Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
Neuroscience ; 435: 73-94, 2020 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-32222555

RESUMEN

The transcriptional coactivator peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) is a critical regulator of genes involved in neuronal metabolism, neurotransmission, and morphology. Reduced PGC-1α expression has been implicated in several neurological and psychiatric disorders. An understanding of PGC-1α's roles in different cell types will help determine the functional consequences of PGC-1α dysfunction and/or deficiency in disease. Reports from our laboratory and others suggest a critical role for PGC-1α in inhibitory neurons with high metabolic demand such as fast-spiking interneurons. Here, we document a previously unrecognized role for PGC-1α in maintenance of gene expression programs for synchronous neurotransmitter release, structure, and metabolism in neocortical and hippocampal excitatory neurons. Deletion of PGC-1α from these neurons caused ambulatory hyperactivity in response to a novel environment and enhanced glutamatergic transmission in neocortex and hippocampus, along with reductions in mRNA levels from several PGC-1α neuron-specific target genes. Given the potential role for a reduction in PGC-1α expression or activity in Huntington Disease (HD), we compared reductions in transcripts found in the neocortex and hippocampus of these mice to that of an HD knock-in model; few of these transcripts were reduced in this HD model. These data provide novel insight into the function of PGC-1α in glutamatergic neurons and suggest that it is required for the regulation of structural, neurosecretory, and metabolic genes in both glutamatergic neuron and fast-spiking interneuron populations in a region-specific manner. These findings should be considered when inferring the functional relevance of changes in PGC-1α gene expression in the context of disease.


Asunto(s)
Neocórtex , Animales , Hipocampo/metabolismo , Interneuronas/metabolismo , Ratones , Ratones Noqueados , Neocórtex/metabolismo , Neuronas/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo
2.
Neuroscience ; 271: 137-48, 2014 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-24769433

RESUMEN

Peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) is a transcriptional coactivator known to regulate gene programs in a cell-specific manner in energy-demanding tissues, and its dysfunction has been implicated in numerous neurological and psychiatric disorders. Previous work from the Cowell laboratory indicates that PGC-1α is concentrated in inhibitory interneurons and is required for the expression of the calcium buffer parvalbumin (PV) in the cortex; however, the impact of PGC-1α deficiency on inhibitory neurotransmission in the motor cortex is not known. Here, we show that mice lacking PGC-1α exhibit increased amplitudes and decreased frequency of spontaneous inhibitory postsynaptic currents in layer V pyramidal neurons. Upon repetitive train stimulation at the gamma frequency, decreased GABA release is observed. Furthermore, PV-positive interneurons in PGC-1α -/- mice display reductions in intrinsic excitability and excitatory input without changes in gross interneuron morphology. Taken together, these data show that PGC-1α is required for normal inhibitory neurotransmission and cortical PV-positive interneuron function. Given the pronounced motor dysfunction in PGC-1α -/- mice and the essential role of PV-positive interneurons in maintenance of cortical excitatory:inhibitory balance, it is possible that deficiencies in PGC-1α expression could contribute to cortical hyperexcitability and motor abnormalities in multiple neurological disorders.


Asunto(s)
Corteza Motora/fisiología , Inhibición Neural/fisiología , Neuronas/fisiología , Transmisión Sináptica/fisiología , Factores de Transcripción/deficiencia , Potenciales de Acción/fisiología , Animales , Estimulación Eléctrica , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Potenciales Postsinápticos Inhibidores/fisiología , Interneuronas/patología , Interneuronas/fisiología , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Corteza Motora/patología , Neuronas/patología , Parvalbúminas/metabolismo , Técnicas de Placa-Clamp , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Células Piramidales/patología , Células Piramidales/fisiología , Técnicas de Cultivo de Tejidos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Ácido gamma-Aminobutírico/metabolismo
3.
Neurobiol Dis ; 62: 160-71, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24121117

RESUMEN

Recent evidence suggests that interneurons are involved in the pathophysiology of Huntington Disease (HD). Abnormalities in the function of interneurons expressing the calcium buffer parvalbumin (PV) have been observed in multiple mouse models of HD, although it is not clear how PV-positive interneuron dysfunction contributes to behavioral and synaptic deficits. Here, we use the cre-lox system to drive expression of mutant huntingtin (mthtt) in parvalbumin (PV)-positive neurons and find that mutant mice exhibit diffuse mthtt immunoreactivity in PV-rich areas at 10months of age and mthtt aggregates in PV-positive processes at 24months of age. At midlife, mutant mice are hyperactive and display impaired GABA release in the motor cortex, characterized by reduced miniature inhibitory events and severely blunted responses to gamma frequency stimulation, without a loss of PV-positive interneurons. In contrast, 24month-old mutant mice show normalized behavior and responses to gamma frequency stimulation, possibly due to compensatory changes in pyramidal neurons or the formation of inclusions with age. These data indicate that mthtt expression in PV-positive neurons is sufficient to drive a hyperactive phenotype and suggest that mthtt-mediated dysfunction in PV-positive neuronal populations could be a key factor in the hyperkinetic behavior observed in HD. Further clarification of the roles for specific PV-positive populations in this phenotype is warranted to definitively identify cellular targets for intervention.


Asunto(s)
Hipercinesia/metabolismo , Potenciales Postsinápticos Inhibidores , Interneuronas/fisiología , Corteza Motora/fisiopatología , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/metabolismo , Parvalbúminas/metabolismo , Factores de Edad , Animales , Encéfalo/metabolismo , Femenino , Proteína Huntingtina , Hipercinesia/fisiopatología , Masculino , Ratones , Ratones Transgénicos , Mutación , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética , Ácido gamma-Aminobutírico/metabolismo
4.
Neuroscience ; 248: 602-19, 2013 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-23811393

RESUMEN

Status epilepticus (SE) triggers abnormal expression of genes in the hippocampus, such as glutamate receptor subunit epsilon-2 (Grin2b/Nr2b) and brain-derived neurotrophic factor (Bdnf), that is thought to occur in temporal lobe epilepsy (TLE). We examined the underlying DNA methylation mechanisms and investigated whether these mechanisms contribute to the expression of these gene targets in the epileptic hippocampus. Experimental TLE was provoked by kainic acid-induced SE. Bisulfite sequencing analysis revealed increased Grin2b/Nr2b and decreased Bdnf DNA methylation levels that corresponded to decreased Grin2b/Nr2b and increased Bdnf mRNA and protein expression in the epileptic hippocampus. Blockade of DNA methyltransferase (DNMT) activity with zebularine decreased global DNA methylation levels and reduced Grin2b/Nr2b, but not Bdnf, DNA methylation levels. Interestingly, we found that DNMT blockade further decreased Grin2b/Nr2b mRNA expression whereas GRIN2B protein expression increased in the epileptic hippocampus, suggesting that a posttranscriptional mechanism may be involved. Using chromatin immunoprecipitation analysis we found that DNMT inhibition restored the decreases in AP2alpha transcription factor levels at the Grin2b/Nr2b promoter in the epileptic hippocampus. DNMT inhibition increased field excitatory postsynaptic potential in hippocampal slices isolated from epileptic rats. Electroencephalography (EEG) monitoring confirmed that DNMT inhibition did not significantly alter the disease course, but promoted the latency to seizure onset or SE. Thus, DNA methylation may be an early event triggered by SE that persists late into the epileptic hippocampus to contribute to gene expression changes in TLE.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Metilación de ADN , Hipocampo/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Estado Epiléptico/metabolismo , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Citidina/análogos & derivados , Citidina/farmacología , ADN (Citosina-5-)-Metiltransferasas/antagonistas & inhibidores , Electroencefalografía , Epilepsia del Lóbulo Temporal/metabolismo , Ácido Kaínico/toxicidad , Masculino , Ratas , Receptores de N-Metil-D-Aspartato/genética , Convulsiones/metabolismo , Estado Epiléptico/inducido químicamente , Estado Epiléptico/genética , Estado Epiléptico/fisiopatología , Factor de Transcripción AP-2/metabolismo
5.
Glia ; 53(5): 516-28, 2006 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-16369934

RESUMEN

Spinal cord astrocytes (SCA) have a high permeability to K+ and hence have hyperpolarized resting membrane potentials. The underlying K+ channels are believed to participate in the uptake of neuronally released K+. These K+ channels have been studied extensively with regard to their biophysics and pharmacology, but their molecular identity in spinal cord is currently unknown. Using a combination of approaches, we demonstrate that channels composed of the Kir4.1 subunit are responsible for mediating the resting K+ conductance in SCA. Biophysical analysis demonstrates astrocytic Kir currents as weakly rectifying, potentiated by increasing [K+]o, and inhibited by micromolar concentrations of Ba2+. These currents were insensitive to tolbutemide, a selective blocker of Kir6.x channels, and to tertiapin, a blocker for Kir1.1 and Kir3.1/3.4 channels. PCR and Western blot analysis show prominent expression of Kir4.1 in SCA, and immunocytochemistry shows localization Kir4.1 channels to the plasma membrane. Kir4.1 protein levels show a developmental upregulation in vivo that parallels an increase in currents recorded over the same time period. Kir4.1 is highly expressed throughout most areas of the gray matter in spinal cord in vivo and recordings from spinal cord slices show prominent Kir currents. Electrophysiological recordings comparing SCA of wild-type mice with those of homozygote Kir4.1 knockout mice confirm a complete and selective absence of Kir channels in the knockout mice, suggesting that Kir4.1 is the principle channel mediating the resting K+ conductance in SCA in vitro and in situ.


Asunto(s)
Astrocitos/metabolismo , Canales de Potasio de Rectificación Interna/biosíntesis , Médula Espinal/metabolismo , Animales , Astrocitos/efectos de los fármacos , Western Blotting , Células Cultivadas , Electrofisiología , Genotipo , Inmunohistoquímica , Ratones , Ratones Noqueados , Técnicas de Placa-Clamp , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio de Rectificación Interna/efectos de los fármacos , Canales de Potasio de Rectificación Interna/genética , ARN/biosíntesis , ARN/genética , Ratas , Ratas Sprague-Dawley , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Médula Espinal/citología , Médula Espinal/efectos de los fármacos
6.
Neuroscience ; 131(4): 833-42, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-15749338

RESUMEN

In the presence of 4-aminopyridine and excitatory amino acid receptor antagonists, individual neurons in brain slice preparations exhibit large gamma aminobutyric acid (GABA)-mediated responses as a consequence of synchronous GABA release from a network of interneurons. These synchronized GABA responses are frequently associated with ectopic action potentials (EAPs), which are thought to be action potentials initiated in distal axon terminals which subsequently travel antidromically toward the soma. Ectopic action potentials feature prominently in some models of epilepsy. Neocortical synchronized GABA responses propagate across the cortex, predominantly in superficial layers. The role that EAPs may play in contributing to laminar differences in the synchronized GABA response has not been addressed. Here we examined the occurrence of EAPs during synchronized GABA responses in neurons within layers I and II/III. EAPs occurred in 78% of layer I interneurons and in 25% of layer II/III interneurons (including chandelier cells). EAPs were not observed in layer II/III pyramidal neurons. The prevalence of EAPs in layer I interneurons provides a mechanism by which layer I can support both the initiation and propagation of synchronized GABA responses. Thus, layer I interneurons are a critical component of a network capable of synchronizing a propagating wave of GABA release across the neocortex.


Asunto(s)
Potenciales de Acción/fisiología , Corteza Cerebral/fisiología , Interneuronas/fisiología , Ácido gamma-Aminobutírico/fisiología , Potenciales de Acción/efectos de los fármacos , Animales , Agonistas del GABA/farmacología , Antagonistas del GABA/farmacología , Técnicas In Vitro , Interneuronas/efectos de los fármacos , Red Nerviosa/efectos de los fármacos , Red Nerviosa/fisiología , Técnicas de Placa-Clamp , Células Piramidales/fisiología , Ratas , Ratas Sprague-Dawley , Receptores de GABA-B/fisiología
7.
Neuroscience ; 127(3): 625-35, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15283962

RESUMEN

Excitatory postsynaptic currents (EPSCs) in the neocortex are principally mediated by glutamate receptors. Termination of excitation requires rapid removal of glutamate from the synaptic cleft following release. Glutamate transporters are involved in EPSC termination but the effect of uptake inhibition on excitatory neurotransmission varies by brain region. Epileptiform activity is largely mediated by a synchronous synaptic activation of cells in local cortical circuits, presumably associated with a large release of glutamate. The role of glutamate transporters in regulating epileptiform activity has not been addressed. Here we examine the effect of glutamate transport inhibition on EPSCs and epileptiform events in layer II/III pyramidal cells in rat neocortex. Inhibiting glutamate transporters with DL-threo-beta-benzyloxyaspartic acid (TBOA; 30 microM) had no effect on the amplitude or decay time of evoked, presumably alpha-amino-3-hydroxyl-5-methyl-isoxazolepropionic acid-mediated, EPSCs. In contrast, the amplitude and duration of epileptiform discharges were significantly enhanced. TBOA resulted also in a decreased threshold for evoking epileptiform activity and an increased probability of occurrence of spontaneous epileptiform discharges. TBOA's effects were not inhibited by the group I and II metabotropic glutamate receptors antagonist (S)-alpha-methyl-4-carboxyphenylglycine or the kainate receptor antagonist [(3S,4aR, 6S, 8aR)-6-((4-carboxyphenyl)methyl-1,2,3,4,4a,5,6,7,8,8a-decahydroisoquinoline-3-carboxylic acid]. D-(-)-2-amino-5-phosphonovaleric acid could both prevent excitability changes by TBOA and block already induced changes. Dihydrokainate (300 microM) had effects similar to TBOA suggesting involvement of the glial transporter GLT-1. Inhibiting glutamate transport increases local network excitability under conditions where there is an enhanced release of glutamate. Our results indicate that uptake inhibition produces an elevation of extracellular glutamate levels and activation of N-methyl-D-aspartate receptors.


Asunto(s)
Sistema de Transporte de Aminoácidos X-AG/fisiología , Potenciales Postsinápticos Excitadores/fisiología , Neocórtex/fisiología , 2-Amino-5-fosfonovalerato/farmacología , Animales , Ácido Aspártico/farmacología , Bicuculina/farmacología , Epilepsia/fisiopatología , Antagonistas de Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Antagonistas del GABA/farmacología , Neocórtex/citología , Técnicas de Cultivo de Órganos , Técnicas de Placa-Clamp , Células Piramidales/fisiología , Ratas , Receptores de Ácido Kaínico/fisiología , Receptores de Glutamato Metabotrópico/fisiología , Receptores de N-Metil-D-Aspartato/fisiología , Temperatura
8.
J Neurophysiol ; 86(6): 2911-8, 2001 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-11731547

RESUMEN

Rat prefrontal cortex (PFC) receives substantial dopamine (DA) input. This DA innervation appears critical for modulation of PFC cognitive functions. Clinical and experimental studies have also implicated DA in the pathogenesis of a number of neurological and psychiatric disorders including epilepsy and schizophrenia. However, the actions of DA at the cellular level are incompletely understood. Both inhibitory interneurons and pyramidal cells are targets of DA and may express different DA receptor types. Our recent findings suggest that DA can directly excite cortical interneurons and increase the frequency of spontaneous inhibitory postsynaptic currents (IPSCs). The present study was undertaken to determine the effect of specific DA receptor agonists on evoked (e) IPSCs. Visually identified pyramidal neurons were studied using whole cell voltage-clamp techniques. Bath application of DA 30 microM reduced IPSC amplitude to 80 +/- 4% (mean +/- SE) of control without any significant change in IPSC kinetics or passive membrane properties. The D1-like DA receptor agonist SKF 38393 reduced IPSC amplitude to 71.5 +/- 8%, whereas the D2-like specific agonist quinpirole has no effect on amplitude (94.5 +/- 5%). The D1-like receptor antagonist SCH 23390 prevented DA inhibition of IPSC amplitude (98.2 +/- 4%), whereas IPSCs were still reduced in amplitude (79.7 +/- 4%) by DA in the presence of the D2-like receptor antagonist sulpiride. DA increased significantly paired-pulse inhibition, whereas responses to puff applied GABA were unaffected. Addition of the PKA inhibitor H-8 blocked the effect of DA on IPSCs. These results suggest that DA can decrease IPSCs in layer II-III PFC neocortical pyramidal cells by activating presynaptic D1-like receptors.


Asunto(s)
Dopamina/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Corteza Prefrontal/efectos de los fármacos , Células Piramidales/efectos de los fármacos , 2-Amino-5-fosfonovalerato/farmacología , 6-Ciano 7-nitroquinoxalina 2,3-diona/farmacología , Animales , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Depresión Química , Inhibidores Enzimáticos/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Antagonistas de Receptores de GABA-A , Técnicas In Vitro , Masculino , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Técnicas de Placa-Clamp , Corteza Prefrontal/citología , Ratas , Ratas Sprague-Dawley , Receptores de Dopamina D1/efectos de los fármacos
9.
Neuroreport ; 12(11): 2537-41, 2001 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-11496144

RESUMEN

The response of neocortical neurons to GABA is strongly influenced by the intracellular chloride concentration. We tested the hypothesis that activation of GABA(A) receptors can result in either depletion or accumulation of intracellular chloride. The measured reversal potentials of currents evoked by exogenously applied or synaptically released GABA were not significantly different. During GABA responses, voltage steps to the reversal potential revealed prominent tail-like currents. The polarity of these currents was opposite to that of the GABA-evoked currents, consistent with either accumulation or depletion of intracellular chloride. These results demonstrate that currents evoked by exogenously applied and synaptically released GABA share similar ionic dependencies. Current fluxes during GABA(A) receptor activation can be sufficiently large to change the intracellular chloride concentration.


Asunto(s)
Cloruros/metabolismo , Neocórtex/metabolismo , Receptores de GABA-A/metabolismo , Animales , Homeostasis/fisiología , Interneuronas/metabolismo , Potenciales de la Membrana/fisiología , Neocórtex/citología , Técnicas de Cultivo de Órganos , Técnicas de Placa-Clamp , Células Piramidales/metabolismo , Ratas , Ácido gamma-Aminobutírico/metabolismo
10.
J Neurophysiol ; 85(4): 1719-31, 2001 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-11287494

RESUMEN

Neocortical freeze lesions have been widely used to study neuronal mechanisms underlying hyperexcitability in dysplastic cortex. Comparatively little attention has been given to biophysical changes in the surrounding astrocytes that show profound morphological and biochemical alterations, often referred to as reactive gliosis. Astrocytes are thought to aid normal neuronal function by buffering extracellular K(+). Compromised astrocytic K(+) buffering has been proposed to contribute to neuronal dysfunction. Astrocytic K(+) buffering is mediated, partially, by the activity of inwardly rectifying K(+) channels (K(IR)) and may involve intracellular redistribution of K(+) through gap-junctions. We characterized K(+) channel expression and gap-junction coupling between astrocytes in freeze-lesion-induced dysplastic neocortex. Whole cell patch-clamp recordings were obtained from astrocytes in slices from postnatal day (P) 16--P24 rats that had received a freeze-lesion on P1. A marked increase in glial fibrillary acidic protein immunoreactivity was observed along the entire length of the freeze lesion. Clusters of proliferative (bromo-deoxyuridine nuclear staining, BrdU+) astrocytes were seen near the depth of the microsulcus. Astrocytes in cortical layer I surrounding the lesion were characterized by a significant reduction in K(IR). BrdU-positive astrocytes near the depth of the microsulcus showed essentially no expression of K(IR) channels but markedly enhanced expression of delayed rectifier K(+) (K(DR)) channels. These proliferative cells showed virtually no dye coupling, whereas astrocytes in the hyperexcitable zone adjacent to the microsulcus displayed prominent dye-coupling as well as large K(IR) and outward K(+) currents. These findings suggest that reactive gliosis is accompanied by a loss of K(IR) currents and reduced gap junction coupling, which in turn suggests a compromised K(+) buffering capacity.


Asunto(s)
Astrocitos/fisiología , Encefalopatías/fisiopatología , Neocórtex/fisiopatología , Animales , Astrocitos/patología , Encefalopatías/etiología , Encefalopatías/patología , División Celular , Electrofisiología , Colorantes Fluorescentes , Congelación , Técnicas In Vitro , Isoquinolinas , Neocórtex/patología , Canales de Potasio/fisiología , Ratas , Ratas Sprague-Dawley , Valores de Referencia
11.
Ment Retard Dev Disabil Res Rev ; 6(4): 258-67, 2000.
Artículo en Inglés | MEDLINE | ID: mdl-11107191

RESUMEN

The nervous system has an enhanced capacity to generate seizures during a restricted phase of postnatal development. Studies in animals and particularly in in vitro brain slices from hippocampus and neocortex have been instrumental in furthering an understanding of the underlying processes. Developmental alterations in glutaminergic excitatory synaptic transmission appear to play a key role in the enhanced seizure susceptible of rodents during the second and third week of life. Prior to this period, the number of excitatory synapses is relatively low. The scarcity of connections and the inability of the existing synapses to release glutamate when activated at high frequencies likely contribute importantly to the resistance of neonates to seizures. However, at the beginning of week 2, a dramatic outgrowth of excitatory synapses occurs, and these synapses are able to faithfully follow activation at high frequencies. These changes, coupled with the prolonged nature of synaptic potentials in early life, likely contribute to the ease of seizure generation. After this time, seizure susceptibility declines, patterns of local synaptic connectivity remodel, and some synapses are pruned. Concurrently, the duration of excitatory postsynaptic potentials shortens due at least in part to a switch in the subunit composition of postsynaptic receptors. Other studies have examined the mechanisms underlying chronic epilepsy initiated in early life. Models of both cortical dysplasia and recurrent early-life seizures suggest that alterations in the normal development of excitatory synaptic transmission can contribute importantly to chronic epileptic conditions. In the recurrent early-life seizure model, abnormal use-dependent selection of subpopulations of excitatory synapses may play a role. In experimental cortical dysplasia, alterations in the molecular composition of postsynaptic receptor are observed that favor subunit combinations characteristic of infancy.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Encéfalo/fisiopatología , Epilepsia/etiología , Epilepsia/fisiopatología , Plasticidad Neuronal/fisiología , Neuronas/patología , Sinapsis/metabolismo , Factores de Edad , Animales , Encéfalo/patología , Causalidad , Corteza Cerebral/anomalías , Corteza Cerebral/patología , Corteza Cerebral/fisiopatología , Modelos Animales de Enfermedad , Epilepsia/patología , Aminoácidos Excitadores/metabolismo , Hipocampo/crecimiento & desarrollo , Hipocampo/patología , Hipocampo/fisiopatología , Humanos , Inhibición Neural/fisiología , Vías Nerviosas/crecimiento & desarrollo , Vías Nerviosas/patología , Vías Nerviosas/fisiopatología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Células Piramidales/metabolismo , Células Piramidales/patología , Receptores de Glutamato/metabolismo , Sinapsis/patología , Transmisión Sináptica/fisiología , Ácido gamma-Aminobutírico/metabolismo
12.
Neuroreport ; 11(14): 3151-5, 2000 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-11043540

RESUMEN

Injury and diseases of the nervous system can induce astrocytes to form tenacious glial scars. We induced focal cortical freeze-lesions in neonatal rats and examined scars histologically and electrophysiologically in tissue slices isolated 2-3 weeks after lesioning. Lesions displayed marked gliosis, characterized by upregulation of GFAP labeling. Reactive astrocytes surrounding the scar showed marked hypertrophy, enlarged cell bodies and extended processes frequently terminating with endfeet-like structures on blood vessels. These reactive astrocytes showed enhanced expression of inwardly rectifying K+ (K(IR)) channels, widely believed to be an important pathway for astrocytic K+ buffering. These results suggest that a subpopulation of reactive astrocytes along a glial scar might be instrumental in buffering K+ away from the lesion.


Asunto(s)
Astrocitos/citología , Lesiones Encefálicas/patología , Cicatriz/patología , Gliosis/patología , Canales de Potasio/metabolismo , Animales , Astrocitos/metabolismo , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/ultraestructura , Lesiones Encefálicas/metabolismo , Lesiones Encefálicas/fisiopatología , Corteza Cerebral/lesiones , Corteza Cerebral/patología , Corteza Cerebral/fisiopatología , Cicatriz/metabolismo , Cicatriz/fisiopatología , Frío/efectos adversos , Desnervación/efectos adversos , Proteína Ácida Fibrilar de la Glía/metabolismo , Gliosis/etiología , Gliosis/fisiopatología , Potenciales de la Membrana/fisiología , Ratas , Ratas Sprague-Dawley
13.
J Neurosci ; 20(21): 8069-76, 2000 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-11050128

RESUMEN

Chloride (Cl(-)) homeostasis is critical for many cell functions including cell signaling and volume regulation. The action of GABA at GABA(A) receptors is primarily determined by the concentration of intracellular Cl(-). Developmental regulation of intracellular Cl(-) results in a depolarizing response to GABA in immature neocortical neurons and a hyperpolarizing or shunting response in mature neocortical neurons. One protein that participates in Cl(-) homeostasis is the neuron-specific K(+)-Cl(-) cotransporter (KCC2). Thermodynamic considerations predict that in the physiological ranges of intracellular Cl(-) and extracellular K(+) concentrations, KCC2 can act to either extrude or accumulate Cl(-). To test this hypothesis, we examined KCC2 function in pyramidal cells from rat neocortical slices in mature (18-28 d postnatal) and immature (3-6 d postnatal) rats. Intracellular Cl(-) concentration was estimated from the reversal potential of whole-cell currents evoked by local application of exogenous GABA. Both increasing and decreasing the extracellular K(+) concentration resulted in a concomitant change in intracellular Cl(-) concentration in neurons from mature rats. KCC2 inhibition by furosemide caused a change in the intracellular Cl(-) concentration that depended on the concentration of pipette Cl(-); in recordings with low pipette Cl(-), furosemide lowered intracellular Cl(-), whereas in recordings with elevated pipette Cl(-), furosemide raised intracellular Cl(-). In neurons from neonatal rats, manipulation of extracellular K(+) had no effect on intracellular Cl(-) concentration, consistent with the minimal KCC2 mRNA levels observed in neocortical neurons from immature animals. These data demonstrate a physiologically relevant and developmentally regulated role for KCC2 in Cl(-) homeostasis via both Cl(-) extrusion and accumulation.


Asunto(s)
Proteínas Portadoras/metabolismo , Cloruros/metabolismo , Líquido Intracelular/metabolismo , Potasio/metabolismo , Células Piramidales/metabolismo , Simportadores , Envejecimiento/metabolismo , Animales , Proteínas Portadoras/genética , Cloruros/farmacología , Diuréticos/farmacología , Relación Dosis-Respuesta a Droga , Potenciales Evocados/efectos de los fármacos , Furosemida/farmacología , Regulación del Desarrollo de la Expresión Génica , Técnicas In Vitro , Transporte Iónico/efectos de los fármacos , Neocórtex/citología , Neocórtex/efectos de los fármacos , Neocórtex/metabolismo , Técnicas de Placa-Clamp , Potasio/farmacología , Células Piramidales/efectos de los fármacos , ARN Mensajero/metabolismo , Ratas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Termodinámica , Ácido gamma-Aminobutírico/metabolismo , Ácido gamma-Aminobutírico/farmacología , Cotransportadores de K Cl
14.
Brain Res ; 879(1-2): 88-92, 2000 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-11011009

RESUMEN

Activation of metabotropic glutamate receptors (mGluRs) has multiple effects on the excitability of pyramidal neurons in rat frontal neocortex. Synaptic transmission and intrinsic excitability are both affected. During studies of the effects of quisqualate on synaptic activity, it was observed that quisqualate also induced a slow inward current. Whole-cell patch clamp recordings were obtained from layer II/III pyramidal neurons of neocortical slices in vitro. The bath solution contained APV, CNQX and bicuculline to block ionotropic glutamate and GABA(A) receptors. At a holding potential of -70 mV, quisqualate (2 microM) induced an inward current of about 60 pA. The response was reversible upon washing. This current was associated with an increase in membrane conductance and was still seen in the presence of TTX (0.5 microM). Bath application of the nonselective mGluR antagonist, (R, S)-alpha-methyl-4-carboxyphenyglycine (MCPG, 200-500 microM) reduced the current by 70%. Other mGluR agonists (ACPD, DHPG, L-CCG-1 and L-AP4) did not induce a significant inward current at the concentrations tested. The current-voltage relation of the quisqualate-induced current was linear with a reversal potential near 0 mV suggesting involvement of nonselective cation channels. The quisqualate-induced inward current was markedly reduced (72%) with 200 microM GDP-beta-S in the pipette solution, indicating that it is a postsynaptic phenomenon mediated by a G-protein dependent mechanism. These results suggest that mGluRs can directly increase the postsynaptic excitability of pyramidal cells.


Asunto(s)
Antagonistas de Aminoácidos Excitadores/farmacología , Guanosina Difosfato/análogos & derivados , Neocórtex/fisiología , Células Piramidales/fisiología , Ácido Quiscuálico/farmacología , Receptores de GABA-A/fisiología , 2-Amino-5-fosfonovalerato/farmacología , 6-Ciano 7-nitroquinoxalina 2,3-diona/farmacología , Animales , Benzoatos/farmacología , Bicuculina/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Glicina/análogos & derivados , Glicina/farmacología , Guanosina Difosfato/farmacología , Técnicas In Vitro , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Técnicas de Placa-Clamp , Ratas , Ratas Sprague-Dawley , Receptores de GABA-A/efectos de los fármacos , Tetrodotoxina/farmacología , Tionucleótidos/farmacología
15.
Epilepsia ; 41 Suppl 6: S82-5, 2000.
Artículo en Inglés | MEDLINE | ID: mdl-10999525

RESUMEN

PURPOSE: Identification of changes in neurotransmitter function in animal models of epilepsy provides a basis for rational drug development and an understanding of the mechanisms underlying epileptogenesis. We investigated changes in the efficacy of the benzodiazepine type I agonist zolpidem and the polyamine site N-methyl-D-aspartate receptor antagonist ifenprodil in a rat model of microgyria. METHODS: Neonatal freeze lesions were used to produce a microsulcus in the normally lissencephalic rat neocortex with anatomical similarities to human polymicrogyria. Whole-cell voltage-clamp recordings were made from visually identified layer 2/3 pyramidal cells in acutely prepared brain slices from nonlesioned and lesioned rats. RESULTS: The effect of 20 nmol/L zolpidem on the decay time constant of inhibitory postsynaptic currents was significantly less in neurons from brain slices containing the freeze lesion. A higher concentration (100 nmol/L) of zolpidem was equally efficacious in lesioned and nonlesioned cortex. In lesioned cortex, the threshold for evoking epileptiform discharges was significantly increased in the presence of 10 micromol/L ifenprodil. This effect was significant in both intrinsic hyperexcitability and partial disinhibition with 2 micromol/L bicuculline in lesioned cortex. Ifenprodil had significantly less effect on the threshold of discharges evoked in control cortex in the partial disinhibition model. CONCLUSIONS: The decreased sensitivity of gamma-aminobutyric acid A receptors to 20 nmol/L zolpidem in the freeze-lesion model is consistent with a delayed or arrested maturation in this animal model. These data support a delay in the developmental switch from alpha2 to alpha1 subunits in gamma-aminobutyric acid A receptors of neocortical pyramidal cells in lesioned cortex. The increased ifenprodil sensitivity of the threshold for evoking epileptiform discharges in both control and disinhibited slices containing the microsulcus is explained by a delay in the expression of the 2A (NR2A) N-methyl-D-aspartate receptor subunit. Delayed development may be a hallmark of this type of cortical dysplasia.


Asunto(s)
Epilepsia/fisiopatología , Neocórtex/anomalías , Receptores de GABA-A/fisiología , Receptores de GABA/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/efectos de los fármacos , Animales , Modelos Animales de Enfermedad , Epilepsia/etiología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Congelación , Neocórtex/fisiopatología , Inhibición Neural/efectos de los fármacos , Inhibición Neural/fisiología , Técnicas de Placa-Clamp , Piperidinas/farmacología , Piridinas/farmacología , Ratas , Receptores de GABA-A/efectos de los fármacos , Zolpidem
17.
J Neurophysiol ; 83(1): 315-21, 2000 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-10634874

RESUMEN

Recent studies have demonstrated an important role for the N-methyl-D-aspartate receptor (NMDAR) in epilepsy. NMDARs have also been shown to play a critical role in hyperexcitability associated with several animal models of human epilepsy. Using whole-cell voltage clamp recordings in brain slices, we studied evoked paroxysmal discharges in the freeze-lesion model of neocortical microgyria. The voltage dependence of epileptiform discharges indicated that these paroxysmal events were produced by a complex pattern of excitatory and inhibitory inputs. We examined the effect of the NMDAR antagonist D-2-amino-5-phosphopentanoic acid (APV) and the NMDA receptor subunit type 2B (NR2B)-selective antagonist ifenprodil on the threshold, peak amplitude, and area of evoked epileptiform discharges in brain slices from lesioned animals. Both compounds consistently raised the threshold for evoking the discharge but had modest effects on the discharge peak and amplitude. For comparison with nonlesioned cortex, we examined the effects of ifenprodil on the epileptiform discharge evoked in the presence of 2 microM bicuculline (partial disinhibition). In slices from nonlesioned cortex, 10 microM ifenprodil had little effect on the threshold whereas 71% of the recordings in bicuculline-treated lesioned cortex showed a >25% increase in threshold. These results suggest that NR2B-containing receptors are functionally enhanced in freeze-lesioned cortex and may contribute to the abnormal hyperexcitability observed in this model of neocortical microgyria.


Asunto(s)
Encéfalo/fisiopatología , Corteza Cerebral/anomalías , Epilepsia/fisiopatología , Células Piramidales/fisiología , Receptores de N-Metil-D-Aspartato/fisiología , 2-Amino-5-fosfonovalerato/farmacología , Animales , Encéfalo/efectos de los fármacos , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/fisiopatología , Epilepsia/etiología , Potenciales Evocados/efectos de los fármacos , Antagonistas de Aminoácidos Excitadores/farmacología , Femenino , Humanos , Técnicas In Vitro , Técnicas de Placa-Clamp , Piperidinas/farmacología , Embarazo , Células Piramidales/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/efectos de los fármacos
18.
Brain Res ; 887(2): 399-405, 2000 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-11134630

RESUMEN

In the neocortex, fast excitatory synaptic transmission can typically be blocked by using excitatory amino acid (EAA) receptor antagonists. In recordings from layer II/III neocortical pyramidal neurons, we observed an evoked excitatory postsynaptic potential (EPSP) or current (EPSC) in the presence of EAA receptor antagonists (40-100 microM D-APV+20 microM CNQX, or 5 mM kynurenic acid) plus the GABA(A)-receptor antagonist bicuculline (BIC, 20 microM). This EAA-antagonist resistant EPSC was observed in about 70% of neurons tested. It had a duration of approximately 20 ms and an amplitude of 61.5+/-6.8 pA at -70 mV (n=35). The EAA-antagonist resistant EPSC current-voltage relation was linear and reversed near 0 mV (n=23). The nonselective nicotinic acetylcholine receptor (nAChR) antagonists dihydro-beta-erythroidine (DH beta E, 100 microM) or mecamylamine (50 microM) reduced EPSC amplitudes by 42 (n=20) and 33% (n=9), respectively. EPSC kinetics were not significantly changed by either antagonist. Bath application of 10 microM neostigmine, a potent acetylcholinesterase inhibitor, prolonged the EPSC decay time. EAA-antagonist resistant EPSCs were observed in the presence of antagonists of metabotropic glutamate, serotonergic (5-HT(3)) and purinergic (P2) receptors. The EAA-antagonist resistant EPSC appears to be due in part to activation of postsynaptic nAChRs. These results suggest the existence of functional synaptic nAChRs on pyramidal neurons in rat neocortex.


Asunto(s)
Antagonistas de Aminoácidos Excitadores/farmacología , Neocórtex/fisiología , Antagonistas Nicotínicos/farmacología , Células Piramidales/fisiología , Receptores Nicotínicos/fisiología , Transmisión Sináptica/fisiología , 2-Amino-5-fosfonovalerato/farmacología , 6-Ciano 7-nitroquinoxalina 2,3-diona/farmacología , Acetilcolinesterasa/metabolismo , Animales , Bicuculina/farmacología , Dihidro-beta-Eritroidina/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Ácido Quinurénico/farmacología , Mecamilamina/farmacología , Neocórtex/efectos de los fármacos , Neostigmina/farmacología , Células Piramidales/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Transmisión Sináptica/efectos de los fármacos
19.
J Neurophysiol ; 82(6): 2989-99, 1999 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-10601434

RESUMEN

The cerebral cortex receives an extensive serotonergic (5-hydroxytryptamine, 5-HT) input. Immunohistochemical studies suggest that inhibitory neurons are the main target of 5-HT innervation. In vivo extracellular recordings have shown that 5-HT generally inhibited cortical pyramidal neurons, whereas in vitro studies have shown an excitatory action. To determine the cellular mechanisms underlying the diverse actions of 5-HT in the cortex, we examined its effects on cortical inhibitory interneurons and pyramidal neurons. We found that 5-HT, through activation of 5-HT(2A) receptors, induced a massive enhancement of spontaneous inhibitory postsynaptic currents (sIPSCs) in pyramidal neurons, lasting for approximately 6 min. In interneurons, this 5-HT-induced enhancement of sIPSCs was much weaker. Activation of 5-HT(2A) receptors also increased spontaneous excitatory postsynaptic currents (sEPSCs) in pyramidal neurons. This response desensitized less and at a slower rate. In contrast, 5-HT slightly decreased evoked IPSCs (eIPSCs) and eEPSCs. In addition, 5-HT via 5-HT(3) receptors evoked a large and rapidly desensitizing inward current in a subset of interneurons and induced a transient enhancement of sIPSCs. Our results suggest that 5-HT has widespread effects on both interneurons and pyramidal neurons and that a short pulse of 5-HT is likely to induce inhibition whereas the prolonged presence of 5-HT may result in excitation.


Asunto(s)
Corteza Cerebral/efectos de los fármacos , Receptores de Serotonina/fisiología , Agonistas de Receptores de Serotonina/farmacología , Transmisión Sináptica/efectos de los fármacos , Animales , Corteza Cerebral/citología , Potenciales Postsinápticos Excitadores/fisiología , Técnicas In Vitro , Interneuronas/efectos de los fármacos , Neuronas/efectos de los fármacos , Técnicas de Placa-Clamp , Células Piramidales/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Receptor de Serotonina 5-HT2A , Receptores de Serotonina/efectos de los fármacos , Receptores de Serotonina 5-HT3 , Serotonina/farmacología
20.
J Neurophysiol ; 81(3): 967-76, 1999 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-10085325

RESUMEN

Dopamine (DA) is an endogenous neuromodulator in the mammalian brain. However, it is still controversial how DA modulates excitability and input-output relations in cortical neurons. It was suggested that DA innervation of dendritic spines regulates glutamatergic inputs to pyramidal neurons, but no experiments were done to test this idea. By recording individual neurons under direct visualization we found that DA enhances inhibitory neuron excitability but decreases pyramidal cell excitability, through depolarization and hyperpolarization, respectively. Accordingly, DA also increased the frequency and amplitude of spontaneous inhibitory postsynaptic currents (sIPSCs). In the presence of TTX, DA did not affect the frequency, amplitude, or kinetics of miniature IPSCs and excitatory postsynaptic currents in inhibitory interneurons or pyramidal cells. Our results suggest that DA can directly excite cortical interneurons, but there is no detectable DA gate to regulate spontaneous GABA and glutamate release or the properties of postsynaptic GABA and glutamate receptors in neocortical neurons.


Asunto(s)
Corteza Cerebral/fisiología , Dopamina/fisiología , Interneuronas/fisiología , Sinapsis/fisiología , Animales , Corteza Cerebral/citología , Potenciales Postsinápticos Excitadores , Técnicas In Vitro , Potenciales de la Membrana/fisiología , Técnicas de Placa-Clamp , Células Piramidales/fisiología , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA