Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
J Biol Chem ; 300(8): 107497, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38925329

RESUMEN

Activation of G proteins through nucleotide exchange initiates intracellular signaling cascades essential for life processes. Under normal conditions, nucleotide exchange is regulated by the formation of G protein-G protein-coupled receptor complexes. Single point mutations in the Gα subunit of G proteins bypass this interaction, leading to loss of function or constitutive gain of function, which is closely linked with the onset of multiple diseases. Despite the recognized significance of Gα mutations in disease pathology, structural information for most variants is lacking, potentially due to inherent protein dynamics that pose challenges for crystallography. To address this, we leveraged an integrative spectroscopic and computational approach to structurally characterize seven of the most frequently observed and clinically relevant mutations in the stimulatory Gα subunit, GαS. A previously proposed allosteric model of Gα activation linked structural changes in the nucleotide-binding pocket with functionally important changes in interactions between switch regions. We investigated this allosteric connection in GαS by integrating data from variable temperature CD spectroscopy, which measured changes in global protein structure and stability, and molecular dynamics simulations, which observed changes in interaction networks between GαS switch regions. Additionally, saturation-transfer difference NMR spectroscopy was applied to observe changes in nucleotide interactions with residues within the nucleotide binding site. These data have enabled testing of predictions regarding how mutations in GαS result in loss or gain of function and evaluation of proposed structural mechanisms. The integration of experimental and computational data allowed us to propose a more nuanced classification of mechanisms underlying GαS gain-of-function and loss-of-function mutations.


Asunto(s)
Simulación de Dinámica Molecular , Humanos , Subunidades alfa de la Proteína de Unión al GTP Gs/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gs/genética , Subunidades alfa de la Proteína de Unión al GTP Gs/química , Mutación , Regulación Alostérica
2.
Biomed Pharmacother ; 173: 116345, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38442670

RESUMEN

Antagonists of the A2B adenosine receptor have recently emerged as targeted anticancer agents and immune checkpoint inhibitors within the realm of cancer immunotherapy. This study presents a comprehensive evaluation of novel Biginelli-assembled pyrimidine chemotypes, including mono-, bi-, and tricyclic derivatives, as A2BAR antagonists. We conducted a comprehensive examination of the adenosinergic profile (both binding and functional) of a large compound library consisting of 168 compounds. This approach unveiled original lead compounds and enabled the identification of novel structure-activity relationship (SAR) trends, which were supported by extensive computational studies, including quantum mechanical calculations and free energy perturbation (FEP) analysis. In total, 25 molecules showed attractive affinity (Ki < 100 nM) and outstanding selectivity for A2BAR. From these, five molecules corresponding to the new benzothiazole scaffold were below the Ki < 10 nM threshold, in addition to a novel dual A2A/A2B antagonist. The most potent compounds, and the dual antagonist, showed enantiospecific recognition in the A2BAR. Two A2BAR selective antagonists and the dual A2AAR/A2BAR antagonist reported in this study were assessed for their impact on colorectal cancer cell lines. The results revealed a significant and dose-dependent reduction in cell proliferation. Notably, the A2BAR antagonists exhibited remarkable specificity, as they did not impede the proliferation of non-tumoral cell lines. These findings support the efficacy and potential that A2BAR antagonists as valuable candidates for cancer therapy, but also that they can effectively complement strategies involving A2AAR antagonism in the context of immune checkpoint inhibition.


Asunto(s)
Antineoplásicos , Neoplasias Colorrectales , Humanos , Antagonistas de Receptores Purinérgicos P1 , Receptor de Adenosina A2B/metabolismo , Antagonistas del Receptor de Adenosina A2/farmacología , Relación Estructura-Actividad , Antineoplásicos/farmacología , Neoplasias Colorrectales/tratamiento farmacológico
3.
bioRxiv ; 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38352316

RESUMEN

Activation of G proteins stimulates ubiquitous intracellular signaling cascades essential for life processes. Under normal physiological conditions, nucleotide exchange is initiated upon the formation of complexes between a G protein and G protein-coupled receptor (GPCR), which facilitates exchange of bound GDP for GTP, subsequently dissociating the trimeric G protein into its Gα and Gßγ subunits. However, single point mutations in Gα circumvent nucleotide exchange regulated by GPCR-G protein interactions, leading to either loss-of-function or constitutive gain-of-function. Mutations in several Gα subtypes are closely linked to the development of multiple diseases, including several intractable cancers. We leveraged an integrative spectroscopic and computational approach to investigate the mechanisms by which seven of the most frequently observed clinically-relevant mutations in the α subunit of the stimulatory G protein result in functional changes. Variable temperature circular dichroism (CD) spectroscopy showed a bimodal distribution of thermal melting temperatures across all GαS variants. Modeling from molecular dynamics (MD) simulations established a correlation between observed thermal melting temperatures and structural changes caused by the mutations. Concurrently, saturation-transfer difference NMR (STD-NMR) highlighted variations in the interactions of GαS variants with bound nucleotides. MD simulations indicated that changes in local interactions within the nucleotide-binding pocket did not consistently align with global structural changes. This collective evidence suggests a multifaceted energy landscape, wherein each mutation may introduce distinct perturbations to the nucleotide-binding site and protein-protein interaction sites. Consequently, it underscores the importance of tailoring therapeutic strategies to address the unique challenges posed by individual mutations.

4.
Eur J Med Chem ; 265: 116122, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38199164

RESUMEN

Two series of N-(heteroaryl)thiophene sulfonamides, encompassing either a methylene imidazole group or a tert-butylimidazolylacetyl group in the meta position of the benzene ring, have been synthesized. An AT2R selective ligand with a Ki of 42 nM was identified in the first series and in the second series, six AT2R selective ligands with significantly improved binding affinities and Ki values of <5 nM were discovered. The binding modes to AT2R were explored by docking calculations combined with molecular dynamics simulations. Although some of the high affinity ligands exhibited fair stability in human liver microsomes, comparable to that observed with C21 undergoing clinical trials, most ligands displayed a very low metabolic stability with t½ of less than 10 min in human liver microsomes. The most promising ligand, with an AT2R Ki value of 4.9 nM and with intermediate stability in human hepatocytes (t½ = 77 min) caused a concentration-dependent vasorelaxation of pre-contracted mouse aorta.


Asunto(s)
Receptor de Angiotensina Tipo 2 , Sulfonamidas , Ratones , Humanos , Animales , Receptor de Angiotensina Tipo 2/metabolismo , Ligandos , Sulfonamidas/química , Tiofenos/química , Aorta/metabolismo , Angiotensina II/metabolismo
5.
J Med Chem ; 66(1): 890-912, 2023 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-36517209

RESUMEN

The modulation of the A2B adenosine receptor is a promising strategy in cancer (immuno) therapy, with A2BAR antagonists emerging as immune checkpoint inhibitors. Herein, we report a systematic assessment of the impact of (di- and mono-)halogenation at positions 7 and/or 8 on both A2BAR affinity and pharmacokinetic properties of a collection of A2BAR antagonists and its study with structure-based free energy perturbation simulations. Monohalogenation at position 8 produced potent A2BAR ligands irrespective of the nature of the halogen. In contrast, halogenation at position 7 and dihalogenation produced a halogen-size-dependent decay in affinity. Eight novel A2BAR ligands exhibited remarkable affinity (Ki < 10 nM), exquisite subtype selectivity, and enantioselective recognition, with some eutomers eliciting sub-nanomolar affinity. The pharmacokinetic profile of representative derivatives showed enhanced solubility and microsomal stability. Finally, two compounds showed the capacity of reversing the antiproliferative effect of adenosine in activated primary human peripheral blood mononuclear cells.


Asunto(s)
Halogenación , Antagonistas de Receptores Purinérgicos P1 , Cricetinae , Animales , Humanos , Células CHO , Leucocitos Mononucleares/metabolismo , Antagonistas del Receptor de Adenosina A2/farmacología , Receptor de Adenosina A2B/metabolismo , Ligandos , Halógenos
6.
J Immunother Cancer ; 10(5)2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35580926

RESUMEN

BACKGROUND: Adenosine is a metabolite that suppresses antitumor immune response of T and NK cells via extracellular binding to the two subtypes of adenosine-2 receptors, A2ARs. While blockade of the A2AARs subtype effectively rescues lymphocyte activity, with four A2AAR antagonists currently in anticancer clinical trials, less is known for the therapeutic potential of the other A2BAR blockade within cancer immunotherapy. Recent studies suggest the formation of A2AAR/A2BAR dimers in tissues that coexpress the two receptor subtypes, where the A2BAR plays a dominant role, suggesting it as a promising target for cancer immunotherapy. METHODS: We report the synthesis and functional evaluation of five potent A2BAR antagonists and a dual A2AAR/A2BAR antagonist. The compounds were designed using previous pharmacological data assisted by modeling studies. Synthesis was developed using multicomponent approaches. Flow cytometry was used to evaluate the phenotype of T and NK cells on A2BAR antagonist treatment. Functional activity of T and NK cells was tested in patient-derived tumor spheroid models. RESULTS: We provide data for six novel small molecules: five A2BAR selective antagonists and a dual A2AAR/A2BAR antagonist. The growth of patient-derived breast cancer spheroids is prevented when treated with A2BAR antagonists. To elucidate if this depends on increased lymphocyte activity, immune cells proliferation, and cytokine production, lymphocyte infiltration was evaluated and compared with the potent A2AAR antagonist AZD-4635. We find that A2BAR antagonists rescue T and NK cell proliferation, IFNγ and perforin production, and increase tumor infiltrating lymphocytes infiltration into tumor spheroids without altering the expression of adhesion molecules. CONCLUSIONS: Our results demonstrate that A2BAR is a promising target in immunotherapy, identifying ISAM-R56A as the most potent candidate for A2BAR blockade. Inhibition of A2BAR signaling restores T cell function and proliferation. Furthermore, A2BAR and dual A2AAR/A2BAR antagonists showed similar or better results than A2AAR antagonist AZD-4635 reinforcing the idea of dominant role of the A2BAR in the regulation of the immune system.


Asunto(s)
Neoplasias , Antagonistas de Receptores Purinérgicos P1 , Adenosina/farmacología , Humanos , Linfocitos/metabolismo , Neoplasias/tratamiento farmacológico , Receptor de Adenosina A2B/genética , Receptor de Adenosina A2B/metabolismo
7.
ACS Med Chem Lett ; 13(2): 243-249, 2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-35178181

RESUMEN

A library of potent and highly A3AR selective pyrimidine-based compounds was designed to explore non-orthosteric interactions within this receptor. Starting from a prototypical orthosteric A3AR antagonist (ISVY130), the structure-based design explored functionalized residues at the exocyclic amide L1 region and aimed to provide additional interactions outside the A3AR orthosteric site. The novel ligands were assembled through an efficient and succinct synthetic approach, resulting in compounds that retain the A3AR potent and selective profile while improving the solubility of the original scaffold. The experimentally demonstrated tolerability of the L1 region to structural functionalization was further assessed by molecular dynamics simulations, giving hints of the non-orthosteric interactions explored by these series. The results pave the way to explore newly functionalized A3AR ligands, including covalent drugs and molecular probes for diagnostic and delivery purposes.

8.
J Med Chem ; 65(3): 2091-2106, 2022 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-35068155

RESUMEN

We herein document a large collection of 108 2-amino-4,6-disubstituted-pyrimidine derivatives as potent, structurally simple, and highly selective A1AR ligands. The most attractive ligands were confirmed as antagonists of the canonical cyclic adenosine monophosphate pathway, and some pharmacokinetic parameters were preliminarilly evaluated. The library, built through a reliable and efficient three-component reaction, comprehensively explored the chemical space allowing the identification of the most prominent features of the structure-activity and structure-selectivity relationships around this scaffold. These included the influence on the selectivity profile of the aromatic residues at positions R4 and R6 of the pyrimidine core but most importantly the prominent role to the unprecedented A1AR selectivity profile exerted by the methyl group introduced at the exocyclic amino group. The structure-activity relationship trends on both A1 and A2AARs were conveniently interpreted with rigorous free energy perturbation simulations, which started from the receptor-driven docking model that guided the design of these series.


Asunto(s)
Antagonistas del Receptor de Adenosina A1/química , Pirimidinas/química , Antagonistas del Receptor de Adenosina A1/metabolismo , Antagonistas del Receptor de Adenosina A1/farmacocinética , Sitios de Unión , Línea Celular , Diseño de Fármacos , Estabilidad de Medicamentos , Humanos , Cinética , Simulación del Acoplamiento Molecular , Pirimidinas/metabolismo , Pirimidinas/farmacocinética , Receptor de Adenosina A1/química , Receptor de Adenosina A1/metabolismo , Receptor de Adenosina A2A/química , Receptor de Adenosina A2A/metabolismo , Relación Estructura-Actividad
9.
Structure ; 30(3): 329-337.e5, 2022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-34895472

RESUMEN

A more complete depiction of protein energy landscapes includes the identification of different function-related conformational states and the determination of the pathways connecting them. We used total internal reflection fluorescence (TIRF) imaging to investigate the conformational dynamics of the human A2A adenosine receptor (A2AAR), a class A G protein-coupled receptor (GPCR), at the single-molecule level. Slow, reversible conformational exchange was observed among three different fluorescence emission states populated for agonist-bound A2AAR. Transitions among these states predominantly occurred in a specific order, and exchange between inactive and active-like conformations proceeded through an intermediate state. Models derived from molecular dynamics simulations with available A2AAR structures rationalized the relative fluorescence emission intensities for the highest and lowest emission states but not the transition state. This suggests that the functionally critical intermediate state required to achieve activation is not currently visualized among available A2AAR structures.


Asunto(s)
Simulación de Dinámica Molecular , Receptor de Adenosina A2A , Humanos , Conformación Molecular , Receptor de Adenosina A2A/química
10.
PLoS Comput Biol ; 17(11): e1009152, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34818333

RESUMEN

Transmembranal G Protein-Coupled Receptors (GPCRs) transduce extracellular chemical signals to the cell, via conformational change from a resting (inactive) to an active (canonically bound to a G-protein) conformation. Receptor activation is normally modulated by extracellular ligand binding, but mutations in the receptor can also shift this equilibrium by stabilizing different conformational states. In this work, we built structure-energetic relationships of receptor activation based on original thermodynamic cycles that represent the conformational equilibrium of the prototypical A2A adenosine receptor (AR). These cycles were solved with efficient free energy perturbation (FEP) protocols, allowing to distinguish the pharmacological profile of different series of A2AAR agonists with different efficacies. The modulatory effects of point mutations on the basal activity of the receptor or on ligand efficacies could also be detected. This methodology can guide GPCR ligand design with tailored pharmacological properties, or allow the identification of mutations that modulate receptor activation with potential clinical implications.


Asunto(s)
Receptor de Adenosina A2A/química , Agonistas del Receptor de Adenosina A2/química , Agonistas del Receptor de Adenosina A2/farmacología , Antagonistas del Receptor de Adenosina A2/química , Antagonistas del Receptor de Adenosina A2/farmacología , Sustitución de Aminoácidos , Biología Computacional , Humanos , Ligandos , Modelos Moleculares , Simulación de Dinámica Molecular , Mutación Puntual , Conformación Proteica/efectos de los fármacos , Receptor de Adenosina A2A/genética , Receptor de Adenosina A2A/metabolismo , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA