Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 39(1): 110599, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35385728

RESUMEN

Astrocytes establish extensive networks via gap junctions that allow each astrocyte to connect indirectly to the vasculature. However, the proportion of astrocytes directly associated with blood vessels is unknown. Here, we quantify structural contacts of cortical astrocytes with the vasculature in vivo. We show that all cortical astrocytes are connected to at least one blood vessel. Moreover, astrocytes contact more vessels in deeper cortical layers where vessel density is known to be higher. Further examination of different brain regions reveals that only the hippocampus, which has the lowest vessel density of all investigated brain regions, harbors single astrocytes with no apparent vascular connection. In summary, we show that almost all gray matter astrocytes have direct contact to the vasculature. In addition to the glial network, a direct vascular access may represent a complementary pathway for metabolite uptake and distribution.


Asunto(s)
Astrocitos , Uniones Comunicantes , Astrocitos/metabolismo , Encéfalo/metabolismo , Uniones Comunicantes/metabolismo , Hipocampo
2.
Cell Rep ; 38(10): 110484, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35263595

RESUMEN

The mechanisms by which astrocytes modulate neural homeostasis, synaptic plasticity, and memory are still poorly explored. Astrocytes form large intercellular networks by gap junction coupling, mainly composed of two gap junction channel proteins, connexin 30 (Cx30) and connexin 43 (Cx43). To circumvent developmental perturbations and to test whether astrocytic gap junction coupling is required for hippocampal neural circuit function and behavior, we generate and study inducible, astrocyte-specific Cx30 and Cx43 double knockouts. Surprisingly, disrupting astrocytic coupling in adult mice results in broad activation of astrocytes and microglia, without obvious signs of pathology. We show that hippocampal CA1 neuron excitability, excitatory synaptic transmission, and long-term potentiation are significantly affected. Moreover, behavioral inspection reveals deficits in sensorimotor performance and a complete lack of spatial learning and memory. Together, our findings establish that astrocytic connexins and an intact astroglial network in the adult brain are vital for neural homeostasis, plasticity, and spatial cognition.


Asunto(s)
Astrocitos , Conexina 43 , Animales , Astrocitos/metabolismo , Conexina 30/metabolismo , Conexina 43/metabolismo , Conexinas/metabolismo , Uniones Comunicantes/metabolismo , Ratones , Plasticidad Neuronal/fisiología , Aprendizaje Espacial
3.
Nat Metab ; 2(2): 179-191, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32694692

RESUMEN

It has been suggested that, in states of arousal, release of noradrenaline and ß-adrenergic signalling affect long-term memory formation by stimulating astrocytic lactate production from glycogen. However, the temporal relationship between cortical activity and cellular lactate fluctuations upon changes in arousal remains to be fully established. Also, the role of ß-adrenergic signalling and brain glycogen metabolism on neural lactate dynamics in vivo is still unknown. Here, we show that an arousal-induced increase in cortical activity triggers lactate release into the extracellular space, and this correlates with a fast and prominent lactate dip in astrocytes. The immediate drop in astrocytic lactate concentration and the parallel increase in extracellular lactate levels underline an activity-dependent lactate release from astrocytes. Moreover, when ß-adrenergic signalling is blocked or the brain is depleted of glycogen, the arousal-evoked cellular lactate surges are significantly reduced. We provide in vivo evidence that cortical activation upon arousal triggers lactate release from astrocytes, a rise in intracellular lactate levels mediated by ß-adrenergic signalling and the mobilization of lactate from glycogen stores.


Asunto(s)
Nivel de Alerta , Astrocitos/metabolismo , Corteza Cerebral/fisiología , Ácido Láctico/metabolismo , Animales , Corteza Cerebral/metabolismo , Electroencefalografía , Ratones , Receptores Adrenérgicos beta/metabolismo , Transducción de Señal
4.
J Neurosci ; 39(12): 2238-2250, 2019 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-30655357

RESUMEN

Gastrin-releasing peptide (GRP) is a spinal itch transmitter expressed by a small population of dorsal horn interneurons (GRP neurons). The contribution of these neurons to spinal itch relay is still only incompletely understood, and their potential contribution to pain-related behaviors remains controversial. Here, we have addressed this question in a series of experiments performed in GRP::cre and GRP::eGFP transgenic male mice. We combined behavioral tests with neuronal circuit tracing, morphology, chemogenetics, optogenetics, and electrophysiology to obtain a more comprehensive picture. We found that GRP neurons form a rather homogeneous population of central cell-like excitatory neurons located in lamina II of the superficial dorsal horn. Multicolor high-resolution confocal microscopy and optogenetic experiments demonstrated that GRP neurons receive direct input from MrgprA3-positive pruritoceptors. Anterograde HSV-based neuronal tracing initiated from GRP neurons revealed ascending polysynaptic projections to distinct areas and nuclei in the brainstem, midbrain, thalamus, and the somatosensory cortex. Spinally restricted ablation of GRP neurons reduced itch-related behaviors to different pruritogens, whereas their chemogenetic excitation elicited itch-like behaviors and facilitated responses to several pruritogens. By contrast, responses to painful stimuli remained unaltered. These data confirm a critical role of dorsal horn GRP neurons in spinal itch transmission but do not support a role in pain.SIGNIFICANCE STATEMENT Dorsal horn gastrin-releasing peptide neurons serve a well-established function in the spinal transmission of pruritic (itch) signals. A potential role in the transmission of nociceptive (pain) signals has remained controversial. Our results provide further support for a critical role of dorsal horn gastrin-releasing peptide neurons in itch circuits, but we failed to find evidence supporting a role in pain.


Asunto(s)
Péptido Liberador de Gastrina/fisiología , Nocicepción/fisiología , Dolor/fisiopatología , Células del Asta Posterior/fisiología , Prurito/fisiopatología , Animales , Modelos Animales de Enfermedad , Péptido Liberador de Gastrina/metabolismo , Interneuronas/metabolismo , Interneuronas/patología , Interneuronas/fisiología , Masculino , Ratones Transgénicos , Dolor/complicaciones , Dolor/patología , Células del Asta Posterior/metabolismo , Células del Asta Posterior/patología , Prurito/complicaciones , Prurito/patología
5.
Cell Metab ; 29(3): 668-680.e4, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30527744

RESUMEN

Neurons have limited intracellular energy stores but experience acute and unpredictable increases in energy demand. To better understand how these cells repeatedly transit from a resting to active state without undergoing metabolic stress, we monitored their early metabolic response to neurotransmission using ion-sensitive probes and FRET sensors in vitro and in vivo. A short theta burst triggered immediate Na+ entry, followed by a delayed stimulation of the Na+/K+ ATPase pump. Unexpectedly, cytosolic ATP and ADP levels were unperturbed across a wide range of physiological workloads, revealing strict flux coupling between the Na+ pump and mitochondria. Metabolic flux measurements revealed a "priming" phase of mitochondrial energization by pyruvate, whereas glucose consumption coincided with delayed Na+ pump stimulation. Experiments revealed that the Na+ pump plays a permissive role for mitochondrial ATP production and glycolysis. We conclude that neuronal energy homeostasis is not mediated by adenine nucleotides or by Ca2+, but by a mechanism commanded by the Na+ pump.


Asunto(s)
Adenosina Trifosfato/metabolismo , Astrocitos/metabolismo , Mitocondrias/metabolismo , Neuronas/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Animales , Astrocitos/citología , Metabolismo Energético , Glucosa/metabolismo , Glucólisis , Homeostasis , Ratones Endogámicos C57BL , Neuronas/citología
6.
Neuron ; 85(6): 1289-304, 2015 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-25789756

RESUMEN

The gate control theory of pain proposes that inhibitory neurons of the spinal dorsal horn exert critical control over the relay of nociceptive signals to higher brain areas. Here we investigated how the glycinergic subpopulation of these neurons contributes to modality-specific pain and itch processing. We generated a GlyT2::Cre transgenic mouse line suitable for virus-mediated retrograde tracing studies and for spatially precise ablation, silencing, and activation of glycinergic neurons. We found that these neurons receive sensory input mainly from myelinated primary sensory neurons and that their local toxin-mediated ablation or silencing induces localized mechanical, heat, and cold hyperalgesia; spontaneous flinching behavior; and excessive licking and biting directed toward the corresponding skin territory. Conversely, local pharmacogenetic activation of the same neurons alleviated neuropathic hyperalgesia and chloroquine- and histamine-induced itch. These results establish glycinergic neurons of the spinal dorsal horn as key elements of an inhibitory pain and itch control circuit.


Asunto(s)
Red Nerviosa/fisiopatología , Neuronas/citología , Dolor/fisiopatología , Prurito/fisiopatología , Asta Dorsal de la Médula Espinal/citología , Animales , Modelos Animales de Enfermedad , Glicina/metabolismo , Hiperalgesia/patología , Ratones , Ratones Transgénicos , Red Nerviosa/metabolismo , Red Nerviosa/patología , Enfermedades del Sistema Nervioso Periférico/genética , Enfermedades del Sistema Nervioso Periférico/patología , Enfermedades del Sistema Nervioso Periférico/fisiopatología , Células del Asta Posterior/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA