Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
Mol Ther ; 32(10): 3372-3401, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39205389

RESUMEN

In Alzheimer's disease (AD), amyloid ß (Aß)-triggered cleavage of TrkB-FL impairs brain-derived neurotrophic factor (BDNF) signaling, thereby compromising neuronal survival, differentiation, and synaptic transmission and plasticity. Using cerebrospinal fluid and postmortem human brain samples, we show that TrkB-FL cleavage occurs from the early stages of the disease and increases as a function of pathology severity. To explore the therapeutic potential of this disease mechanism, we designed small TAT-fused peptides and screened their ability to prevent TrkB-FL receptor cleavage. Among these, a TAT-TrkB peptide with a lysine-lysine linker prevented TrkB-FL cleavage both in vitro and in vivo and rescued synaptic deficits induced by oligomeric Aß in hippocampal slices. Furthermore, this TAT-TrkB peptide improved the cognitive performance, ameliorated synaptic plasticity deficits and prevented Tau pathology progression in vivo in the 5XFAD mouse model of AD. No evidence of liver or kidney toxicity was found. We provide proof-of-concept evidence for the efficacy and safety of this therapeutic strategy and anticipate that this TAT-TrkB peptide has the potential to be a disease-modifying drug that can prevent and/or reverse cognitive deficits in patients with AD.


Asunto(s)
Enfermedad de Alzheimer , Factor Neurotrófico Derivado del Encéfalo , Péptidos , Receptor trkB , Animales , Femenino , Humanos , Masculino , Ratones , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Glicoproteínas de Membrana/metabolismo , Ratones Transgénicos , Plasticidad Neuronal/efectos de los fármacos , Proteolisis/efectos de los fármacos , Receptor trkB/metabolismo , Sinapsis/metabolismo , Sinapsis/efectos de los fármacos , Péptidos/farmacología
2.
Neurology ; 103(4): e209654, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39047214

RESUMEN

OBJECTIVES: Current epidemiologic data of early-onset dementia (EOD), characterized by the onset of the disease before the age of 65, are notably scarce. METHODS: We evaluated the incidence (from January 2010 to December 2021) and prevalence (on December 31, 2021) of EOD and its subtypes in 2 defined areas in Finland. All visits at the dementia outpatient clinics were manually retrospectively reviewed and reassessed (N = 12,490). RESULTS: In the population aged ≤65 years, crude incidence of EOD was 12.3/100,000 persons at risk/year based on 794 new cases from January 1, 2010, to December 31, 2021. Incidence rates for EOD were 20.5 and 33.7 per 100,000 person years in the age group of 30-64 and 45-64 years, respectively. The prevalence of EOD was 110.4 in the age group of 30-64 years and 190.3 in the age group 45-64. Alzheimer disease (AD) (48.2%) and behavioral variant frontotemporal dementia (12.7%) were the most frequent subtypes. The incidence of AD increased during the follow-up, whereas incidence of other forms of EOD remained stable. DISCUSSION: We found higher incidence rates of EOD than previously reported. Unlike other forms of EOD, the incidence of early-onset AD seems to be increasing.


Asunto(s)
Edad de Inicio , Demencia , Humanos , Finlandia/epidemiología , Persona de Mediana Edad , Incidencia , Femenino , Masculino , Prevalencia , Adulto , Demencia/epidemiología , Estudios Retrospectivos , Enfermedad de Alzheimer/epidemiología
3.
Brain Behav Immun ; 118: 380-397, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38485064

RESUMEN

Autoantibodies directed against the GluA3 subunit (anti-GluA3 hIgGs) of AMPA receptors have been identified in 20%-25% of patients with frontotemporal lobar degeneration (FTLD). Data from patients and in vitro/ex vivo pre-clinical studies indicate that anti-GluA3 hIgGs negatively affect glutamatergic neurotransmission. However, whether and how the chronic presence of anti-GluA3 hIgGs triggers synaptic dysfunctions and the appearance of FTLD-related neuropathological and behavioural signature has not been clarified yet. To address this question, we developed and characterized a pre-clinical mouse model of passive immunization with anti-GluA3 hIgGs purified from patients. In parallel, we clinically compared FTLD patients who were positive for anti-GluA3 hIgGs to negative ones. Clinical data showed that the presence of anti-GluA3 hIgGs defined a subgroup of patients with distinct clinical features. In the preclinical model, anti-GluA3 hIgGs administration led to accumulation of phospho-tau in the postsynaptic fraction and dendritic spine loss in the prefrontal cortex. Remarkably, the preclinical model exhibited behavioural disturbances that mostly reflected the deficits proper of patients positive for anti-GluA3 hIgGs. Of note, anti-GluA3 hIgGs-mediated alterations were rescued in the animal model by enhancing glutamatergic neurotransmission with a positive allosteric modulator of AMPA receptors. Overall, our study clarified the contribution of anti-GluA3 autoantibodies to central nervous system symptoms and pathology and identified a specific subgroup of FTLD patients. Our findings will be instrumental in the development of a therapeutic personalised medicine strategy for patients positive for anti-GluA3 hIgGs.


Asunto(s)
Autoanticuerpos , Degeneración Lobar Frontotemporal , Animales , Humanos , Ratones , Autoanticuerpos/metabolismo , Demencia Frontotemporal , Degeneración Lobar Frontotemporal/metabolismo , Degeneración Lobar Frontotemporal/patología , Receptores AMPA , Transmisión Sináptica , Proteínas tau/metabolismo
4.
Brain Stimul ; 16(6): 1666-1676, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37977335

RESUMEN

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a progressive disease for which no curative treatment is currently available. OBJECTIVE: This study aimed to investigate whether cortico-spinal transcranial direct current stimulation (tDCS) could mitigate symptoms in ALS patients via a randomized, double-blind, sham-controlled trial, followed by an open-label phase. METHODS: Thirty-one participants were randomized into two groups for the initial controlled phase. At baseline (T0), Group 1 received placebo stimulation (sham tDCS), while Group 2 received cortico-spinal stimulation (real tDCS) for five days/week for two weeks (T1), with an 8-week (T2) follow-up (randomized, double-blind, sham-controlled phase). At the 24-week follow-up (T3), all participants (Groups 1 and 2) received a second treatment of anodal bilateral motor cortex and cathodal spinal stimulation (real tDCS) for five days/week for two weeks (T4). Follow-up evaluations were performed at 32-weeks (T5) and 48-weeks (T6) (open-label phase). At each time point, clinical assessment, blood sampling, and intracortical connectivity measures using transcranial magnetic stimulation (TMS) were evaluated. Additionally, we evaluated survival rates. RESULTS: Compared to sham stimulation, cortico-spinal tDCS significantly improved global strength, caregiver burden, and quality of life scores, which correlated with the restoration of intracortical connectivity measures. Serum neurofilament light levels decreased among patients who underwent real tDCS but not in those receiving sham tDCS. The number of completed 2-week tDCS treatments significantly influenced patient survival. CONCLUSIONS: Cortico-spinal tDCS may represent a promising therapeutic and rehabilitative approach for patients with ALS. Further larger-scale studies are necessary to evaluate whether tDCS could potentially impact patient survival. CLINICAL TRIAL REGISTRATION: NCT04293484.


Asunto(s)
Esclerosis Amiotrófica Lateral , Estimulación Transcraneal de Corriente Directa , Humanos , Esclerosis Amiotrófica Lateral/terapia , Calidad de Vida , Estimulación Magnética Transcraneal , Método Doble Ciego
5.
J Alzheimers Dis ; 95(2): 677-685, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37574738

RESUMEN

BACKGROUND: Due to the significant presence of neuropsychiatric symptoms in patients with frontotemporal dementia (FTD) spectrum disorders, psychiatric misdiagnoses, diagnostic delay, and use of psychiatric treatments are common prior to the FTD diagnosis. Furthermore, treatment of diagnosed FTD patients mainly relies on off-label psychopharmacological approaches. Currently, limited real-world data are available regarding the actual use of psychopharmacological medications in FTD. OBJECTIVE: To evaluate psychopharmacological medication use at the time of FTD diagnosis. METHODS: Psychopharmacological medication use was evaluated in a Finnish FTD cohort containing 222 FTD patients, including the major clinical disease phenotypes (behavioral, language, and motor variants) and genetic patients carrying the C9orf72 repeat expansion. A cohort of 214 Alzheimer's disease (AD) patients was used as a neurodegenerative disease reference group. RESULTS: Active use of psychopharmacological medications at the time of diagnosis was significantly more common in FTD compared to AD, especially in the case of antidepressants (26.1% versus 15.0%, OR = 2.01, p = 0.008), antipsychotics (23.9% versus 9.3%, OR = 3.15, p < 0.001), and mood-stabilizers (6.3% versus 1.9%, OR = 2.93, p = 0.085; not statistically significant), whereas the use of cholinesterase inhibitors or memantine was nearly nonexistent in FTD patients. Female gender and behavioral variant of FTD phenotype alongside with depressive and psychotic symptoms were the most prominent factors associating with the use of these medications among the FTD spectrum patients. CONCLUSION: Use of off-label psychopharmacological medication and polypharmacy is substantially common at the time of FTD diagnosis. This likely reflects the challenges in using symptom-driven treatment approaches, especially prior to the eventual diagnosis.


Asunto(s)
Enfermedad de Alzheimer , Demencia Frontotemporal , Enfermedades Neurodegenerativas , Humanos , Femenino , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Demencia Frontotemporal/diagnóstico , Demencia Frontotemporal/tratamiento farmacológico , Demencia Frontotemporal/genética , Enfermedades Neurodegenerativas/tratamiento farmacológico , Diagnóstico Tardío , Memantina/uso terapéutico
6.
Neurogenetics ; 24(4): 291-301, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37606798

RESUMEN

Charcot-Marie-Tooth disease (CMT) is a heterogeneous set of hereditary neuropathies whose genetic causes are not fully understood. Here, we characterize three previously unknown variants in PMP22 and assess their effect on the recently described potential CMT biomarkers' growth differentiation factor 15 (GDF15) and neurofilament light (NFL): first, a heterozygous PMP22 c.178G > A (p.Glu60Lys) in one mother-son pair with adult-onset mild axonal neuropathy. The variant led to abnormal splicing, confirmed in fibroblasts by reverse transcription PCR. Second, a de novo PMP22 c.35A > C (p.His12Pro), and third, a heterozygous 3.2 kb deletion predicting loss of exon 4. The latter two had severe CMT and ultrasonography showing strong nerve enlargement similar to a previous case of exon 4 loss due to a larger deletion. We further studied patients with PMP22 duplication (CMT1A) finding slightly elevated plasma NFL, as measured by the single molecule array immunoassay (SIMOA). In addition, plasma GDF15, as measured by ELISA, correlated with symptom severity for CMT1A. However, in the severely affected individuals with PMP22 exon 4 deletion or p.His12Pro, these biomarkers were within the range of variability of CMT1A and controls, although they had more pronounced nerve hypertrophy. This study adds p.His12Pro and confirms PMP22 exon 4 deletion as causes of severe CMT, whereas the previously unknown splice variant p.Glu60Lys leads to mild axonal neuropathy. Our results suggest that GDF15 and NFL do not distinguish CMT1A from advanced hypertrophic neuropathy caused by rare PMP22 variants.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Neuropatía Hereditaria Motora y Sensorial , Adulto , Humanos , Factor 15 de Diferenciación de Crecimiento/genética , Filamentos Intermedios , Proteínas de la Mielina/genética , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/diagnóstico , Biomarcadores
7.
Cells ; 12(10)2023 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-37408256

RESUMEN

Organotypic slice culture models surpass conventional in vitro methods in many aspects. They retain all tissue-resident cell types and tissue hierarchy. For studying multifactorial neurodegenerative diseases such as tauopathies, it is crucial to maintain cellular crosstalk in an accessible model system. Organotypic slice cultures from postnatal tissue are an established research tool, but adult tissue-originating systems are missing, yet necessary, as young tissue-originating systems cannot fully model adult or senescent brains. To establish an adult-originating slice culture system for tauopathy studies, we made hippocampal slice cultures from transgenic 5-month-old hTau.P301S mice. In addition to the comprehensive characterization, we set out to test a novel antibody for hyperphosphorylated TAU (pTAU, B6), with and without a nanomaterial conjugate. Adult hippocampal slices retained intact hippocampal layers, astrocytes, and functional microglia during culturing. The P301S-slice neurons expressed pTAU throughout the granular cell layer and secreted pTAU to the culture medium, whereas the wildtype slices did not. Additionally, cytotoxicity and inflammation-related determinants were increased in the P301S slices. Using fluorescence microscopy, we showed target engagement of the B6 antibody to pTAU-expressing neurons and a subtle but consistent decrease in intracellular pTAU with the B6 treatment. Collectively, this tauopathy slice culture model enables measuring the extracellular and intracellular effects of different mechanistic or therapeutic manipulations on TAU pathology in adult tissue without the hindrance of the blood-brain barrier.


Asunto(s)
Tauopatías , Ratones , Animales , Tauopatías/metabolismo , Ratones Transgénicos , Neuronas/metabolismo , Encéfalo/metabolismo , Hipocampo/metabolismo
8.
J Alzheimers Dis ; 93(2): 395-401, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37038815

RESUMEN

Frontotemporal dementia (FTD) can manifest as diverse clinical phenotypes and is frequently caused by mutations in different genes, complicating differential diagnosis. This underlines the urgent need for valid biomarkers. Altered lysosomal and immune functions proposedly contribute to FTD pathogenesis. Cathepsins, including cathepsin S, are enzymes preferentially expressed in brain in microglia, which influence lysosomal and immune function. Here, we examined whether alterations in serum cathepsin S levels associate with specific clinical, genetic, or neuropathological FTD subgroups, but no such alterations were observed. However, further research on other lysosomal proteins may reveal new biologically relevant biomarkers in FTD.


Asunto(s)
Demencia Frontotemporal , Humanos , Demencia Frontotemporal/diagnóstico , Proteínas tau/metabolismo , Encéfalo/patología , Mutación/genética , Biomarcadores , Catepsinas/genética , Catepsinas/metabolismo , Proteína C9orf72/genética
9.
Neurobiol Dis ; 182: 106140, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37120095

RESUMEN

The rare A673T variant was the first variant found within the amyloid precursor protein (APP) gene conferring protection against Alzheimer's disease (AD). Thereafter, different studies have discovered that the carriers of the APP A673T variant show reduced levels of amyloid beta (Aß) in the plasma and better cognitive performance at high age. Here, we analyzed cerebrospinal fluid (CSF) and plasma of APP A673T carriers and control individuals using a mass spectrometry-based proteomics approach to identify differentially regulated targets in an unbiased manner. Furthermore, the APP A673T variant was introduced into 2D and 3D neuronal cell culture models together with the pathogenic APP Swedish and London mutations. Consequently, we now report for the first time the protective effects of the APP A673T variant against AD-related alterations in the CSF, plasma, and brain biopsy samples from the frontal cortex. The CSF levels of soluble APPß (sAPPß) and Aß42 were significantly decreased on average 9-26% among three APP A673T carriers as compared to three well-matched controls not carrying the protective variant. Consistent with these CSF findings, immunohistochemical assessment of cortical biopsy samples from the same APP A673T carriers did not reveal Aß, phospho-tau, or p62 pathologies. We identified differentially regulated targets involved in protein phosphorylation, inflammation, and mitochondrial function in the CSF and plasma samples of APP A673T carriers. Some of the identified targets showed inverse levels in AD brain tissue with respect to increased AD-associated neurofibrillary pathology. In 2D and 3D neuronal cell culture models expressing APP with the Swedish and London mutations, the introduction of the APP A673T variant resulted in lower sAPPß levels. Concomitantly, the levels of sAPPα were increased, while decreased levels of CTFß and Aß42 were detected in some of these models. Our findings emphasize the important role of APP-derived peptides in the pathogenesis of AD and demonstrate the effectiveness of the protective APP A673T variant to shift APP processing towards the non-amyloidogenic pathway in vitro even in the presence of two pathogenic mutations.


Asunto(s)
Enfermedad de Alzheimer , Precursor de Proteína beta-Amiloide , Humanos , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Enfermedad de Alzheimer/líquido cefalorraquídeo , Péptidos beta-Amiloides/metabolismo , Heterocigoto , Encéfalo/metabolismo
10.
J Alzheimers Dis ; 91(1): 225-232, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36373318

RESUMEN

BACKGROUND: Currently, there are few studies considering possible modifiable risk factors of frontotemporal dementia (FTD). OBJECTIVE: In this retrospective case-control study, we evaluated whether a history of traumatic brain injury (TBI) associates with a diagnosis of FTD or modulates the clinical phenotype or onset age in FTD patients. METHODS: We compared the prevalence of prior TBI between individuals with FTD (N = 218) and age and sex-matched AD patients (N = 214) or healthy controls (HC; N = 100). Based on the patient records, an individual was categorized to the TBI+ group if they were reported to have suffered from TBI during lifetime. The possible associations of TBI with age of onset and disease duration were also evaluated in the whole FTD patient group or separately in the sporadic and genetic FTD groups. RESULTS: The prevalence of previous TBI was the highest in the FTD group (19.3%) when compared to the AD group (13.1%, p = 0.050) or HC group (12%, p = 0.108, not significant). Preceding TBI was more often associated with the sporadic FTD cases than the C9orf72 repeat expansion-carrying FTD cases (p = 0.003). Furthermore, comparison of the TBI+ and TBI- FTD groups indicated that previous TBI was associated with an earlier onset age in the FTD patients (B = 3.066, p = 0.010). CONCLUSION: A preceding TBI associates especially with sporadic FTD and with earlier onset of symptoms. The results of this study suggest that TBI may be a triggering factor for the neurodegenerative processes in FTD. However, understanding the precise underlying mechanisms still needs further studies.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Demencia Frontotemporal , Humanos , Demencia Frontotemporal/epidemiología , Demencia Frontotemporal/genética , Demencia Frontotemporal/diagnóstico , Estudios Retrospectivos , Estudios de Casos y Controles , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/epidemiología , Proteína C9orf72/genética
12.
Alzheimers Res Ther ; 14(1): 151, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-36217158

RESUMEN

BACKGROUND: Frontotemporal dementia (FTD) covers a spectrum of neurodegenerative disorders with various clinical and neuropathological subtypes. The two major pathological proteins accumulating in the brains of FTD patients, depending on their genetic background, are TDP-43 and tau. We aimed to evaluate whether total TDP-43 levels measured from the serum associate with the genotype or clinical phenotype of the FTD patients and whether serum TDP-43 provides prognostic or diagnostic value in the FTD spectrum disorders. METHODS: The study cohort included 254 participants with a clinical diagnosis of FTD (including all major genotypes and clinical phenotypes) and 105 cognitively healthy controls. Serum total TDP-43 levels measured with a single-molecule array (Simoa) were compared within the FTD group according to the genotype, clinical phenotype, and predicted neuropathological subtype of the patients. We also evaluated the associations between the TDP-43 levels and disease severity or survival in FTD. RESULTS: Total TDP-43 levels in the serum were significantly lower in the FTD group as compared to the healthy control group (275.3 pg/mL vs. 361.8 pg/mL, B = 0.181, 95%CI = 0.014-0.348, p = 0.034). The lowest TDP-43 levels were observed in the subgroup of FTD patients harboring predicted TDP-43 brain pathology (FTD-TDP, 241.4 pg/mL). The low levels in the FTD-TDP group were especially driven by C9orf72 repeat expansion carriers (169.2 pg/mL) and FTD patients with concomitant motoneuron disease (FTD-MND, 113.3 pg/mL), whereas GRN mutation carriers did not show decreased TDP-43 levels (328.6 pg/mL). Serum TDP-43 levels showed no correlation with disease severity nor progression in FTD. CONCLUSIONS: Our results indicate that the total levels of TDP-43 in the serum are decreased especially in FTD patients with the C9orf72 repeat expansion or FTD-MND phenotype, both subtypes strongly associated with TDP-43 type B brain pathology. Serum-based measurement of TDP-43 could represent a useful tool in indicating C9orf72 repeat expansion and FTD-MND-related TDP-43 neuropathology for future diagnostics and intervention studies.


Asunto(s)
Proteína C9orf72 , Demencia Frontotemporal , Enfermedad de la Neurona Motora , Proteína C9orf72/genética , Expansión de las Repeticiones de ADN , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Demencia Frontotemporal/patología , Humanos , Enfermedad de la Neurona Motora/genética , Enfermedad de la Neurona Motora/metabolismo , Enfermedad de la Neurona Motora/patología , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Fenotipo
13.
Ann Clin Transl Neurol ; 9(8): 1195-1205, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35767471

RESUMEN

OBJECTIVE: Only a few studies have evaluated modifiable risk factors for frontotemporal dementia (FTD). Here, we evaluated several modifiable factors and their association with disease phenotype, genotype, and prognosis in a large study population including Finnish and Italian patients with FTD and control groups. METHODS: In this case-control study, we compared the presence of several cardiovascular and other lifestyle-related diseases and education between Finnish and Italian patients with familial (n = 376) and sporadic (n = 654) FTD, between different phenotypes of FTD, and between a subgroup of Finnish FTD patients (n = 221) and matched Finnish patients with Alzheimer's disease (AD) (n = 214) and cognitively healthy controls (HC) (n = 100). RESULTS: Patients with sporadic FTD were less educated (p = 0.042, B = -0.560, 95% CI -1.101 to -0.019) and had more heart diseases (p < 0.001, OR = 2.265, 95% CI 1.502-3.417) compared to patients with familial FTD. Finnish FTD patients were less educated (p = 0.032, B = 0.755, 95% CI 0.064-1.466) compared with AD patients. The Finnish FTD group showed lower prevalence of hypertension than the HC group (p = 0.003, OR = 2.162, 95% CI 1.304-3.583) and lower prevalence of hypercholesterolemia than in the HC group (p < 0.001, OR = 2.648, 95%CI 1.548-4.531) or in the AD group (p < 0.001, OR = 1.995, 95% CI 1.333-2.986). Within the FTD group, clinical phenotypes also differed regarding education and lifestyle-related factors. INTERPRETATION: Our study suggests distinct profiles of several modifiable factors in the FTD group depending on the phenotype and familial inheritance history and that especially sporadic FTD may be associated with modifiable risk factors.


Asunto(s)
Enfermedad de Alzheimer , Demencia Frontotemporal , Enfermedad de Pick , Enfermedad de Alzheimer/epidemiología , Enfermedad de Alzheimer/genética , Estudios de Casos y Controles , Demencia Frontotemporal/epidemiología , Demencia Frontotemporal/genética , Humanos , Factores de Riesgo
15.
J Neurol ; 269(8): 4488-4497, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35377014

RESUMEN

Extrapyramidal (EP) symptoms are a known feature in a subpopulation of patients with behavioral variant frontotemporal dementia (bvFTD). Concomitant EP symptoms with FTD-like neuropsychiatric symptoms are also core features in progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD). This complicates the early diagnosis of these disorders. Our retrospective register study aimed to discover imaging (MRI and FDG-PET) biomarkers to differentiate PSP, CBD, and bvFTD patients with extrapyramidal symptoms (EP +) from bvFTD patients without EP symptoms (EP-). The records of 2751 patients were screened for the diagnoses and presence of EP symptoms. A total of 222 patients were submitted to imaging analysis and applicable imaging data were recovered from 139 patients. Neuroimaging data were analyzed using Freesurfer software. In the whole cohort, EP + patients showed lower volumes of gray matter compared to EP- patients in the putamen (p = 0.002), bilateral globus pallidum (p = 0.002, p = 0.042), ventral diencephalon (p = 0.002) and brain stem (p < 0.001). In the bvFTD subgroup, there was volumetric difference between EP + and EP- patients in the brain stem. FDG-PET scans in the bvFTD patient subgroup showed that EP + patients had comparative hypometabolism of the superior cerebellar peduncle (SCP) and the frontal lobes. We discovered that EP symptoms are linked to brainstem atrophy in bvFTD patients and the whole cohort. Also, evident hypometabolism in the SCP of bvFTD EP + patients was detected as compared to bvFTD EP- patients. This could indicate that the EP symptoms in these diseases have a more caudal origin in the brainstem than in Parkinson's disease.


Asunto(s)
Enfermedades de los Ganglios Basales , Demencia Frontotemporal , Atrofia , Enfermedades de los Ganglios Basales/diagnóstico por imagen , Tronco Encefálico , Fluorodesoxiglucosa F18 , Demencia Frontotemporal/complicaciones , Demencia Frontotemporal/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Estudios Retrospectivos
16.
Neurobiol Dis ; 162: 105584, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34915153

RESUMEN

Frontotemporal lobar degeneration (FTLD) comprises a heterogenous group of progressive neurodegenerative syndromes. To date, no validated biomarkers or effective disease-modifying therapies exist for the different clinical or genetic subtypes of FTLD. The most common genetic cause underlying FTLD and amyotrophic lateral sclerosis (ALS) is a hexanucleotide repeat expansion in the C9orf72 gene (C9-HRE). FTLD is accompanied by changes in several neurotransmitter systems, including the glutamatergic, GABAergic, dopaminergic, and serotonergic systems and many clinical symptoms can be explained by disturbances in these systems. Here, we aimed to elucidate the effects of the C9-HRE on synaptic function, molecular composition of synapses, and dendritic spine morphology. We overexpressed the pathological C9-HRE in cultured E18 mouse primary hippocampal neurons and characterized the pathological, morphological, and functional changes by biochemical methods, confocal microscopy, and live cell calcium imaging. The C9-HRE-expressing neurons were confirmed to display the pathological RNA foci and DPR proteins. C9-HRE expression led to significant changes in dendritic spine morphologies, as indicated by decreased number of mushroom-type spines and increased number of stubby and thin spines, as well as diminished neuronal branching. These morphological changes were accompanied by concomitantly enhanced susceptibility of the neurons to glutamate-induced excitotoxicity as well as augmented and prolonged responses to excitatory stimuli by glutamate and depolarizing potassium chloride as compared to control neurons. Mechanistically, the hyperexcitation phenotype in the C9-HRE-expressing neurons was found to be underlain by increased activity of extrasynaptic GluN2B-containing N-methyl-d-aspartate (NMDA) receptors. Our results are in accordance with the idea suggesting that C9-HRE is associated with enhanced excitotoxicity and synaptic dysfunction. Thus, therapeutic interventions targeted to alleviate synaptic disturbances might offer efficient avenues for the treatment of patients with C9-HRE-associated FTLD.


Asunto(s)
Esclerosis Amiotrófica Lateral , Degeneración Lobar Frontotemporal , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Expansión de las Repeticiones de ADN , Espinas Dendríticas/metabolismo , Degeneración Lobar Frontotemporal/metabolismo , Humanos , Ratones , Neuronas/metabolismo
17.
Neurobiol Dis ; 163: 105603, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34954322

RESUMEN

Alzheimer's disease (AD) is the most common form of dementia, which is neuropathologically characterized by extracellular senile plaques containing amyloid-ß and intracellular neurofibrillary tangles composed of hyperphosphorylated tau protein. Previous studies have suggested a role for septin (SEPTIN) protein family members in AD-associated cellular processes. Here, we elucidated the potential role of presynaptic SEPTIN5 protein and its post-translational modifications in the molecular pathogenesis of AD. RNA and protein levels of SEPTIN5 showed a significant decrease in human temporal cortex in relation to the increasing degree of AD-related neurofibrillary pathology. Conversely, an increase in the phosphorylation of the functionally relevant SEPTIN5 phosphorylation site S327 was observed already in the early phases of AD-related neurofibrillary pathology, but not in the cerebrospinal fluid of individuals fulfilling the criteria for mild cognitive impairment due to AD. According to the mechanistic assessments, a link between SEPTIN5 S327 phosphorylation status and the effects of SEPTIN5 on amyloid precursor protein processing and markers of autophagy was discovered in mouse primary cortical neurons transduced with lentiviral constructs encoding wild type SEPTIN5 or SEPTIN5 phosphomutants (S327A and S327D). C57BL/6 J mice intrahippocampally injected with lentiviral wild type SEPTIN5 or phosphomutant constructs did not show changes in cognitive performance after five to six weeks from the start of injections. However, SEPTIN5 S327 phosphorylation status was linked to changes in short-term synaptic plasticity ex vivo at the CA3-CA1 synapse. Collectively, these data suggest that SEPTIN5 and its S327 phosphorylation status play a pivotal role in several cellular processes relevant for AD.


Asunto(s)
Hipocampo/metabolismo , Ovillos Neurofibrilares/metabolismo , Septinas/metabolismo , Sinapsis/metabolismo , Animales , Autofagia/fisiología , Modelos Animales de Enfermedad , Hipocampo/patología , Humanos , Ratones , Ovillos Neurofibrilares/patología , Neuronas/metabolismo , Neuronas/patología , Fosforilación , Sinapsis/patología
18.
Hum Mol Genet ; 31(6): 958-974, 2022 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-34635923

RESUMEN

Mutations in mitochondrial DNA encoded subunit of ATP synthase, MT-ATP6, are frequent causes of neurological mitochondrial diseases with a range of phenotypes from Leigh syndrome and NARP to ataxias and neuropathies. Here we investigated the functional consequences of an unusual heteroplasmic truncating mutation m.9154C>T in MT-ATP6, which caused peripheral neuropathy, ataxia and IgA nephropathy. ATP synthase not only generates cellular ATP, but its dimerization is required for mitochondrial cristae formation. Accordingly, the MT-ATP6 truncating mutation impaired the assembly of ATP synthase and disrupted cristae morphology, supporting our molecular dynamics simulations that predicted destabilized a/c subunit subcomplex. Next, we modeled the effects of the truncating mutation using patient-specific induced pluripotent stem cells. Unexpectedly, depending on mutation heteroplasmy level, the truncation showed multiple threshold effects in cellular reprogramming, neurogenesis and in metabolism of mature motor neurons (MN). Interestingly, MN differentiation beyond progenitor stage was impaired by Notch hyperactivation in the MT-ATP6 mutant, but not by rotenone-induced inhibition of mitochondrial respiration, suggesting that altered mitochondrial morphology contributed to Notch hyperactivation. Finally, we also identified a lower mutation threshold for a metabolic shift in mature MN, affecting lactate utilization, which may be relevant for understanding the mechanisms of mitochondrial involvement in peripheral motor neuropathies. These results establish a critical and disease-relevant role for ATP synthase in human cell fate decisions and neuronal metabolism.


Asunto(s)
Heteroplasmia , ATPasas de Translocación de Protón Mitocondriales , Adenosina Trifosfato , Ataxia/genética , ADN Mitocondrial/genética , Humanos , ATPasas de Translocación de Protón Mitocondriales/genética , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Neuronas Motoras/metabolismo , Mutación
19.
Mol Psychiatry ; 27(3): 1300-1309, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34799692

RESUMEN

Frontotemporal lobar degeneration (FTLD) comprises a heterogenous group of fatal neurodegenerative diseases and, to date, no validated diagnostic or prognostic biomarkers or effective disease-modifying therapies exist for the different clinical or genetic subtypes of FTLD. Current treatment strategies rely on the off-label use of medications for symptomatic treatment. Changes in several neurotransmitter systems including the glutamatergic, GABAergic, dopaminergic, and serotonergic systems have been reported in FTLD spectrum disease patients. Many FTLD-related clinical and neuropsychiatric symptoms such as aggressive and compulsive behaviour, agitation, as well as altered eating habits and hyperorality can be explained by disturbances in these neurotransmitter systems, suggesting that their targeting might possibly offer new therapeutic options for treating patients with FTLD. This review summarizes the present knowledge on neurotransmitter system deficits and synaptic dysfunction in model systems and patients harbouring the most common genetic causes of FTLD, the hexanucleotide repeat expansion in C9orf72 and mutations in the granulin (GRN) and microtubule-associated protein tau (MAPT) genes. We also describe the current pharmacological treatment options for FLTD that target different neurotransmitter systems.


Asunto(s)
Demencia Frontotemporal , Degeneración Lobar Frontotemporal , Enfermedades Neurodegenerativas , Proteína C9orf72/genética , Degeneración Lobar Frontotemporal/genética , Degeneración Lobar Frontotemporal/terapia , Humanos , Mutación , Neurotransmisores , Proteínas tau/genética
20.
Mult Scler Relat Disord ; 56: 103280, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34627002

RESUMEN

OBJECTIVE: We aimed to investigate serum glial fibrillary acidic protein (GFAP) and serum neurofilament light chain (NfL) levels as potential discriminative biomarkers between benign relapsing-remitting multiple sclerosis (BRRMS) and aggressive relapsing-remitting MS (ARRMS). METHODS: Serum GFAP and NfL levels were analyzed in patients with BRRMS (n = 34), ARRMS (n = 29), and healthy controls (n = 14) by using Single Molecule Array (Simoa). Patients with ARRMS had been treated with highly effective disease-modifying treatments (DMT) (fingolimod or natalizumab). RESULTS: Serum GFAP levels in both BRRMS (median 210.19 pg/ml, IQR 163.69-287.19) and in ARRMS (median 188.60 pg/ml, IQR39.23-244.93) were significantly higher (p = 0.035 and p = 0.034, respectively) compared to healthy controls (median 117.93 pg/ml, IQR 60.28-183.83). Serum GFAP levels did not differ between BRRMS and ARRMS. There were no statistical differences in NfL levels between BRRMS, ARRMS and healthy controls. GFAP level was significantly higher (p = 0.04) in BRRMS without DMT (median 216.04 pg/ml, IQR 188.60-274.79) than in those BRRMS patients who had used DMT (median 196.26 pg/ml, IQR 133.33-325.54). CONCLUSIONS: We found elevated levels of serum GFAP in both BRRMS and ARRMS compared to healthy controls, reflecting astrocytic activation. Serum NfL did not differ between BRRMS and ARRMS, probably due to the stable inflammatory phase of the disease and effective DMT use in ARRMS. Single serum NfL and GFAP measurements cannot separate a patient with BRRMS from effectively treated ARRMS after a long history of the disease, thus consecutive samples are needed in the follow-up.


Asunto(s)
Proteína Ácida Fibrilar de la Glía/sangre , Esclerosis Múltiple Recurrente-Remitente , Proteínas de Neurofilamentos/sangre , Biomarcadores/sangre , Clorhidrato de Fingolimod/uso terapéutico , Humanos , Filamentos Intermedios , Esclerosis Múltiple Recurrente-Remitente/sangre , Esclerosis Múltiple Recurrente-Remitente/tratamiento farmacológico , Natalizumab/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA