RESULTS: We first applied our proposed design framework to standard slice-selective excitation and refocusing pulses in the absence of non-linear ΔB0 shim array fields and compared them against pulses designed with Shinnar-Le Roux algorithm. Next, we demonstrated our technique in a simulated setup of fetal brain imaging in pregnancy for restricted-slice excitation and refocusing of the fetal brain. CONCLUSIONS: Our proposed framework for optimizing RF pulse and time-varying spatially non-linear ΔB0 shim array fields achieve high fidelity restricted-slice excitation and refocusing for fetal MRI, which could enable zoomed fast-spin-echo-MRI and other applications.


Asunto(s)
Aumento de la Imagen , Imagen por Resonancia Magnética , Aumento de la Imagen/métodos , Imagen por Resonancia Magnética/métodos , Algoritmos , Fantasmas de Imagen
2.
IEEE Trans Biomed Eng ; 70(5): 1575-1586, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36383593

RESUMEN

High static field MR scanners can produce human tissue images of astounding clarity, but rely on high frequency electromagnetic radiation that generates complicated in-tissue field patterns that are patient-specific and potentially harmful. Many such scanners use parallel transmitters to better control field patterns, but then adjust the transmitters based on general guidelines rather than optimizing for the specific patient, mostly because computing patient-specific fields was presumed far too slow. It was recently demonstrated that the combination of fast low-resolution tissue mapping and fast voxel-based field simulation can be used to perform a patient-specific MR safety check in minutes. However, the field simulation required several of those minutes, making it too slow to perform the dozens of simulations that would be needed for patient-specific optimization. In this paper we describe a compressed-perturbation-matrix technique that nearly eliminates the computational cost of including complex coils (or coils and shields) in voxel-based field simulation of tissue, thereby reducing simulation time from minutes to seconds. The approach is demonstrated on a wide variety of head+coil and head+coil+shield configurations, using the implementation in MARIE 2.0, the latest version of the open-source MR field simulator MARIE.


Asunto(s)
Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Simulación por Computador , Fantasmas de Imagen
3.
IEEE Trans Biomed Eng ; 70(1): 105-114, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35759593

RESUMEN

OBJECTIVE: We developed a hybrid volume surface integral equation (VSIE) method based on domain decomposition to perform fast and accurate magnetic resonance imaging (MRI) simulations that include both remote and local conductive elements. METHODS: We separated the conductive surfaces present in MRI setups into two domains and optimized electromagnetic (EM) modeling for each case. Specifically, interactions between the body and EM waves originating from local radiofrequency (RF) coils were modeled with the precorrected fast Fourier transform, whereas the interactions with remote conductive surfaces (RF shield, scanner bore) were modeled with a novel cross tensor train-based algorithm. We compared the hybrid-VSIE with other VSIE methods for realistic MRI simulation setups. RESULTS: The hybrid-VSIE was the only practical method for simulation using 1 mm voxel isotropic resolution (VIR). For 2 mm VIR, our method could be solved at least 23 times faster and required 760 times lower memory than traditional VSIE methods. CONCLUSION: The hybrid-VSIE demonstrated a marked improvement in terms of convergence times of the numerical EM simulation compared to traditional approaches in multiple realistic MRI scenarios. SIGNIFICANCE: The efficiency of the novel hybrid-VSIE method could enable rapid simulations of complex and comprehensive MRI setups.


Asunto(s)
Radiación Electromagnética , Ondas de Radio , Simulación por Computador , Algoritmos , Imagen por Resonancia Magnética/métodos , Fantasmas de Imagen , Campos Electromagnéticos
4.
IEEE Trans Antennas Propag ; 70(1): 459-471, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35110782

RESUMEN

In this work, we propose a method for the compression of the coupling matrix in volume-surface integral equation (VSIE) formulations. VSIE methods are used for electromagnetic analysis in magnetic resonance imaging (MRI) applications, for which the coupling matrix models the interactions between the coil and the body. We showed that these effects can be represented as independent interactions between remote elements in 3D tensor formats, and subsequently decomposed with the Tucker model. Our method can work in tandem with the adaptive cross approximation technique to provide fast solutions of VSIE problems. We demonstrated that our compression approaches can enable the use of VSIE matrices of prohibitive memory requirements, by allowing the effective use of modern graphical processing units (GPUs) to accelerate the arising matrix-vector products. This is critical to enable numerical MRI simulations at clinical voxel resolutions in a feasible computation time. In this paper, we demonstrate that the VSIE matrix-vector products needed to calculate the electromagnetic field produced by an MRI coil inside a numerical body model with 1 mm3 voxel resolution, could be performed in ~ 33 seconds in a GPU, after compressing the associated coupling matrix from ~ 80 TB to ~ 43 MB.

5.
Magn Reson Med ; 85(1): 429-443, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32643152

RESUMEN

PURPOSE: We propose a fast, patient-specific workflow for on-line specific absorption rate (SAR) supervision. An individualized electromagnetic model is created while the subject is on the table, followed by rapid SAR estimates for that individual. Our goal is an improved correspondence between the patient and model, reducing reliance on general anatomical body models. METHODS: A 3D fat-water 3T acquisition (~2 minutes) is automatically segmented using a computer vision algorithm (~1 minute) into what we found to be the most important electromagnetic tissue classes: air, bone, fat, and soft tissues. We then compute the individual's EM field exposure and global and local SAR matrices using a fast electromagnetic integral equation solver. We assess the approach in 10 volunteers and compare to the SAR seen in a standard generic body model (Duke). RESULTS: The on-the-table workflow averaged 7'44″. Simulation of the simplified Duke models confirmed that only air, bone, fat, and soft tissue classes are needed to estimate global and local SAR with an error of 6.7% and 2.7%, respectively, compared to the full model. In contrast, our volunteers showed a 16.0% and 20.3% population variability in global and local SAR, respectively, which was mostly underestimated by the Duke model. CONCLUSION: Timely construction and deployment of a patient-specific model is computationally feasible. The benefit of resolving the population heterogeneity compared favorably to the modest modeling error incurred. This suggests that individualized SAR estimates can improve electromagnetic safety in MRI and possibly reduce conservative safety margins that account for patient-model mismatch, especially in non-standard patients.


Asunto(s)
Algoritmos , Imagen por Resonancia Magnética , Simulación por Computador , Computadores , Campos Electromagnéticos , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA