Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Aging (Albany NY) ; 15(23): 13593-13607, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38095608

RESUMEN

BACKGROUND: SARS-CoV-2 variants are constantly emerging with a variety of changes in the conformation of the spike protein, resulting in alterations of virus entry mechanisms. Solely omicron variants use the endosomal clathrin-mediated entry. Here, we investigate the influence of defined altered spike formations to study their impact on premature cellular senescence. METHODS: In our study, in vitro infections of SARS-CoV-2 variants delta (B.1.617.2) and omicron (B.1.1.529) were analyzed by using human primary small alveolar epithelial cells and human ex vivo lung slices. We confirmed cellular senescence in human lungs of COVID-19 patients. Hence, global gene expression patterns of infected human primary alveolar epithelial cells were identified via mRNA sequencing. RESULTS: Solely omicron variants of SARS-CoV-2 influenced the expression of cell cycle genes, highlighted by an increased p21 expression in human primary lung cells and human ex vivo lungs. Additionally, an upregulated senescence-associated secretory phenotype (SASP) was detected. Transcriptomic data indicate an increased gene expression of p16, and p38 in omicron-infected lung cells. CONCLUSIONS: Significant changes due to different SARS-CoV-2 infections in human primary alveolar epithelial cells with an overall impact on premature aging could be identified. A substantially different cellular response with an upregulation of cell cycle, inflammation- and integrin-associated pathways in omicron infected cells indicates premature cellular senescence.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/genética , Senescencia Celular , Células Epiteliales Alveolares
2.
Aging Dis ; 2023 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-37728586

RESUMEN

During cellular senescence, persistent growth arrest and changes in protein expression programs are accompanied by a senescence-associated secretory phenotype (SASP). In this study, we detected the upregulation of the SASP-related protein dipeptidyl peptidase 4 (DDP4) in human primary lung cells rendered senescent by exposure to ionizing radiation. DPP4 is an exopeptidase that plays a crucial role in the cleavage of various proteins, resulting in the loss of N-terminal dipeptides and proinflammatory effects. Interestingly, our data revealed an association between severe coronavirus disease 2019 (COVID-19) and DDP4, namely that DPP4 levels increased in the plasma of patients with COVID-19 and were correlated with age and disease progression. Although we could not determine the direct effect of DDP4 on viral replication, mechanistic studies in cell culture revealed a negative impact on the expression of the tight junction protein zonula occludens-1 (ZO-1), which contributes to epithelial barrier function. Mass spectrometry analysis indicated that DPP4 overexpressing cells exhibited a decrease in ZO-1 and increased expression of pro-inflammatory cytokines and chemokines. By investigating the effect of DPP4 on the barrier function of human primary cells, we detected an increase in ZO-1 using DPP4 inhibitors. These results provide an important contribution to our understanding of DPP4 in the context of senescence, suggesting that DPP4 plays a major role as part of the SASP. Our results provide evidence that cellular senescence, a hallmark of aging, has an important impact on respiratory infections.

3.
Int J Obes (Lond) ; 47(11): 1088-1099, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37587162

RESUMEN

OBJECTIVE: Obesity is an independent risk factor for severe influenza virus and COVID-19 infections. There might be an interplay between adipose tissue and respiratory pathogens, although the mechanism is unknown. Proinflammatory factors secreted by the adipose tissue are often discussed to serve as indirect contributor to virus infection. However, the direct potential of adipose tissue to serve as a viral niche has not yet been investigated. METHODS: Two murine obesity models (DIO and ob/ob) were infected with influenza A virus (IAV) and monitored for 3 weeks. p.i. Lung and adipose tissue were harvested, and the viral load was analysed. Direct replication of IAV in vitro was investigated in human derived primary adipocytes and macrophages. The indirect impact of the secretory products of adipocytes during infection was analysed in a co-culture system with lung fibroblasts. Moreover, lung and adipose tissue was harvested from deceased patients infected with SARS-CoV-2 omicron variant. Additionally, replication of SARS-CoV-2 alpha, delta, and omicron variants was investigated in vitro in adipocytes and macrophages. RESULTS: Both murine obesity models presented high IAV titers compared to non-obese mice. Interestingly, adipose tissue adjacent to the lungs was a focal point for influenza virus replication in mice. We further detected IAV replication and antiviral response in human adipocytes. Co-cultivation of adipocytes and lung fibroblasts led to increased IL-8 concentration during infection. Though we observed SARS-CoV-2 in the thoracic adipose tissue of COVID-19 patients, no active replication was found in adipocytes in vitro. However, SARS-CoV-2 was detected in the macrophages and this finding was associated with increased inflammation. CONCLUSIONS: Our study revealed that thoracic adipose tissue contributes to respiratory virus infection. Besides indirect induction of proinflammatory factors during infection, adipocytes and macrophages within the tissue can directly support viral replication.


Asunto(s)
COVID-19 , Virus de la Influenza A , Gripe Humana , Humanos , Ratones , Animales , Pulmón , Tejido Adiposo , Virus de la Influenza A/fisiología , Obesidad
4.
Nat Commun ; 14(1): 3239, 2023 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-37277347

RESUMEN

Innate immune responses vary by pathogen and host genetics. We analyze quantitative trait loci (eQTLs) and transcriptomes of monocytes from 215 individuals stimulated by fungal, Gram-negative or Gram-positive bacterial pathogens. We identify conserved monocyte responses to bacterial pathogens and a distinct antifungal response. These include 745 response eQTLs (reQTLs) and corresponding genes with pathogen-specific effects, which we find first in samples of male donors and subsequently confirm for selected reQTLs in females. reQTLs affect predominantly upregulated genes that regulate immune response via e.g., NOD-like, C-type lectin, Toll-like and complement receptor-signaling pathways. Hence, reQTLs provide a functional explanation for individual differences in innate response patterns. Our identified reQTLs are also associated with cancer, autoimmunity, inflammatory and infectious diseases as shown by external genome-wide association studies. Thus, reQTLs help to explain interindividual variation in immune response to infection and provide candidate genes for variants associated with a range of diseases.


Asunto(s)
Estudio de Asociación del Genoma Completo , Inmunidad Innata , Femenino , Humanos , Masculino , Inmunidad Innata/genética , Monocitos/metabolismo , Sitios de Carácter Cuantitativo/genética , Variación Genética
5.
Aging Dis ; 14(4): 1331-1348, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37163429

RESUMEN

Aging is a major risk factor associated with increased morbidity and mortality rates observed during respiratory infections. In this study, we investigated the role of influenza virus infections in the establishment of premature cellular senescence and paracrine macrophage-activated inflammation. We observed in our murine model a premature aging by the appearance of senescent cells in the lungs after 21 d of influenza A virus infection. By using murine ex vivo lung models, the influence of TNF-α on the establishment of cellular senescence was detectable. Our findings were proven by using conditioned media of infected human monocyte-derived macrophages on primary lung fibroblasts. Here, a distinct expression of senescence-associated parameters could be confirmed. Furthermore, senescent cells in the lungs strongly influenced subsequent viral infections. Our data demonstrated a higher viral load in senescent primary lung fibroblasts, indicating an intracellular effect on viral replication. Transcriptomic data revealed an increased regulation of JAK/STAT signaling in senescent IAV-infected cells accompanied with increased TRAIL expression. Additionally, senescent cells indicating low pH values, accelerating viral replication. Our study provides new insights into pathomechanisms of virus-induced cellular senescence. Hence, IAV infection induces premature senescence and subsequent infections in senescent cells lead to an increased viral replication.

6.
Aging Dis ; 14(4): 1091-1104, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37163442

RESUMEN

Respiratory infections pose a significant health problem among elderly individuals, particularly during the COVID-19 pandemic. The increased mortality and morbidity rates among individuals over 65 highlight the criticality of these infections. The normal aging process in the lungs increases vulnerability to respiratory infections due to the accumulation of cellular damage and senescence. Consequently, the lung environment undergoes major changes in mechanical function and other systemic factors. This review aims to examine the influence of aging on respiratory infections from a clinical perspective by analyzing clinical studies. Additionally, the review will emphasize potential prevention and diagnostic developments to enhance therapy options available for elderly patients over 65 years of age.

7.
Sci Transl Med ; 14(664): eabh1209, 2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36170447

RESUMEN

Aspergillus fumigatus is a ubiquitous mold that can cause severe infections in immunocompromised patients, typically manifesting as invasive pulmonary aspergillosis (IPA). Adaptive and innate immune cells that respond to A. fumigatus are present in the endogenous repertoire of patients with IPA but are infrequent and cannot be consistently isolated and expanded for adoptive immunotherapy. Therefore, we gene-engineered A. fumigatus-specific chimeric antigen receptor (Af-CAR) T cells and demonstrate their ability to confer antifungal reactivity in preclinical models in vitro and in vivo. We generated a CAR targeting domain AB90-E8 that recognizes a conserved protein antigen in the cell wall of A. fumigatus hyphae. T cells expressing the Af-CAR recognized A. fumigatus strains and clinical isolates and exerted a direct antifungal effect against A. fumigatus hyphae. In particular, CD8+ Af-CAR T cells released perforin and granzyme B and damaged A. fumigatus hyphae. CD8+ and CD4+ Af-CAR T cells produced cytokines that activated macrophages to potentiate the antifungal effect. In an in vivo model of IPA in immunodeficient mice, CD8+ Af-CAR T cells localized to the site of infection, engaged innate immune cells, and reduced fungal burden in the lung. Adoptive transfer of CD8+ Af-CAR T cells conferred greater antifungal efficacy compared to CD4+ Af-CAR T cells and an improvement in overall survival. Together, our study illustrates the potential of gene-engineered T cells to treat aggressive infectious diseases that are difficult to control with conventional antimicrobial therapy and support the clinical development of Af-CAR T cell therapy to treat IPA.


Asunto(s)
Aspergilosis Pulmonar Invasiva , Receptores Quiméricos de Antígenos , Animales , Antifúngicos , Aspergillus fumigatus , Citocinas , Granzimas , Aspergilosis Pulmonar Invasiva/terapia , Ratones , Perforina , Linfocitos T
8.
J Fungi (Basel) ; 8(2)2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-35205926

RESUMEN

Despite available diagnostic tests and recent advances, diagnosis of pulmonary invasive aspergillosis (IPA) remains challenging. We performed a longitudinal case-control pilot study to identify host-specific, novel, and immune-relevant molecular candidates indicating IPA in patients post allogeneic stem cell transplantation (alloSCT). Supported by differential gene expression analysis of six relevant in vitro studies, we conducted RNA sequencing of three alloSCT patients categorized as probable IPA cases and their matched controls without Aspergillus infection (66 samples in total). We additionally performed immunoassay analysis for all patient samples to gain a multi-omics perspective. Profiling analysis suggested LGALS2, MMP1, IL-8, and caspase-3 as potential host molecular candidates indicating IPA in investigated alloSCT patients. MMP1, IL-8, and caspase-3 were evaluated further in alloSCT patients for their potential to differentiate possible IPA cases and patients suffering from COVID-19-associated pulmonary aspergillosis (CAPA) and appropriate control patients. Possible IPA cases showed differences in IL-8 and caspase-3 serum levels compared with matched controls. Furthermore, we observed significant differences in IL-8 and caspase-3 levels among CAPA patients compared with control patients. With our conceptual work, we demonstrate the potential value of considering the human immune response during Aspergillus infection to identify immune-relevant molecular candidates indicating IPA in alloSCT patients. These human host candidates together with already established fungal biomarkers might improve the accuracy of IPA diagnostic tools.

9.
Curr Opin Microbiol ; 58: 153-159, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33190074

RESUMEN

Invasive fungal infections mainly occur in patients suffering from impaired immunity. Their associated mortality is high despite antifungal treatment. Thus, several efforts have been made to translate our knowledge on protective antifungal immunity into clinical application. Since the first attempts with transfusion of neutrophilic granulocytes, these approaches have become more refined and include administration of cytokines to booster antifungal immune responses or selective stimulation of pattern recognition receptors. Recently, novel tools that have proven effective in the treatment of cancer have offered new options for enhancing antifungal immunity. These approaches include checkpoint inhibitors as well as T-cell based therapies, including chimeric antigen receptor T-cells.


Asunto(s)
Antifúngicos/uso terapéutico , Hongos/fisiología , Micosis/inmunología , Animales , Hongos/efectos de los fármacos , Hongos/genética , Humanos , Micosis/tratamiento farmacológico , Micosis/genética , Micosis/microbiología , Receptores de Reconocimiento de Patrones/genética , Receptores de Reconocimiento de Patrones/inmunología
10.
mBio ; 11(2)2020 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-32345638

RESUMEN

The capacity of Candida albicans to reversibly change its morphology between yeast and filamentous stages is crucial for its virulence. Formation of hyphae correlates with the upregulation of genes ALS3 and ECE1, which are involved in pathogenicity processes such as invasion, iron acquisition, and host cell damage. The global repressor Tup1 and its cofactor Nrg1 are considered to be the main antagonists of hyphal development in C. albicans However, our experiments revealed that Tup1, but not Nrg1, was required for full expression of ALS3 and ECE1 In contrast to NRG1, overexpression of TUP1 was found to inhibit neither filamentous growth nor transcription of ALS3 and ECE1 In addition, we identified the transcription factor Ahr1 as being required for full expression of both genes. A hyperactive version of Ahr1 bound directly to the promoters of ALS3 and ECE1 and induced their transcription even in the absence of environmental stimuli. This regulation worked even in the absence of the crucial hyphal growth regulators Cph1 and Efg1 but was dependent on the presence of Tup1. Overall, our results show that Ahr1 and Tup1 are key contributors in the complex regulation of virulence-associated genes in the different C. albicans morphologies.IMPORTANCECandida albicans is a major human fungal pathogen and the leading cause of systemic Candida infections. In recent years, Als3 and Ece1 were identified as important factors for fungal virulence. Transcription of both corresponding genes is closely associated with hyphal growth. Here, we describe how Tup1, normally a global repressor of gene expression as well as of filamentation, and the transcription factor Ahr1 contribute to full expression of ALS3 and ECE1 in C. albicans hyphae. Both regulators are required for high mRNA amounts of the two genes to ensure functional relevant protein synthesis and localization. These observations identified a new aspect of regulation in the complex transcriptional control of virulence-associated genes in C. albicans.


Asunto(s)
Candida albicans/genética , Proteínas Represoras/genética , Candida albicans/crecimiento & desarrollo , Candida albicans/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Genes Fúngicos , Hifa/crecimiento & desarrollo , Estadios del Ciclo de Vida/genética , Virulencia/genética
11.
J Immunol ; 203(11): 2959-2969, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31619536

RESUMEN

The quorum-sensing molecule farnesol is produced by the opportunistic human fungal pathogen Candida albicans Aside from its primary function of blocking the transition from yeast to hyphal morphotype, it has an immunomodulatory role on human dendritic cells (DC) through the alteration of surface markers, cytokine secretion, and their ability to activate T cells. Nonetheless, the molecular mechanisms by which farnesol modulates DC differentiation and maturation remained unknown. In this study, we demonstrate through transcriptional and functional assays that farnesol influences several signaling pathways during DC differentiation and in response to TLR agonists. In particular, farnesol increases the expression of the Ag-presenting glycoprotein CD1d through the nuclear receptors PPARγ and RARα, as well as p38 MAPK. However, the higher expression of CD1d did not confer these DC with an enhanced capacity to activate CD1d-restricted invariant NKT cells. In the presence of farnesol, there is reduced secretion of the Th1-inducing cytokine, IL-12, and increased release of proinflammatory cytokines, as well as the anti-inflammatory cytokine IL-10. These changes are partially independent of nuclear receptor activity but, in the case of TNF-α and IL-10, dependent on NF-κB and MAPK pathways. Interestingly, renewal of the IL-12/IL-10 milieu restores the ability of farnesol-differentiated DC to activate invariant NKT, Th1, and FOXP3+ regulatory T cells. Our results show that farnesol modulates nuclear receptors, NF-κB, and MAPK-signaling pathways, thereby impairing the capacity of DC to activate several T cells subsets and potentially conferring C. albicans, an advantage in overcoming DC-mediated immunity.


Asunto(s)
Candida albicans/efectos de los fármacos , Células Dendríticas/efectos de los fármacos , Farnesol/farmacología , Transducción de Señal/efectos de los fármacos , Candida albicans/química , Candida albicans/inmunología , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/inmunología , Citocinas/biosíntesis , Citocinas/inmunología , Células Dendríticas/inmunología , Farnesol/química , Voluntarios Sanos , Humanos , Percepción de Quorum/efectos de los fármacos , Percepción de Quorum/inmunología , Transducción de Señal/inmunología
12.
Nature ; 532(7597): 64-8, 2016 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-27027296

RESUMEN

Cytolytic proteins and peptide toxins are classical virulence factors of several bacterial pathogens which disrupt epithelial barrier function, damage cells and activate or modulate host immune responses. Such toxins have not been identified previously in human pathogenic fungi. Here we identify the first, to our knowledge, fungal cytolytic peptide toxin in the opportunistic pathogen Candida albicans. This secreted toxin directly damages epithelial membranes, triggers a danger response signalling pathway and activates epithelial immunity. Membrane permeabilization is enhanced by a positive charge at the carboxy terminus of the peptide, which triggers an inward current concomitant with calcium influx. C. albicans strains lacking this toxin do not activate or damage epithelial cells and are avirulent in animal models of mucosal infection. We propose the name 'Candidalysin' for this cytolytic peptide toxin; a newly identified, critical molecular determinant of epithelial damage and host recognition of the clinically important fungus, C. albicans.


Asunto(s)
Candida albicans/metabolismo , Candida albicans/patogenicidad , Citotoxinas/metabolismo , Proteínas Fúngicas/toxicidad , Micotoxinas/toxicidad , Factores de Virulencia/metabolismo , Calcio/metabolismo , Candida albicans/inmunología , Candidiasis/metabolismo , Candidiasis/microbiología , Candidiasis/patología , Permeabilidad de la Membrana Celular/efectos de los fármacos , Citotoxinas/genética , Citotoxinas/toxicidad , Células Epiteliales/efectos de los fármacos , Células Epiteliales/inmunología , Células Epiteliales/patología , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Interacciones Huésped-Patógeno/inmunología , Humanos , Membrana Mucosa/microbiología , Membrana Mucosa/patología , Micotoxinas/genética , Micotoxinas/metabolismo , Transducción de Señal/efectos de los fármacos , Virulencia/efectos de los fármacos , Factores de Virulencia/genética , Factores de Virulencia/toxicidad
13.
Cell Microbiol ; 17(9): 1259-76, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25850517

RESUMEN

Candida albicans and Candida glabrata account for the majority of candidiasis cases worldwide. Although both species are in the same genus, they differ in key virulence attributes. Within this work, live cell imaging was used to examine the dynamics of neutrophil activation after confrontation with either C. albicans or C. glabrata. Analyses revealed higher phagocytosis rates of C. albicans than C. glabrata that resulted in stronger PMN (polymorphonuclear cells) activation by C. albicans. Furthermore, we observed differences in the secretion of chemokines, indicating chemotactic differences in PMN signalling towards recruitment of further immune cells upon confrontation with Candida spp. Supernatants from co-incubations of neutrophils with C. glabrata primarily attracted monocytes and increased the phagocytosis of C. glabrata by monocytes. In contrast, PMN activation by C. albicans resulted in recruitment of more neutrophils. Two complex infection models confirmed distinct targeting of immune cell populations by the two Candida spp.: In a human whole blood infection model, C. glabrata was more effectively taken up by monocytes than C. albicans and histopathological analyses of murine model infections confirmed primarily monocytic infiltrates in C. glabrata kidney infection in contrast to PMN-dominated infiltrates in C. albicans infection. Taken together, our data demonstrate that the human opportunistic fungi C. albicans and C. glabrata are differentially recognized by neutrophils and one outcome of this differential recognition is the preferential uptake of C. glabrata by monocytes.


Asunto(s)
Candida albicans/inmunología , Candida glabrata/inmunología , Candidiasis/inmunología , Monocitos/inmunología , Monocitos/microbiología , Activación Neutrófila , Fagocitosis , Animales , Candidiasis/microbiología , Candidiasis/patología , Células Cultivadas , Citocinas/metabolismo , Modelos Animales de Enfermedad , Histocitoquímica , Humanos , Riñón/microbiología , Riñón/patología , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA