RESUMEN
A suture is a ubiquitous medical device to hold wounded tissues together and support the healing process after surgery. Surgical sutures, having incomplete biocompatibility, often cause unwanted infections or serious secondary trauma to soft or fragile tissue. In this research, UV/ozone (UVO) irradiation or polystyrene sulfonate acid (PSS) dip-coating is used to achieve a fibronectin (FN)-coated absorbable suture system, in which the negatively charged moieties produced on the suture cause fibronectin to change from a soluble plasma form into a fibrous form, mimicking the actions of cellular fibronectin upon binding. The fibrous fibronectin coated on the suture can be exploited as an engineered interface to improve cellular migration and adhesion in the region around the wounded tissue while preventing the binding of infectious bacteria, thereby facilitating wound healing. Furthermore, the FN-coated suture is found to be associated with a lower friction between the suture and the wounded tissue, thus minimizing the occurrence of secondary wounds during surgery. It is believed that this surface modification can be universally applied to most kinds of sutures currently in use, implying that it may be a novel way to develop a highly effective and safer suture system for clinical applications.
Asunto(s)
Suturas , Cicatrización de Heridas , Matriz ExtracelularRESUMEN
Infiltration of diverse cell types into tumor microenvironment plays a critical role in cancer progression including metastasis. We previously reported that SFMBT2 (Scm-like with four mbt domains 2) regulates the expression of matrix metalloproteinases (MMPs) and migration and invasion of cancer cells in prostate cancer. Here we investigated whether the down-regulation of SFMBT2 regulates the infiltration of preadipocytes and tumor-associated macrophages (TAMs) in prostate cancer. We found that the down-regulation of SFMBT2 promotes the infiltration of preadipocytes and TAMs through up-regulation of CXCL8, CCL2, CXCL10, and CCL20 expression in prostate cancer. Expression of CXCL8, CCL2, CXCL10, and CCL20 was also elevated in prostate cancer patients having a higher Gleason score (≥8), which had substantially lower SFMBT2 expression. We also found that the up-regulation of CXCL8, CCL2, CXCL10, and CCL20 expression is dependent on NF-κB activation in prostate cancer cells expressing a low level of SFMBT2. Moreover, increased IL-6 from infiltrated preadipocytes and TAMs promoted migration and invasion of prostate cancer cells expressing a low level of SFMBT2. Our study may suggest that SFMBT2 a critical regulator for the infiltration of preadipocytes and TAMs into the prostate tumor microenvironment. Thus, the regulation of SFMBT2 may provide a new therapeutic strategy to inhibit prostate cancer metastasis, and SFMBT2 could be used as a potential biomarker in prostate cancer metastasis.
RESUMEN
It has been suggested that Jmjd6 plays an important role in gene regulation through its demethylation or hydroxylation activity on histone and transcription factors. In addition, Jmjd6 has been shown to regulate RNA splicing by interaction with splicing factors. In this study, we demonstrated that Jmjd6a is expressed in developing Xenopus laevis eye during optic vesicle formation and retinal layer differentiation stages. Knockdown of Jmjd6a by an antisense morpholino resulted in eye malformation including a deformed retinal layer and no lens formation. We further found down-regulation of gene expression related to eye development such as Rx1, Otx2, and Pax6 in Jmjd6a morpholino injected embryos. Jmjd6 interacts with splicing factor U2AF25 and GSK3ß RNA in the anterior region of Xenopus embryos. Knockdown of Jmjd6a led to deletion of GSK3ß RNA exon 1 and 2, which resulted in generation of N'-terminal truncated GSK3ß protein. This event further caused decreased phosphorylation of ß-catenin and subsequently increased ß-catenin stability. Therefore, our result may suggest that Jmjd6a plays an important role in Xenopus eye development through regulation of GSK3ß RNA splicing and canonical Wnt/ß-catenin signaling.
Asunto(s)
Dioxigenasas/genética , Dioxigenasas/metabolismo , Ojo/crecimiento & desarrollo , Glucógeno Sintasa Quinasa 3/genética , Histona Demetilasas con Dominio de Jumonji/genética , Histona Demetilasas con Dominio de Jumonji/metabolismo , Empalme del ARN , Proteínas de Xenopus/genética , Animales , Diferenciación Celular , Ojo/citología , Ojo/metabolismo , Proteínas del Ojo/genética , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Organogénesis , Fosforilación , Estabilidad Proteica , Transducción de Señal , Factor de Empalme U2AF/metabolismo , Proteínas de Xenopus/química , Proteínas de Xenopus/metabolismo , Xenopus laevis , beta Catenina/química , beta Catenina/metabolismoRESUMEN
The tumor suppressor p53 plays essential roles in cellular protection mechanisms against a variety of stress stimuli and its activation induces apoptosis or autophagy in certain cancer cells. Here, we identified protopine, an isoquinoline alkaloid isolated from Nandina domestica, as an activator of the p53 pathway from cell-based natural compound screening based on p53-responsive transcription. Protopine increased the p53-mediated transcriptional activity and promoted p53 phosphorylation at the Ser15 residue, resulting in stabilization of p53 protein. Moreover, protopine up-regulated the expression of p21WAF1/CIP1 and BAX, downstream genes of p53, and inhibited the proliferation of HCT116 colon cancer cells. Apoptosis was elicited by protopine as indicated by caspase-3/7 activation, poly ADP ribose polymerase cleavage, and increased population of Annexin V-FITC-positive cells. Furthermore, protopine induced the formation of microtubule-associated protein 1 light chain 3 (LC3) puncta and LC3-II turnover, typical biochemical markers of autophagy, in HCT116 cells. Our findings suggest that protopine exerts its antiproliferative activity by stimulating the p53 pathway and may have potential as a chemopreventive agent for human colon cancer.
Asunto(s)
Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Benzofenantridinas/aislamiento & purificación , Benzofenantridinas/uso terapéutico , Alcaloides de Berberina/aislamiento & purificación , Alcaloides de Berberina/uso terapéutico , Neoplasias del Colon/tratamiento farmacológico , Ranunculales/química , Apoptosis/fisiología , Autofagia/fisiología , Benzofenantridinas/farmacología , Berberidaceae/química , Berberidaceae/clasificación , Alcaloides de Berberina/farmacología , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Relación Dosis-Respuesta a Droga , Células HCT116 , Humanos , Extractos Vegetales/química , Extractos Vegetales/farmacología , Estabilidad Proteica/efectos de los fármacos , Ranunculales/clasificación , Células Tumorales Cultivadas , Proteína p53 Supresora de Tumor/metabolismo , Regulación hacia Arriba/efectos de los fármacosRESUMEN
Axin1, a concentration-limiting component of the ß-catenin destruction complex, negatively regulates the Wnt/ß-catenin pathway. Axin1 concentration is reported to be regulated by proteasomal degradation; however, its transcriptional regulation has not yet been reported. Here, we demonstrated that CCAAT/enhancer-binding protein-ß (C/EBP-ß) activates axis inhibition protein 1 (AXIN1) gene expression, thereby attenuating Wnt/ß-catenin signaling. C/EBP-ß interacted with cis-regulatory element for C/EBP-ß in the 5'-upstream sequences of the AXIN1 gene and increased AXIN1 promoter activity. Functional analysis using Drosophila and zebrafish models established that C/EBP-ß negatively regulates the Wnt/ß-catenin pathway. Small-molecule-based up-regulation of C/EBP-ß induces AXIN1 gene expression and down-regulates the intracellular ß-catenin level, thereby inhibiting hepatoma cell growth. Thus, our findings provide a unique mechanistic insight into the regulation of Axin homeostasis and present a novel strategy for the development of anticancer therapeutics targeting Wnt/ß-catenin signaling.
Asunto(s)
Proteína Axina/metabolismo , Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Expresión Génica/fisiología , Transducción de Señal/fisiología , Vía de Señalización Wnt/fisiología , beta Catenina/metabolismo , Células 3T3-L1 , Animales , Carcinoma Hepatocelular/metabolismo , Línea Celular , Proliferación Celular/fisiología , Regulación hacia Abajo/fisiología , Drosophila , Células HEK293 , Humanos , Neoplasias Hepáticas/metabolismo , Ratones , Pez CebraAsunto(s)
Antraquinonas/farmacología , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Neoplasias Colorrectales/metabolismo , Rubia/química , Antraquinonas/química , Antineoplásicos Fitogénicos/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células HCT116 , Humanos , Estructura Molecular , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismoRESUMEN
Aberrant up-regulation of Wnt/ß-catenin signaling is associated with the development and progression of prostate cancer, but the underlying mechanism is unclear. Here we show that in the absence of androgens, the Wnt/ß-catenin pathway activates AR-mediated transcription through up-regulation of the Hippo pathway effector Yes-associated protein (YAP). Wnt3a-conditioned medium (Wnt3a-CM) promotes the growth of LNCaP cells and increases AR and YAP protein levels. Moreover, Wnt3a-CM induces the nuclear translocation of YAP and the AR, but not ß-catenin, thereby activating the expression of AR- and YAP-dependent genes, in an androgen-independent manner. In addition, depletion of YAP with small interfering RNA (siRNA) prevented Wnt3a-CM-mediated up-regulation of AR-dependent gene expression. Thus, our findings provide mechanistic insight into the proposed cross-talk between the Wnt/ß-catenin and Hippo pathways in androgen-independent prostate cancer development.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Andrógenos/metabolismo , Proliferación Celular , Fosfoproteínas/metabolismo , Neoplasias de la Próstata/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteína Wnt3A/metabolismo , Línea Celular Tumoral , Vía de Señalización Hippo , Humanos , Masculino , Neoplasias de la Próstata/patología , Receptores Androgénicos , Factores de Transcripción , Regulación hacia Arriba , Vía de Señalización Wnt , Proteínas Señalizadoras YAPRESUMEN
Metastatic prostate cancer is the leading cause of morbidity and mortality in men. In this study, we found that expression level of SFMBT2 is altered during prostate cancer progression and has been associated with the migration and invasion of prostate cancer cells. The expression level of SFMBT2 is high in poorly metastatic prostate cancer cells compared to highly metastatic prostate cancer cells. We also found that SFMBT2 knockdown elevates MMP-2, MMP-3, MMP-9, and MMP-26 expression, leading to increased cell migration and invasion in LNCaP and VCaP cells. SFMBT2 interacts with YY1, RNF2, N-CoR and HDAC1/3, as well as repressive histone marks such as H3K9me2, H4K20me2, and H2AK119Ub which are associated with transcriptional repression. In addition, SFMBT2 knockdown decreased KAI1 gene expression through up-regulation of N-CoR gene expression. Expression of SFMBT2 in prostate cancer was strongly associated with clinicopathological features. Patients having higher Gleason score (≥ 8) had substantially lower SFMBT2 expression than patients with lower Gleason score. Moreover, tail vein or intraprostatic injection of SFMBT2 knockdown LNCaP cells induced metastasis. Taken together, our findings suggest that regulation of SFMBT2 may provide a new therapeutic strategy to control prostate cancer metastasis as well as being a potential biomarker of metastatic prostate cancer.
Asunto(s)
Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Proteínas Represoras/metabolismo , Animales , Línea Celular Tumoral , Movimiento Celular/fisiología , Xenoinjertos , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Invasividad Neoplásica , Neoplasias de la Próstata/genética , Proteínas Represoras/genética , TransfecciónRESUMEN
Human telomerase reverse transcriptase (hTERT), a catalytic subunit of telomerase, is the primary determinant for telomerase enzyme activity, which has been associated with cellular immortality. Expression of the hTERT gene is regulated by various extracellular (external) stimuli and is aberrantly up-regulated in more than 90% of cancers. Here we show that hTERT gene expression was repressed in response to transforming growth factor-ß (TGF-ß) by a mechanism dependent on transcription factors Snail and c-Myc. TGF-ß activated Snail and down-regulated c-Myc gene expression. In addition, ectopic expression of Snail strongly inhibited hTERT promoter activity, although co-expression of c-Myc abrogated this effect. Chromatin immunoprecipitation (ChIP) analysis revealed that TGF-ß decreased c-Myc occupancy and dramatically increased recruitment of Snail to the E-box motifs of the hTERT promoter, thereby repressing hTERT expression. Our findings suggest a dynamic alteration in hTERT promoter occupancy by Snail and c-Myc is the mechanistic basis for TGF-ß-mediated regulation of hTERT.
Asunto(s)
Queratinocitos/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Telomerasa/metabolismo , Factores de Transcripción/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Línea Celular Transformada , Regulación de la Expresión Génica , Genes Reporteros , Células HEK293 , Humanos , Queratinocitos/citología , Queratinocitos/efectos de los fármacos , Luciferasas/genética , Luciferasas/metabolismo , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas c-myc/genética , Transducción de Señal , Factores de Transcripción de la Familia Snail , Telomerasa/genética , Factores de Transcripción/genética , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/farmacologíaRESUMEN
(-)-Epigallocatechin-3-gallate (EGCG), the major polyphenol in green tea, has been reported to inhibit the Wnt/ß-catenin pathway, which is aberrantly up-regulated in colorectal cancers, but its precise mechanism of action remains unclear. Here, we used a sensitive cell-based system to demonstrate that EGCG suppresses ß-catenin response transcription (CRT), activated by Wnt3a-conditioned medium (Wnt3a-CM), by promoting the degradation of intracellular ß-catenin. EGCG induced ß-catenin N-terminal phosphorylation at the Ser33/37 residues and subsequently promoted its degradation; however, this effect was not observed for oncogenic forms of ß-catenin. Pharmacological inhibition or depletion of glycogen synthase kinase-3ß (GSK-3ß) did not abrogate the EGCG-mediated ß-catenin degradation. EGCG did not affect the activity and expression of protein phosphatase 2A (PP2A). Consistently, the phosphorylation and degradation of ß-catenin was found in adenomatous polyposis coli (APC) mutated colon cancer cells after EGCG treatment. EGCG repressed the expression of cyclin D1 and c-myc, which are ß-catenin/T-cell factor-dependent genes, and inhibited the proliferation of colon cancer cells. Our findings suggest that EGCG exerts its cancer-preventive or anticancer activity against colon cancer cells by promoting the phosphorylation and proteasomal degradation of ß-catenin through a mechanism independent of the GSK-3ß and PP2A.
Asunto(s)
Anticarcinógenos/farmacología , Catequina/análogos & derivados , Regulación Neoplásica de la Expresión Génica , Polifenoles/farmacología , Proteína Wnt3A/antagonistas & inhibidores , beta Catenina/antagonistas & inhibidores , Proteína de la Poliposis Adenomatosa del Colon/genética , Proteína de la Poliposis Adenomatosa del Colon/metabolismo , Anticarcinógenos/aislamiento & purificación , Catequina/aislamiento & purificación , Catequina/farmacología , Línea Celular Tumoral , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Glucógeno Sintasa Quinasa 3/genética , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Células HCT116 , Células HEK293 , Humanos , Mutación , Especificidad de Órganos , Fosforilación/efectos de los fármacos , Polifenoles/aislamiento & purificación , Complejo de la Endopetidasa Proteasomal/efectos de los fármacos , Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Proteína Fosfatasa 2/genética , Proteína Fosfatasa 2/metabolismo , Proteolisis/efectos de los fármacos , Transducción de Señal , Té/química , Proteína Wnt3A/genética , Proteína Wnt3A/metabolismo , beta Catenina/genética , beta Catenina/metabolismoRESUMEN
Protein kinase Cα (PKCα) phosphorylates the Ser33/37/Thr41 residues of ß-catenin, which lacks a typical PKCα canonical sequence, but little is known about its underlying mechanism. Here we showed that Ser33/Ser37/Thr41 of ß-catenin fragments encompassing the armadillo repeats 1-5 (ß-catenin1-781, ß-catenin1-682, and ß-catenin1-422) are phosphorylated by PKCα whereas ß-catenin1-138 lacking these repeats is not phosphorylated. Binding-site analysis revealed that PKCα directly interacts with ß-catenin through the sites on the armadillo repeats 1-5. In addition, axin fragments (365-500), which interacts with ß-catenin through armadillo repeats 3-5, disrupted PKCα/ß-catenin association and inhibited ß-catenin phosphorylation by PKCα. In HEK293 cells, the levels of ß-catenin1-781 and ß-catenin1-422 were decreased whereas the amount of ß-catenin1-138 was unchanged by pharmacological stimulation of PKCα. Our results suggest that the association of PKCα with the armadillo repeats of ß-catenin placed the Ser33/37/Thr41 residues of ß-catenin in close proximity to PKCα, thereby facilitating PKCα-mediated ß-catenin phosphorylation.
Asunto(s)
Proteínas del Dominio Armadillo/metabolismo , Proteína Quinasa C-alfa/metabolismo , beta Catenina/metabolismo , Proteínas del Dominio Armadillo/química , Sitios de Unión , Células HEK293 , Humanos , Fosforilación , beta Catenina/químicaRESUMEN
Aberrant accumulation of intracellular ß-catenin and subsequent activation of ß-catenin response transcription (CRT) in intestinal epithelial cells is a frequent early event during the development of colon cancer. Here we show that cardamonin, a chalcone isolated from Aplinia katsumadai Hayata, inhibited CRT in SW480 colon cancer cells that carry inactivating mutation in the adenomatous polyposis coli (APC) gene. Cardamonin also down-regulated intracellular ß-catenin levels in SW480 cells without affecting its mRNA levels. Interestingly, pharmacological inhibition of the proteasome prevented the cardamonin-induced down-regulation of ß-catenin. In addition, cardamonin suppressed the expression of cyclin D1 and c-myc, which are known ß-catenin/T cell factor (TCF)-dependent genes. Moreover, cardamonin inhibited the growth of various colon cancer cells and induced G2/M cell cycle arrest in SW480 colon cancer cells. These findings indicate that cardamonin is a potential chemotherapeutic agent against colon cancer.
Asunto(s)
Antineoplásicos/farmacología , Chalconas/farmacología , Neoplasias del Colon/metabolismo , beta Catenina/metabolismo , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Neoplasias del Colon/tratamiento farmacológico , Regulación hacia Abajo , HumanosRESUMEN
Aberrant accumulation of intracellular ß-catenin is a well recognized characteristic of several cancers, including prostate, colon, and liver cancers, and is a potential target for development of anticancer therapeutics. Here, we used cell-based small molecule screening to identify CGK062 as an inhibitor of Wnt/ß-catenin signaling. CGK062 promoted protein kinase Cα (PKCα)-mediated phosphorylation of ß-catenin at Ser33/Ser37, marking it for proteasomal degradation. This reduced intracellular ß-catenin levels and consequently antagonized ß-catenin response transcription (CRT). Pharmacological inhibition or depletion of PKCα abrogated CGK062-mediated phosphorylation and degradation of ß-catenin. In addition, CGK062 repressed the expression of the genes encoding cyclin D1, c-myc, and axin-2, ß-catenin target genes, and thus inhibited the growth of CRT-positive cancer cells. Furthermore, treatment of nude mice bearing PC3 xenograft tumors with CGK062 at doses of 50 mg/kg and 100 mg/kg (i.p.) significantly suppressed tumor growth. Our findings suggest that CGK062 exerts its anticancer activity by promoting PKCα-mediated ß-catenin phosphorylation/degradation. Therefore, CGK062 has significant therapeutic potential for the treatment of CRT-positive cancers.
Asunto(s)
Acrilatos/farmacología , Antineoplásicos/farmacología , Proliferación Celular/efectos de los fármacos , Cromanos/farmacología , Proteína Quinasa C-alfa/metabolismo , Proteolisis/efectos de los fármacos , beta Catenina/metabolismo , Animales , Línea Celular Tumoral , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Células HEK293 , Humanos , Concentración 50 Inhibidora , Ratones , Ratones Desnudos , Fosforilación , Procesamiento Proteico-Postraduccional , Transcripción Genética , Vía de Señalización Wnt , Ensayos Antitumor por Modelo de Xenoinjerto , Proteínas con Repetición de beta-Transducina/metabolismoRESUMEN
The Wnt/ß-catenin pathway plays important roles in the differentiation of multiple cell types, including mesenchymal stem cells. Using a cell-based chemical screening assay with a synthetic chemical library of 270 000 compounds, we identified the compound SKL2001 as a novel agonist of the Wnt/ß-catenin pathway and uncovered its molecular mechanism of action. SKL2001 upregulated ß-catenin responsive transcription by increasing the intracellular ß-catenin protein level and inhibited the phosphorylation of ß-catenin at residues Ser33/37/Thr41 and Ser45, which would mark it for proteasomal degradation, without affecting CK1 and GSK-3ß enzyme activities. Biochemical analysis revealed that SKL2001 disrupted the Axin/ß-catenin interaction, which is a critical step for CK1- and GSK-3ß-mediated phosphorylation of ß-catenin at Ser33/37/Thr41 and Ser45. The treatment of mesenchymal stem cells with SKL2001 promoted osteoblastogenesis and suppressed adipocyte differentiation, both of which were accompanied by the activation of Wnt/ß-catenin pathway. Our findings provide a new strategy to regulate mesenchymal stem cell differentiation by modulation of the Wnt/ß-catenin pathway.
Asunto(s)
Complejo de Señalización de la Axina/metabolismo , Diferenciación Celular , Células Madre Mesenquimatosas/citología , Vía de Señalización Wnt , beta Catenina/metabolismo , Adipocitos/citología , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Activación Enzimática , Pruebas de Enzimas , Inhibidores Enzimáticos/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Células HEK293 , Humanos , Imidazoles/farmacología , Inmunoprecipitación , Isoxazoles/farmacología , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Osteoblastos/citología , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Fosforilación/efectos de los fármacos , Plásmidos/genética , Plásmidos/metabolismo , Mapeo de Interacción de Proteínas , Proteolisis , Serina/metabolismo , Treonina/metabolismo , Transfección , beta Catenina/agonistasRESUMEN
The tumor suppressor p53 plays an important role in cellular emergency mechanisms through regulating the genes involved in cell cycle arrest and apoptosis. To identify small molecules that can activate p53-responsive transcription, we performed chemical screening using genetically engineered HCT116 reporter cells. We found that TopIn (7-phenyl-6H-[1,2,5]oxadiazolo[3,4-e]indole 3-oxide) efficiently activated p53-mediated transcriptional activity and induced phosphorylation of p53 at Ser15, thereby stabilizing the p53 protein. Furthermore, TopIn upregulated the expression of p21(WAF1/CIP1), a downstream target of p53, and suppressed cellular proliferation in various colon cancer cells. Additionally, TopIn induced DNA fragmentation, caspase-3/7 activation and poly ADP ribose polymerase cleavage, typical biochemical markers of apoptosis, in p53 wild-type and mutated colon cancer cells. Finally, we found that TopIn inhibited topoisomerase I activity, but not topoisomerase II, in vitro and induced the formation of the topoisomerase I-DNA complex in HCT116 colon cancer cells. Unlike camptothecin (CPT) and its derivative SN38, TopIn did not affect the activity of the ATP-binding cassette transporter breast cancer resistance protein (BCRP) or multidrug-resistant protein-1 (MDR-1). These results suggest that TopIn may present a promising new topoisomerase I-targeting anti-tumor therapeutics.
Asunto(s)
Antineoplásicos/farmacología , Apoptosis , Neoplasias del Colon/enzimología , ADN-Topoisomerasas de Tipo I/metabolismo , Indoles/farmacología , Oxadiazoles/farmacología , Inhibidores de Topoisomerasa I/farmacología , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2 , Transportadoras de Casetes de Unión a ATP/metabolismo , Animales , Antineoplásicos/química , Línea Celular , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Perros , Humanos , Indoles/química , Proteínas de Neoplasias/metabolismo , Oxadiazoles/química , Inhibidores de Topoisomerasa I/química , Proteína p53 Supresora de Tumor/agonistasRESUMEN
Galangin is a naturally occurring bioflavonoid with anticancer activity against certain human cancers, yet little is known about its mechanism of action. Here, we used a chemical biology approach to reveal that galangin suppresses ß-catenin response transcription (CRT), which is aberrantly up-regulated in colorectal and liver cancers, by promoting the degradation of intracellular ß-catenin. Inhibition of glycogen synthase kinase-3ß (GSK-3ß) activity or mutation of the GSK-3ß-targeted sequence from ß-catenin was unable to abrogate the galangin-mediated degradation of ß-catenin. In addition, galangin down-regulated the intracellular ß-catenin levels in cancer cells with inactivating mutations of adenomatous polyposis coli (APC) or Axin, which are components of the ß-catenin destruction complex. Galangin repressed the expression of ß-catenin/T-cell factor-dependent genes, such as cyclin D1 and c-myc, and thus inhibited the proliferation of CRT-positive cancer cells. Structure-activity data indicated that the major structural requirements for galangin-mediated ß-catenin degradation are hydroxyl groups at positions 3, 5, and 7. Our findings suggest that galangin exerts its anticancer activity by promoting APC/Axin/GSK-3ß-independent proteasomal degradation of ß-catenin.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteína de la Poliposis Adenomatosa del Colon/metabolismo , Proliferación Celular/efectos de los fármacos , Flavonoides/farmacología , Glucógeno Sintasa Quinasa 3/metabolismo , Proteínas Represoras/metabolismo , Transcripción Genética , beta Catenina/metabolismo , Proteína Axina , Línea Celular , Regulación hacia Abajo/efectos de los fármacos , Glucógeno Sintasa Quinasa 3 beta , Humanos , HidrólisisRESUMEN
Cdc25A phosphatase, which is essential in cell cycle progression, is degraded by the proteasome throughout interphase and in response to genotoxic stress. Phosphorylation of Cdc25A on Ser82 in the DSG motif is important in the recognition by ß-TrCP, resulting in targeting of Cdc25A for ubiquitination. Chk1 is known to phosphorylate Cdc25A on Ser76, and NEK11 or CK1α relays phosphorylation of Cdc25A to Ser82 in a hierarchical manner. In this study, we found that CK1ε has unique enzymatic activity on the serine residue in the DSG motif using a ß-catenin N-terminal region as a substrate. We then examined whether CK1ε has activity on the DSG motif of Cdc25A. We found CK1ε directly phosphorylated Ser82 without any prior phosphorylation of Cdc25A, and depletion of CK1ε stabilized the cellular Cdc25A in 293 cells. Moreover, we found that CK1ε also has activity as a relaying kinase like NEK11 or CK1α when the cell is exposed to DNA damage. Taken together, our results indicate that CK1ε regulates the cellular levels of Cdc25A in parallel with Chk1-dependent Cdc25A degradation, contributing to the precise control of cell division.
Asunto(s)
Caseína Cinasa 1 épsilon/fisiología , Ciclo Celular/fisiología , Fosfatasas cdc25/metabolismo , Secuencias de Aminoácidos , Sitios de Unión , División Celular/fisiología , Línea Celular , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Daño del ADN , Humanos , Fosforilación , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Quinasas/fisiología , Ubiquitinación , Fosfatasas cdc25/química , Fosfatasas cdc25/genéticaRESUMEN
Abnormal regulation of Wnt/beta-catenin signaling followed by increased levels of the beta-catenin protein have been identified in enhanced cellular proliferation and development of colon polyps and cancers. To inhibit beta-catenin gene expression in colon cancer cells, RNA-cleaving oligodeoxyribozyme (DNAzyme) was employed to destroy the beta-catenin mRNA. We designed a strategy to identify the cleavage sites in beta-catenin RNA with a pool of random sequences from a DNAzyme library and identified four potential DNAzyme-working sites. DNAzymes were constructed for the selected target sites and were tested for the ability to cleave beta-catenin RNA. When introduced into the cells, the selected DNAzymes decreased the expression of beta-catenin significantly as well as its downstream gene, cyclin D1. Additionally, we designed short hairpin RNA that targets the same cleavage site for the selected DNAzyme. The designed short hairpin RNA also inhibited beta-catenin gene expression in colon cancer cells. Our studies show that RNA-cleaving DNAzymes and RNA interference targeted to beta-catenin significantly reduced beta-catenin-dependent gene expression, resulting in inhibition of colon cancer cell growth. These results indicate that the functional antisense oligonucleotides directed against beta-catenin might have potential as a therapeutic intervention to treat colon cancer.
Asunto(s)
Neoplasias del Colon/genética , Neoplasias del Colon/patología , ADN Catalítico/metabolismo , ADN Catalítico/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Transcripción Genética/efectos de los fármacos , beta Catenina/genética , Secuencia de Bases , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , ADN Catalítico/genética , Humanos , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Interferencia de ARN/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/genética , beta Catenina/metabolismoRESUMEN
Molecular lesions in Wnt/beta-catenin signaling and subsequent up-regulation of beta-catenin response transcription (CRT) occur frequently during the development of colon cancer. To identify small molecules that suppress CRT, we screened natural compounds in a cell-based assay for detection of TOPFalsh reporter activity. Murrayafoline A, a carbazole alkaloid isolated from Glycosmis stenocarpa, antagonized CRT that was stimulated by Wnt3a-conditioned medium (Wnt3a-CM) or LiCl, an inhibitor of glycogen synthase kinase-3beta (GSK-3beta), and promoted the degradation of intracellular beta-catenin without altering its N-terminal phosphorylation at the Ser33/37 residues, marking it for proteasomal degradation, or the expression of Siah-1, an E3 ubiquitin ligase. Murrayafoline A repressed the expression of cyclin D1 and c-myc, which is known beta-catenin/T cell factor (TCF)-dependent genes and thus inhibited the proliferation of various colon cancer cells. These findings indicate that murrayafoline A may be a potential chemotherapeutic agent for use in the treatment of colon cancer.
Asunto(s)
Alcaloides/farmacología , Antineoplásicos/farmacología , Carbazoles/farmacología , Proliferación Celular/efectos de los fármacos , Neoplasias del Colon/metabolismo , Proteínas Wnt/antagonistas & inhibidores , beta Catenina/antagonistas & inhibidores , Línea Celular Tumoral , Humanos , Proteínas Nucleares/metabolismo , Fosforilación/efectos de los fármacos , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Wnt/metabolismo , beta Catenina/metabolismoRESUMEN
Aberrant accumulation of intracellular beta-catenin in intestinal epithelial cells is a frequent early event during the development of colon cancer. To identify small molecules that decrease the level of intracellular beta-catenin, we performed cell-based chemical screening using genetically engineered HEK293 reporter cells to detect compounds that inhibit TOPFlash reporter activity, which was stimulated by Wnt3a-conditioned medium. We found that isoreserpine promoted the degradation of intracellular beta-catenin by up-regulation of Siah-1 in HEK293 and HCT116 colon cancer cells. Moreover, isoreserpine repressed the expression of beta-catenin/T-cell factor (TCF)-dependent genes, such as cyclin D1 and c-myc, resulting in the suppression of HCT116 cell proliferation. Our findings suggest that isoreserpine can potentially be used as a chemotherapeutic agent against colon cancer.