Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
J Vis Exp ; (187)2022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-36190253

RESUMEN

Identification of genetic interactions is a powerful tool to decipher the functions of gene(s) by providing insights into their functional relationships with other genes and organization into biological pathways and processes. Although the majority of the genetic screens were initially developed in Saccharomyces cerevisiae, a complementary platform for carrying out these genetic screens has been provided by Schizosaccharomyces pombe. One of the common approaches used to identify genetic interactions is by overexpression of clones from a genome-wide, high-copy-number plasmid library in a loss-of-function mutant, followed by selection of clones that suppress the mutant phenotype. This paper describes a protocol for carrying out this 'multicopy suppression'-based genetic screen in S. pombe. This screen has helped identify multicopy suppressor(s) of the genotoxic stress-sensitive phenotype associated with the absence of the Ell1 transcription elongation factor in S. pombe. The screen was initiated by transformation of the query ell1 null mutant strain with a high-copy-number S. pombe cDNA plasmid library and selecting the suppressors on EMM2 plates containing 4-nitroquinoline 1-oxide (4-NQO), a genotoxic stress-inducing compound. Subsequently, plasmid was isolated from two shortlisted suppressor colonies and digested by restriction enzymes to release the insert DNA. Plasmids releasing an insert DNA fragment were retransformed into the ell1 deletion strain to confirm the ability of these suppressor plasmid clones to restore growth of the ell1 deletion mutant in the presence of 4-NQO and other genotoxic compounds. Those plasmids showing a rescue of the deletion phenotype were sequenced to identify the gene(s) responsible for suppression of the ell1 deletion-associated genotoxic stress-sensitive phenotype.


Asunto(s)
Nitroquinolinas , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , ADN/metabolismo , ADN Complementario , Nitroquinolinas/metabolismo , Óxidos , Factores de Elongación de Péptidos/genética , Factores de Elongación de Péptidos/metabolismo , Plásmidos , Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Factores de Elongación Transcripcional/genética , Factores de Elongación Transcripcional/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA