Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
bioRxiv ; 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39257778

RESUMEN

Inorganic polyphosphate, a linear polymer of orthophosphate residues linked by phosphoanhydride bonds, occurs in all three domains of life and plays a diverse and prominent role in metabolism and cellular regulation. While the polyphosphate metabolism and its physiological significance have been well studied in bacteria and eukaryotes including human, there are only few studies in archaea available so far. In Crenarchaeota including members of Sulfolobaceae , the presence of polyphosphate and degradation via exopolyphosphatase has been reported and there is some evidence for a functional role in metal ion chelation, biofilm formation, adhesion and motility, however, the nature of the crenarchaeal polyphosphate kinase is still unknown. Here we used the crenarchaeal model organism Sulfolobus acidocaldarius to study the enzymes involved in polyphosphate synthesis. The two genes annotated as thymidylate kinase ( saci_2019 and saci_2020 ), localized downstream of the exopolyphosphatase, were identified as the missing polyphosphate kinase in S. acidocaldarius ( Sa PPK3). Thymidylate kinase activity was confirmed for Saci_0893. Notably Saci_2020 showed no polyphosphate kinase activity on its own but served as regulatory subunit (rPPK3) and was able to enhance polyphosphate kinase activity of the catalytically active subunit Saci_2019 (cPPK3). Heteromeric polyphosphate kinase activity is reversible and shows a clear preference for polyP-dependent nucleotide kinase activity, i.e. polyP-dependent formation of ATP from ADP (12.4 U/mg) and to a lower extent of GDP to GTP whereas AMP does not serve as substrate. PPK activity in the direction of ATP-dependent polyP synthesis is rather low (0.25 U/mg); GTP was not used as phosphoryl donor. A combined experimental modelling approach using quantitative 31 P NMR allowed to follow the reversible enzyme reaction for both ATP and polyP synthesis. PolyP synthesis was only observed when the ATP/ADP ratio was kept high, using an ATP recycling system. In absence of such a recycling system, all incubations with polyP and PPK would reach an equilibrium state with an ATP/ADP ratio between 3 and 4, independent of the initial conditions. Structural and sequence comparisons as well as phylogenetic analysis reveal that the S. acidocaldarius PPK is a member of a new PPK family, named PPK3, within the thymidylate kinase family of the P-loop kinase superfamily, clearly separated from PPK2. Our studies show that polyP, in addition to its function as phosphate storage, has a special importance for the energy homeostasis of S. acidocaldarius and due to its reversibility serves as energy buffer under low energy charge enabling a quick response to changes in cellular demand.

2.
Blood Adv ; 8(5): 1063-1074, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38060829

RESUMEN

ABSTRACT: Diffuse large B-cell lymphoma (DLBCL) is the most common aggressive lymphoma and constitutes a highly heterogenous disease. Recent comprehensive genomic profiling revealed the identity of numerous molecularly defined DLBCL subtypes, including a cluster which is characterized by recurrent aberrations in MYD88, CD79B, and BCL2, as well as various lesions promoting a block in plasma cell differentiation, including PRDM1, TBL1XR1, and SPIB. Here, we generated a series of autochthonous mouse models to mimic this DLBCL cluster and specifically focused on the impact of Cd79b mutations in this setting. We show that canonical Cd79b immunoreceptor tyrosine-based activation motif (ITAM) mutations do not accelerate Myd88- and BCL2-driven lymphomagenesis. Cd79b-mutant murine DLBCL were enriched for IgM surface expression, reminiscent of their human counterparts. Moreover, Cd79b-mutant lymphomas displayed a robust formation of cytoplasmic signaling complexes involving MYD88, CD79B, MALT1, and BTK. These complexes were disrupted upon pharmacological BTK inhibition. The BTK inhibitor-mediated disruption of these signaling complexes translated into a selective ibrutinib sensitivity of lymphomas harboring combined Cd79b and Myd88 mutations. Altogether, this in-depth cross-species comparison provides a framework for the development of molecularly targeted therapeutic intervention strategies in DLBCL.


Asunto(s)
Adenina , Linfoma de Células B Grandes Difuso , Factor 88 de Diferenciación Mieloide , Piperidinas , Animales , Ratones , Adenina/análogos & derivados , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/patología , Mutación , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética
3.
Front Immunol ; 14: 1313371, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38124747

RESUMEN

Diffuse large B cell lymphoma (DLBCL) is a genetically highly heterogeneous disease. Yet, to date, the vast majority of patients receive standardized frontline chemo-immune-therapy consisting of an anthracycline backbone. Using these regimens, approximately 65% of patients can be cured, whereas the remaining 35% of patients will face relapsed or refractory disease, which, even in the era of CAR-T cells, is difficult to treat. To systematically tackle this high medical need, it is important to design, generate and deploy suitable in vivo model systems that capture disease biology, heterogeneity and drug response. Recently published, large comprehensive genomic characterization studies, which defined molecular sub-groups of DLBCL, provide an ideal framework for the generation of autochthonous mouse models, as well as an ideal benchmark for cell line-derived or patient-derived mouse models of DLBCL. Here we discuss the current state of the art in the field of mouse modelling of human DLBCL, with a particular focus on disease biology and genetically defined molecular vulnerabilities, as well as potential targeting strategies.


Asunto(s)
Modelos Animales de Enfermedad , Linfoma de Células B Grandes Difuso , Animales , Humanos , Ratones , Linfoma de Células B Grandes Difuso/terapia , Linfoma de Células B Grandes Difuso/tratamiento farmacológico
4.
Methods Mol Biol ; 2522: 351-362, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36125762

RESUMEN

Many research areas, e.g., basic research but also applied fields of biotechnology, biomedicine, and diagnostics often suffer from the unavailability of metabolic compounds. This is mostly due to missing easy and efficient synthesis procedures. We herein describe the biocatalytic/enzymatic production of 2-keto-3-deoxy-D-gluconate, an intermediate of central metabolic pathways in all three domains of life and also of bacterial polysaccharides, lipopolysaccharides, and cell wall components. The method is based on the gluconate dehydratase from the hyperthermophilic crenarchaeon Thermoproteus tenax, which can be easily recombinantly overproduced in Escherichia coli and-due to its intrinsic thermostability-rapidly be purified by two precipitation steps. The enzyme completely converts D-gluconate to solely stereochemically pure KDG, taking benefits from the enol-keto-tautomerism of the primary reaction product. The final product can then easily be separated from the protein by ultrafiltration. The simple one-step procedure, which is suitable at least for the lab-scale/gram-scale production of KDG, replaces lengthy multi-step reactions and is easily scalable. This approach also illustrates the great application potential of Archaea with their unusual metabolic pathways and enzymes for the synthesis of added value products.


Asunto(s)
Thermoproteus , Escherichia coli/metabolismo , Gluconatos/metabolismo , Hidroliasas , Lipopolisacáridos/metabolismo , Thermoproteus/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA