Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Front Med ; 18(1): 81-97, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37837560

RESUMEN

Highly clinical and genetic heterogeneity of neurodevelopmental disorders presents a major challenge in clinical genetics and medicine. Panoramic variation analysis is imperative to analyze the disease phenotypes resulting from multilocus genomic variation. Here, a Pakistani family with parental consanguinity was presented, characterized with severe intellectual disability (ID), spastic paraplegia, and deafness. Homozygosity mapping, integrated single nucleotide polymorphism (SNP) array, whole-exome sequencing, and whole-genome sequencing were performed, and homozygous variants in TMEM141 (c.270G>A, p.Trp90*), DDHD2 (c.411+767_c.1249-327del), and LHFPL5 (c.250delC, p.Leu84*) were identified. A Tmem141p.Trp90*/p.Trp90* mouse model was generated. Behavioral studies showed impairments in learning ability and motor coordination. Brain slice electrophysiology and Golgi staining demonstrated deficient synaptic plasticity in hippocampal neurons and abnormal dendritic branching in cerebellar Purkinje cells. Transmission electron microscopy showed abnormal mitochondrial morphology. Furthermore, studies on a human in vitro neuronal model (SH-SY5Y cells) with stable shRNA-mediated knockdown of TMEM141 showed deleterious effect on bioenergetic function, possibly explaining the pathogenesis of replicated phenotypes in the cross-species mouse model. Conclusively, panoramic variation analysis revealed that multilocus genomic variations of TMEM141, DDHD2, and LHFPL5 together caused variable phenotypes in patient. Notably, the biallelic loss-of-function variants of TMEM141 were responsible for syndromic ID.

3.
Front Med ; 16(5): 808-814, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35314946

RESUMEN

Epidermolysis bullosa (EB) is a group of clinically and genetically heterogeneous diseases characterized by trauma-induced mucocutaneous fragility and blister formation. Here, we investigated five Chinese families with EB, and eight variants including a novel nonsense variant (c.47G>A, p.W16*) in LAMA3, a known recurrent variant (c.74C>T, p.P25L) in KRT5, 2 novel (c.2531T>A, p.V844E; c.6811_6814del, p.R2271fs) and 4 known (c.6187C>T, p.R2063W; c.7097G>A, p.G2366D; c.8569G>T, p.E2857*; c.3625_3635del, p.S1209fs) variants in COL7A1 were detected. Notably, this study identified a nonsense variant in LAMA3 that causes EB within the Chinese population and revealed that this variant resulted in a reduction in LAMA3 mRNA and protein expression levels by nonsense-mediated mRNA decay. Our study expands the mutation spectra of Chinese patients with EB.


Asunto(s)
Colágeno Tipo VII , Epidermólisis Ampollosa Distrófica , Epidermólisis Ampollosa , Laminina , Humanos , Pueblo Asiatico/genética , China , Colágeno Tipo VII/genética , Epidermólisis Ampollosa/genética , Epidermólisis Ampollosa Distrófica/genética , Queratina-5/genética , Mutación , Linaje , Laminina/genética
4.
Front Genet ; 12: 712275, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34386043

RESUMEN

Background: Epidermodysplasia verruciformis (EV) is a rare genodermatosis characterized by abnormal susceptibility to human beta papillomavirus infections and a particular propensity to develop non-melanoma skin cancers (NMSCs). The majority of EV cases are caused by biallelic null variants in TMC6, TMC8, and CIB1. This study aimed to identify disease-causing variants in three Chinese families with EV and to elucidate their molecular pathogenesis. Methods: Genomic DNA from the probands of three EV families was analyzed by whole-exome sequencing (WES). cDNA sequencing was performed to investigate abnormal splicing of the variants. Quantitative RT-PCR (qRT-PCR) was conducted to quantify the mRNA expression of mutant TMC6 and TMC8. Results: Whole-exome sequencing identified two novel homozygous variants (c.2278-2A > G in TMC6 and c.559G > A in TMC8) in families 1 and 2, respectively. In family 3, WES revealed a recurrent and a novel compound heterozygous variant, c.559G > A and c.1389G > A, in TMC8. The c.2278-2A > G TMC6 variant led to the skipping of exon 19 and resulted in premature termination at codon 776. Subsequent qRT-PCR revealed that the aberrantly spliced transcript was partly degraded. Notably, the TMC8 c.559G > A variant created a novel acceptor splice site at c.561 and yielded three different aberrant transcripts. qRT-PCR revealed that most of the mutant transcripts were degraded via nonsense-mediated mRNA decay (NMD). Conclusion: We identified three novel disease-causing variants in TMC6 or TMC8 in three Chinese families with EV. The EV phenotypes of the three patients were due to a reduction in TMC6 or TMC8. Our findings expand the genetic causes of EV in the Chinese population.

6.
J Clin Lab Anal ; 35(6): e23803, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34028087

RESUMEN

BACKGROUND: Dyschromatosis universalis hereditaria (DUH) is a rare genodermatosis characterized by hyper- and hypo-pigmented macules on the face, trunk, and extremities. The condition causes severe cosmetic problem which can lead to significant psychological distress to the patients and bear a negative impact on society. DUH is a condition with genetic heterogeneity. The SASH1 gene was recently identified as pathogenic genes in DUH patients. METHODS: Two families clinically diagnosed with dyschromatosis universalis hereditaria were enrolled. Whole-exome sequencing combined with Sanger sequencing and bioinformatics analysis was performed in the probands. MutationTaster, CADD, SIFT, PolyPhen-2, and LRT software, and The American College of Medical Genetics and Genomics Standards and Guidelines were employed to assess the pathogenicity of detected missense mutations. One hundred healthy unrelated Chinese individuals were used as controls. All participants signed an informed consent form. RESULTS: Genetic screening revealed a heterozygous SASH1 c.1547G>A (p.Ser516Asn) mutation for patients in family 1, and SASH1 c.1547G>T (p.Ser516Ile) for family 2. Both such de novo mutations are located in a highly conserved SLY domain in SASH1, have not been previously reported in any publication, and were not detected in any control databases. CONCLUSIONS: The novel heterozygous mutations, SASH1 c.1547G>A and c.1547G>T, are likely responsible for the DUH phenotype in these two families. Our study expands the mutation spectrum of DUH. Whole-exome sequencing showed its efficiency in the diagnostic of hereditary skin disorders.


Asunto(s)
Pueblo Asiatico/genética , Mutación , Trastornos de la Pigmentación/congénito , Enfermedades Cutáneas Genéticas/genética , Enfermedades Cutáneas Genéticas/patología , Proteínas Supresoras de Tumor/genética , Adulto , China , Femenino , Humanos , Lactante , Masculino , Linaje , Trastornos de la Pigmentación/genética , Trastornos de la Pigmentación/patología , Pronóstico
9.
Front Pediatr ; 8: 585053, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33335874

RESUMEN

A homozygous in-frame deletion (c. 758_778del; p. Glu253_Ala259del) in membrane-bound O-acyltransferase family member 7 (MBOAT7), also known as lysophosphatidylinositol acyltransferase (LPIAT1), was previously reported to be the genetic cause of intellectual disability (ID) in consanguineous families from Pakistan. Here, we identified two additional Pakistani consanguineous families with severe ID individuals sharing the same homozygous variant. Thus, we provide further evidence to support this MBOAT7 mutation as a potential founder variant. To understand the genotype-phenotype relationships of the in-frame deletion in the MBOAT7 gene, we located the variant in the fifth transmembrane domain of the protein and determined that it causes steric hindrance to the formation of an α-helix and hydrogen bond, possibly influencing its effectiveness as a functional transmembrane protein. Moreover, extensive neuropsychological observations, clinical interviews and genetic analysis were performed on 6 patients from the 2 families. We characterized the phenotype of the patients and noted the serious outcome of severe paraplegia. Thus, optimal management for symptom alleviation and appropriate screening in these patients are crucial.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA