Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Development ; 128(21): 4113-25, 2001 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-11684650

RESUMEN

Waardenburg-Shah syndrome combines the reduced enteric nervous system characteristic of Hirschsprung's disease with reduced pigment cell number, although the cell biological basis of the disease is unclear. We have analysed a zebrafish Waardenburg-Shah syndrome model. We show that the colourless gene encodes a sox10 homologue, identify sox10 lesions in mutant alleles and rescue the mutant phenotype by ectopic sox10 expression. Using iontophoretic labelling of neural crest cells, we demonstrate that colourless mutant neural crest cells form ectomesenchymal fates. By contrast, neural crest cells which in wild types form non-ectomesenchymal fates generally fail to migrate and do not overtly differentiate. These cells die by apoptosis between 35 and 45 hours post fertilisation. We provide evidence that melanophore defects in colourless mutants can be largely explained by disruption of nacre/mitf expression. We propose that all defects of affected crest derivatives are consistent with a primary role for colourless/sox10 in specification of non-ectomesenchymal crest derivatives. This suggests a novel mechanism for the aetiology of Waardenburg-Shah syndrome in which affected neural crest derivatives fail to be generated from the neural crest.


Asunto(s)
Proteínas Portadoras/genética , Proteínas de Unión al ADN/genética , Proteínas del Grupo de Alta Movilidad/genética , Enfermedad de Hirschsprung/genética , Mesodermo , Cresta Neural/citología , Trastornos de la Pigmentación/genética , Pez Cebra/genética , Secuencia de Aminoácidos , Animales , Apoptosis , Diferenciación Celular/genética , Movimiento Celular , Mapeo Cromosómico , Clonación Molecular , Proteínas de Unión al ADN/metabolismo , Embrión no Mamífero , Inducción Embrionaria/genética , Femenino , Regulación del Desarrollo de la Expresión Génica , Ligamiento Genético , Proteínas del Grupo de Alta Movilidad/metabolismo , Melanóforos/metabolismo , Datos de Secuencia Molecular , Mutación , Factores de Transcripción SOXE , Homología de Secuencia de Aminoácido , Factores de Transcripción , Pez Cebra/embriología , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
2.
Comp Funct Genomics ; 2(2): 60-8, 2001.
Artículo en Inglés | MEDLINE | ID: mdl-18628903

RESUMEN

All internal organs are asymmetric along the left-right axis. Here we report a genetic screen to discover mutations which perturb organ laterality. Our particular focus is upon whether, and how, organs are linked to each other as they achieve their laterally asymmetric positions. We generated mutations by ENU mutagenesis and examined F3 progeny using a cocktail of probes that reveal early primordia of heart, gut, liver and pancreas. From the 750 genomes examined, we isolated seven recessive mutations which affect the earliest left-right positioning of one or all of the organs. None of these mutations caused discernable defects elsewhere in the embryo at the stages examined. This is in contrast to those mutations we reported previously (Chen et al., 1997) which, along with left-right abnormalities, cause marked perturbation in gastrulation, body form or midline structures. We find that the mutations can be classified on the basis of whether they perturb relationships among organ laterality. In Class 1 mutations, none of the organs manifest any left-right asymmetry. The heart does not jog to the left and normally leftpredominant BMP4 in the early heart tube remains symmetric. The gut tends to remain midline. There frequently is a remarkable bilateral duplication of liver and pancreas. Embryos with Class 2 mutations have organotypic asymmetry but, in any given embryo, organ positions can be normal, reversed or randomized. Class 3 reveals a hitherto unsuspected gene that selectively affects laterality of heart. We find that visceral organ positions are predicted by the direction of the preceding cardiac jog. We interpret this as suggesting that normally there is linkage between cardiac and visceral organ laterality. Class 1 mutations, we suggest, effectively remove the global laterality signals, with the consequence that organ positions are effectively symmetrical. Embryos with Class 2 mutations do manifest linkage among organs, but it may be reversed, suggesting that the global signals may be present but incorrectly orientated in some of the embryos. That laterality decisions of organs may be independently perturbed, as in the Class 3 mutation, indicates that there are distinctive pathways for reception and organotypic interpretation of the global signals.

3.
Mech Dev ; 99(1-2): 187-90, 2000 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-11091091

RESUMEN

Forkhead activin signal transducer (FAST) is a member of the winged-helix family of DNA-binding proteins that has been implicated in mesoderm induction and left-right axis specification during embryonic development in Xenopus and mouse. We have cloned and characterized a zebrafish FAST homolog. Zebrafish fast is expressed maternally and zygotically. Transcripts start regionalizing and decline in level during gastrulation. During somitogenesis, fast is expressed bilaterally in the lateral plate mesoderm, like its mouse homolog. In addition, zebrafish fast is also expressed bilaterally in the dorsal diencephalon, where the nodal-related cyclops gene is only expressed on the left side. It remains to be demonstrated whether FAST expression in the brain can mediate Nodal-induced asymmetric development.


Asunto(s)
Clonación Molecular , Proteínas de Unión al ADN/biosíntesis , Proteínas de Unión al ADN/genética , Factores de Transcripción/biosíntesis , Factores de Transcripción/genética , Pez Cebra/embriología , Secuencia de Aminoácidos , Animales , Encéfalo/embriología , ADN Complementario/metabolismo , Factores de Transcripción Forkhead , Hibridación in Situ , Mesodermo/metabolismo , Datos de Secuencia Molecular , ARN Mensajero/metabolismo , Homología de Secuencia de Aminoácido , Somitos/metabolismo , Factores de Tiempo
4.
Mol Cell ; 6(2): 255-67, 2000 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-10983974

RESUMEN

Individual vertebrate Hox genes specify aspects of segment identity along the anterior-posterior axis. The exquisite in vivo specificity of Hox proteins is thought to result from their interactions with members of the Pbx/Exd family of homeodomain proteins. Here, we report the identification and cloning of a zebrafish gene, lazarus, which is required globally for segmental patterning in the hindbrain and anterior trunk. We show that lazarus is a novel pbx gene and provide evidence that it is the primary pbx gene required for the functions of multiple hox genes during zebrafish development. lazarus plays a critical role in orchestrating the corresponding segmentation of the hindbrain and the pharyngeal arches, a key step in the development of the vertebrate body plan.


Asunto(s)
Tipificación del Cuerpo/genética , Regulación de la Expresión Génica , Genes Homeobox , Genes Reguladores , Rombencéfalo/embriología , Pez Cebra/embriología , Pez Cebra/genética , Animales , Proteínas de Unión al ADN/genética , Embrión no Mamífero/fisiología , Mutagénesis , Reacción en Cadena de la Polimerasa , Factor de Transcripción 1 de la Leucemia de Células Pre-B , Proteínas Proto-Oncogénicas/genética
5.
Hum Mol Genet ; 9(14): 2189-96, 2000 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-10958658

RESUMEN

The zebrafish (Danio rerio) possesses two mechanosensory organs believed to be homologous to each other: the inner ear, which is responsible for the senses of audition and equilibrium, and the lateral line organ, which is involved in the detection of water movements. Eight zebrafish circler or auditory/vestibular mutants appear to have defects specific to sensory hair cell function. The circler genes may therefore encode components of the mechanotransduction apparatus and/or be the orthologous counterparts of the genes underlying human hereditary deafness. In this report, we show that the phenotype of the circler mutant, mariner, is due to mutations in the gene encoding Myosin VIIA, an unconventional myosin which is expressed in sensory hair cells and is responsible for various types of hearing disorder in humans, namely Usher 1B syndrome, DFNB2 and DFNA11. Our analysis of the fine structure of hair bundles in the mariner mutants suggests that a missense mutation within the C-terminal FERM domain of the tail of Myosin VIIA has the potential to dissociate the two different functions of the protein in hair bundle integrity and apical endocytosis. Notably, mariner sensory hair cells display morphological and functional defects that are similar to those present in mouse shaker-1 hair cells which are defective in Myosin VIIA. Thus, this study demonstrates the striking conservation of the function of Myosin VIIA throughout vertebrate evolution and establishes mariner as the first fish model for human hereditary deafness.


Asunto(s)
Proteínas de Unión al ADN/genética , Pérdida Auditiva Sensorineural/genética , Mutación Missense , Miosinas/genética , Alelos , Animales , Mapeo Cromosómico , Clonación Molecular , ADN Complementario/metabolismo , Proteínas de Unión al ADN/biosíntesis , Dineínas , Embrión no Mamífero/metabolismo , Embrión no Mamífero/ultraestructura , Hibridación in Situ , Ratones , Microscopía Electrónica , Modelos Genéticos , Datos de Secuencia Molecular , Miosina VIIa , Miosinas/biosíntesis , Fenotipo , Mapeo Físico de Cromosoma , Unión Proteica , Estructura Terciaria de Proteína , ARN Mensajero/metabolismo , Factores de Tiempo , Transposasas , Pez Cebra
7.
Dev Biol ; 219(2): 350-63, 2000 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-10694427

RESUMEN

The floor plate is a morphologically distinct structure of epithelial cells situated along the midline of the ventral spinal cord in vertebrates. It is a source of guidance molecules directing the growth of axons along and across the midline of the neural tube. In the zebrafish, the floor plate is about three cells wide and composed of cuboidal cells. Two cell populations can be distinguished by the expression patterns of several marker genes, including sonic hedgehog (shh) and the fork head-domain gene fkd4: a single row of medial floor plate (MFP) cells, expressing both shh and fkd4, is flanked by rows of lateral floor plate (LFP) cells that express fkd4 but not shh. Systematic mutant searches in zebrafish embryos have identified a number of genes, mutations in which visibly reduce the floor plate. In these mutants either the MFP or the LFP cells are absent, as revealed by the analysis of the shh and fkd4 expression patterns. MFP cells are absent, but LFP cells are present, in mutants of cyclops, one-eyed pinhead, and schmalspur, whose development of midline structures is affected. LFP cells are absent, but MFP cells are present, in mutants of four genes, sonic you, you, you-too, and chameleon, collectively called the you-type genes. This group of mutants also shows defects in patterning of the paraxial mesoderm, causing U- instead of V-shaped somites. One of the you-type genes, sonic you, was recently shown to encode the zebrafish Shh protein, suggesting that the you-type genes encode components of the Shh signaling pathway. It has been shown previously that in the zebrafish shh is required for the induction of LFP cells, but not for the development of MFP cells. This conclusion is supported by the finding that injection of shh RNA causes an increase in the number of LFP, but not MFP cells. Embryos mutant for iguana, detour, and umleitung share the lack of LFP cells with you-type mutants while somite patterning is not severely affected. In mutants that fail to develop a notochord, MFP cells may be present, but are always surrounded by LFP cells. These data indicate that shh, expressed in the notochord and/or the MFP cells, induces the formation of LFP cells. In embryos doubly mutant for cyclops (cyc) and sonic you (syu) both LFP and MFP cells are deleted. The number of primary motor neurons is strongly reduced in cyc;syu double mutants, while almost normal in single mutants, suggesting that the two different pathways have overlapping functions in the induction of primary motor neurons.


Asunto(s)
Médula Espinal/citología , Médula Espinal/embriología , Transactivadores , Pez Cebra/embriología , Animales , Tipificación del Cuerpo/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog , Hibridación in Situ , Ratones , Neuronas Motoras/citología , Mutación , Notocorda/citología , Notocorda/embriología , Proteínas/genética , Especificidad de la Especie , Pez Cebra/genética
8.
Mech Dev ; 91(1-2): 409-13, 2000 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-10704875

RESUMEN

The floor plate of the neural tube serves an important function as a source of signals that pattern cell fates in the nervous system as well as directing proper axon pathfinding. We have cloned a novel zebrafish wnt family member, wnt4b, which is expressed exclusively in the floor plate. To place wnt4b in the context of known regulators of midline development, its expression was analyzed in the zebrafish mutants cyclops (cyc), floating head (flh), you-too (yot), and sonic you (syu). wnt4b expression in the medial and lateral floor plate are shown to be regulated independently: medial floor plate expression occurs in the absence of a notochord, while lateral floor plate expression requires a functional notochord, sonic hedgehog and gli-2.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Proteínas Oncogénicas/genética , Proteínas/genética , Proteínas Proto-Oncogénicas/genética , Transactivadores , Factores de Transcripción/genética , Pez Cebra/genética , Secuencia de Aminoácidos , Animales , Proteínas Hedgehog , Datos de Secuencia Molecular , Mutación , Homología de Secuencia de Aminoácido , Proteínas Wnt , Proteína Wnt4 , Pez Cebra/embriología , Proteína con Dedos de Zinc GLI1
9.
Nat Genet ; 23(1): 86-9, 1999 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-10471505

RESUMEN

Recent large-scale mutagenesis screens have made the zebrafish the first vertebrate organism to allow a forward genetic approach to the discovery of developmental control genes. Mutations can be cloned positionally, or placed on a simple sequence length polymorphism (SSLP) map to match them with mapped candidate genes and expressed sequence tags (ESTs). To facilitate the mapping of candidate genes and to increase the density of markers available for positional cloning, we have created a radiation hybrid (RH) map of the zebrafish genome. This technique is based on somatic cell hybrid lines produced by fusion of lethally irradiated cells of the species of interest with a rodent cell line. Random fragments of the donor chromosomes are integrated into recipient chromosomes or retained as separate minichromosomes. The radiation-induced breakpoints can be used for mapping in a manner analogous to genetic mapping, but at higher resolution and without a need for polymorphism. Genome-wide maps exist for the human, based on three RH panels of different resolutions, as well as for the dog, rat and mouse. For our map of the zebrafish genome, we used an existing RH panel and 1,451 sequence tagged site (STS) markers, including SSLPs, cloned candidate genes and ESTs. Of these, 1,275 (87.9%) have significant linkage to at least one other marker. The fraction of ESTs with significant linkage, which can be used as an estimate of map coverage, is 81.9%. We found the average marker retention frequency to be 18.4%. One cR3000 is equivalent to 61 kb, resulting in a potential resolution of approximately 350 kb.


Asunto(s)
Genoma , Mapeo Físico de Cromosoma , Pez Cebra/genética , Animales , Mapeo Cromosómico , Electroforesis en Gel de Agar , Etiquetas de Secuencia Expresada , Marcadores Genéticos , Escala de Lod , Modelos Genéticos , Polimorfismo Genético , Lugares Marcados de Secuencia , Programas Informáticos
10.
Mech Dev ; 86(1-2): 147-50, 1999 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-10446273

RESUMEN

Transcription factors of the TCF/LEF family interact with the Wnt signaling pathway to control transcription of downstream genes (Clevers, H., van de Wetering, M., 1997. TCF/LEF factor earn their wings. Trends Genet. 13, 485-489). We were interested in cloning family members which were expressed in zebrafish neural crest, because Wnt signaling modulates specification of neural crest fate (Dorsky, R.I., Moon, R.T., Raible, D.W., 1998. Control of neural crest cell fate by the Wnt signalling pathway. Nature 396, 370-373). We cloned a zebrafish homolog of lef1 and localized its chromosomal position by radiation hybrid mapping. lef1 is expressed in the neural crest as well as the tailbud and developing mesoderm, and is maternally expressed in zebrafish, unlike mouse and Xenopus homologs. In addition, we cloned two tcf3 genes and a homolog of tcf4, neither of which were strongly expressed in premigratory neural crest.


Asunto(s)
Proteínas de Unión al ADN/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas HMGB , Factores de Transcripción/genética , Pez Cebra/embriología , Pez Cebra/genética , Secuencia de Aminoácidos , Animales , Mapeo Cromosómico , Clonación Molecular , Proteínas de Unión al ADN/metabolismo , Embrión no Mamífero , Femenino , Hibridación in Situ , Factor de Unión 1 al Potenciador Linfoide , Ratones , Datos de Secuencia Molecular , Homología de Secuencia de Aminoácido , Factores de Transcripción TCF , Proteína 1 Similar al Factor de Transcripción 7 , Proteína 2 Similar al Factor de Transcripción 7 , Factores de Transcripción/metabolismo , Proteínas de Xenopus
11.
Development ; 126(12): 2727-37, 1999 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-10331983

RESUMEN

The zebrafish detour (dtr) mutation generates a novel neuronal phenotype. In dtr mutants, most cranial motor neurons, especially the branchiomotor, are missing. However, spinal motor neurons are generated normally. The loss of cranial motor neurons is not due to aberrant hindbrain patterning, failure of neurogenesis, increased cell death or absence of hh expression. Furthermore, activation of the Hh pathway, which normally induces branchiomotor neurons, fails to induce motor neurons in the dtr hindbrain. Despite this, not all Hh-mediated regulation of hindbrain development is abolished since the regulation of a neural gene by Hh is intact in the dtr hindbrain. Finally, dtr can function cell autonomously to induce branchiomotor neurons. These results suggest that detour encodes a component of the Hh signaling pathway that is essential for the induction of motor neurons in the hindbrain but not in the spinal cord and that dtr function is required for the induction of only a subset of Hh-mediated events in the hindbrain.


Asunto(s)
Neuronas Motoras/fisiología , Mutación , Rombencéfalo/embriología , Columna Vertebral/inervación , Transactivadores , Factores de Transcripción , Proteínas de Pez Cebra , Pez Cebra/genética , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Moléculas de Adhesión Celular Neuronal/genética , Moléculas de Adhesión Celular Neuronal/metabolismo , Contactina 2 , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Embrión no Mamífero , Inducción Embrionaria/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog , Factores de Crecimiento Nervioso/genética , Factores de Crecimiento Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Netrina-1 , Proteínas/genética , Proteínas/metabolismo , Rombencéfalo/metabolismo , Transducción de Señal , Columna Vertebral/embriología , Proteínas Supresoras de Tumor , Pez Cebra/embriología
12.
Development ; 126(10): 2149-59, 1999 May.
Artículo en Inglés | MEDLINE | ID: mdl-10207140

RESUMEN

Signaling by members of the TGFbeta superfamily is thought to be transduced by Smad proteins. Here, we describe a zebrafish mutant in smad5, designated somitabun (sbn). The dominant maternal and zygotic effect of the sbntc24 mutation is caused by a change in a single amino acid in the L3 loop of Smad5 protein which transforms Smad5 into an antimorphic version, inhibiting wild-type Smad5 and related Smad proteins. sbn mutant embryos are strongly dorsalized, similarly to mutants in Bmp2b, its putative upstream signal. Double mutant analyses and RNA injection experiments show that sbn and bmp2b interact and that sbn acts downstream of Bmp2b signaling to mediate Bmp2b autoregulation during early dorsoventral (D-V) pattern formation. Comparison of early marker gene expression patterns, chimera analyses and rescue experiments involving temporally controlled misexpression of bmp or smad in mutant embryos reveal three phases of D-V patterning: an early sbn- and bmp2b-independent phase when a coarse initial D-V pattern is set up, an intermediate sbn- and bmp2b-dependent phase during which the putative morphogenetic Bmp2/4 gradient is established, and a later sbn-independent phase during gastrulation when the Bmp2/4 gradient is interpreted and cell fates are specified.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Proteínas de Unión al ADN/metabolismo , Fosfoproteínas/metabolismo , Transducción de Señal , Transactivadores/metabolismo , Factor de Crecimiento Transformador beta , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Tipificación del Cuerpo , Proteína Morfogenética Ósea 2 , Proteína Morfogenética Ósea 4 , Proteínas Morfogenéticas Óseas/genética , Proteínas Morfogenéticas Óseas/farmacología , ADN Complementario , Proteínas de Unión al ADN/genética , Ligamiento Genético , Humanos , Datos de Secuencia Molecular , Fenotipo , Fosfoproteínas/genética , Proteínas Smad , Proteína Smad5 , Transactivadores/genética , Pez Cebra , Proteínas de Pez Cebra
13.
Mech Dev ; 80(2): 223-6, 1999 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-10072793

RESUMEN

We have identified Zkrml2, a novel homologue of the segmentation gene Krml/val in zebrafish (Danio rerio). Zkrml2 shows 72% and 92% identity in its basic leucine zipper domain with mouse Krml1 and zebrafish val, respectively. Zkrml2 is expressed coincident with MyoD throughout the somites starting at the three somite stage, becomes restricted to the dermomyotome, and subsequently disappears. Transient expression is also detected in the reticulospinal and oculomotor neurons. Zkrml2 maps to the Oregon linkage group 11 (Boston Linkage group 14) with no mapped zebrafish mutations nearby.


Asunto(s)
Proteínas Aviares , Proteínas de Unión al ADN/genética , Regulación del Desarrollo de la Expresión Génica , Genes , Proteínas Oncogénicas , Somitos/metabolismo , Factores de Transcripción/genética , Proteínas de Pez Cebra , Pez Cebra/genética , Secuencia de Aminoácidos , Animales , Mapeo Cromosómico , Proteínas de Unión al ADN/biosíntesis , Embrión no Mamífero/metabolismo , Embrión no Mamífero/ultraestructura , Femenino , Leucina Zippers/genética , Factores de Transcripción Maf , Factor de Transcripción MafB , Masculino , Mesencéfalo/embriología , Mesencéfalo/metabolismo , Ratones , Datos de Secuencia Molecular , Morfogénesis/genética , Mutagénesis , Proteínas del Tejido Nervioso/biosíntesis , Proteínas del Tejido Nervioso/genética , Neuronas/metabolismo , Especificidad de Órganos , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas c-maf , Rombencéfalo/embriología , Rombencéfalo/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad de la Especie , Factores de Transcripción/biosíntesis , Pez Cebra/embriología
14.
Development ; 126(6): 1225-34, 1999 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-10021341

RESUMEN

Left-right asymmetry in vertebrates is controlled by activities emanating from the left lateral plate. How these signals get transmitted to the forming organs is not known. A candidate mediator in mouse, frog and zebrafish embryos is the homeobox gene Pitx2. It is asymmetrically expressed in the left lateral plate mesoderm, tubular heart and early gut tube. Localized Pitx2 expression continues when these organs undergo asymmetric looping morphogenesis. Ectopic expression of Xnr1 in the right lateral plate induces Pitx2 transcription in Xenopus. Misexpression of Pitx2 affects situs and morphology of organs. These experiments suggest a role for Pitx2 in promoting looping of the linear heart and gut.


Asunto(s)
Tipificación del Cuerpo , Sistema Digestivo/embriología , Genes Homeobox , Corazón/embriología , Proteínas de Homeodominio/metabolismo , Proteínas Nucleares , Factores de Transcripción/metabolismo , Vertebrados/embriología , Anomalías Múltiples/embriología , Activinas , Secuencia de Aminoácidos , Animales , Comunicación Celular , Gástrula , Regulación del Desarrollo de la Expresión Génica , Inhibinas/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Ratones , Ratones Mutantes , Datos de Secuencia Molecular , Morfogénesis , Proteína Nodal , Factores de Transcripción Paired Box , Homología de Secuencia de Aminoácido , Especificidad de la Especie , Distribución Tisular , Factor de Crecimiento Transformador beta/biosíntesis , Factor de Crecimiento Transformador beta/metabolismo , Xenopus , Proteínas de Xenopus , Pez Cebra , Proteínas de Pez Cebra , Proteína del Homeodomínio PITX2
16.
Dev Biol ; 216(2): 469-80, 1999 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-10642786

RESUMEN

The specification of different muscle cell types in the zebrafish embryo requires signals that emanate from the axial mesoderm. In previous studies we and others have shown that overexpression of different members of the Hedgehog protein family can induce the differentiation of two types of slow-twitch muscles, the superficially located slow-twitch fibres and the medially located muscle pioneer cells. Here we have investigated the requirement for Hedgehog signalling in the specification of these distinct muscle cell types in two ways: first, by characterising the effects on target gene expression and muscle cell differentiation of the u-type mutants, members of a phenotypic group previously implicated in Hedgehog signalling, and second, by analysing the effects of overexpression of the Patched1 protein, a negative regulator of Hedgehog signalling. Our results support the idea that most u-type genes are required for Hedgehog signalling and indicate that while such signalling is essential for slow myocyte differentiation, the loss of activity of one signal, Sonic hedgehog, can be partially compensated for by other Hedgehog family proteins.


Asunto(s)
Músculos/embriología , Proteínas/metabolismo , Transducción de Señal , Transactivadores , Animales , Diferenciación Celular , Técnica del Anticuerpo Fluorescente , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog , Hibridación in Situ , Factores de Transcripción de Tipo Kruppel , Proteínas de la Membrana/genética , Músculos/metabolismo , Mutación , Proteína MioD/genética , Miosinas/metabolismo , Receptores Patched , Receptor Patched-1 , ARN Mensajero/metabolismo , Receptores de Superficie Celular , Somitos/metabolismo , Factores de Transcripción/metabolismo , Pez Cebra , Proteínas de Pez Cebra , Proteína Gli2 con Dedos de Zinc
17.
Mech Dev ; 76(1-2): 101-15, 1998 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-9767138

RESUMEN

The role of zebrafish hedgehog genes in branchiomotor neuron development was analyzed by examining mutations that affect the expression of the hedgehog genes and by overexpressing these genes in embryos. In cyclops mutants, reduction in sonic hedgehog (shh) expression, and elimination of tiggy-winkle hedgehog (twhh) expression, correlated with reductions in branchiomotor neuron populations. Furthermore, branchiomotor neurons were restored in cyclops mutants when shh or twhh was overexpressed. These results suggest that Shh and/or Twhh play an important role in the induction of branchiomotor neurons in vivo. In sonic-you (syu) mutants, where Shh activity was reduced or eliminated due to mutations in shh, branchiomotor neurons were reduced in number in a rhombomere-specific fashion, but never eliminated. Similarly, spinal motor neurons were reduced, but not eliminated, in syu mutants. These results demonstrate that Shh is not solely responsible for inducing branchiomotor and spinal motor neurons, and suggest that Shh and Twhh may function as partially redundant signals for motor neuron induction in zebrafish.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Neuronas/fisiología , Proteínas/genética , Transactivadores , Pez Cebra/embriología , Animales , Región Branquial/inervación , Núcleo Celular/patología , Embrión no Mamífero , Inducción Embrionaria , Proteínas Hedgehog , Péptidos y Proteínas de Señalización Intracelular , Neuronas Motoras/fisiología , Mutación , Sistema Nervioso/embriología , Proteínas/metabolismo , Rombencéfalo/embriología , Rombencéfalo/patología , Médula Espinal , Factor de Crecimiento Transformador beta/genética , Proteínas de Pez Cebra
18.
Proc Natl Acad Sci U S A ; 95(17): 9932-7, 1998 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-9707578

RESUMEN

Ventral structures in the central nervous system are patterned by signals emanating from the underlying mesoderm as well as originating within the neuroectoderm. Mutations in the zebrafish, Danio rerio, are proving instrumental in dissecting these midline signals. The cyclops mutation leads to a loss of medial floor plate and to severe deficits in ventral forebrain development, leading to cyclopia. Here, we report that the cyclops locus encodes the nodal-related protein Ndr2, a member of the transforming growth factor type beta superfamily of factors. The evidence includes identification of a missense mutation in the initiation codon and rescue of the cyclops phenotype by expression of ndr2 RNA, here renamed "cyclops." Thus, in interaction with other molecules implicated in these processes such as sonic hedgehog and one-eyed-pinhead, cyclops is required for ventral midline patterning of the embryonic central nervous system.


Asunto(s)
Tipificación del Cuerpo/genética , Proteínas , Factor de Crecimiento Transformador beta/genética , Proteínas de Pez Cebra , Pez Cebra/embriología , Pez Cebra/genética , Alelos , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Sistema Nervioso Central/embriología , Cartilla de ADN/genética , ADN Complementario/genética , Anomalías del Ojo/embriología , Anomalías del Ojo/genética , Regulación del Desarrollo de la Expresión Génica , Datos de Secuencia Molecular , Mutación , Ligandos de Señalización Nodal , Fenotipo , Transducción de Señal/fisiología , Factor de Crecimiento Transformador beta/fisiología , Pez Cebra/fisiología
19.
Dev Genet ; 23(1): 65-76, 1998.
Artículo en Inglés | MEDLINE | ID: mdl-9706695

RESUMEN

Segmentation in the vertebrate embryo is evident within the paraxial mesoderm in the form of somites, which are repeated structures that give rise to the vertebrae and muscle of the trunk and tail. In the zebrafish, our genetic screen identified two groups of mutants that affect somite formation and pattern. Mutations of one class, the fss-type mutants, disrupt the formation of the anterior-posterior somite boundaries during somitogenesis. However, segmentation within the paraxial mesoderm is not completely eliminated in these mutants. Irregular somite boundaries form later during embryogenesis and, strikingly, the vertebrae are not fused. Here, we show that formation of the irregular somite boundaries in these mutants is dependent upon the activity of a second group of genes, the you-type genes, which include sonic you, the zebrafish homologue of the Drosophila segment polarity gene, sonic hedgehog. Further to characterize the defects caused by the fss-type mutations, we examined their effects on the expression of her1, a zebrafish homologue of the Drosophila pair-rule gene hairy. In wild-type embryos, her1 is expressed in a dynamic, repeating pattern, remarkably similar to that of its Drosophila and Tribolium counterparts, suggesting that a pair-rule mechanism also functions in the segmentation of the vertebrate paraxial mesoderm. We have found that the fss-type mutants have abnormal pair-rule patterning. Although a her1 mutant could not be identified, analysis of a double mutant that abolishes most her1 expression suggests that a her1 mutant may not display a pair-rule phenotype analogous to the hairy phenotype observed in Drosophila. Cumulatively, our data indicate that zebrafish homologues of both the Drosophila segment polarity genes and pair-rule genes are involved in segmenting the paraxial mesoderm. However, both the relationship between these two groups of genes within the genetic heirarchy governing segmentation and the precise roles that they play during segmentation likely differ significantly between the two organisms.


Asunto(s)
Tipificación del Cuerpo/genética , Pez Cebra/embriología , Pez Cebra/genética , Animales , Drosophila/embriología , Drosophila/genética , Regulación del Desarrollo de la Expresión Génica , Genes de Insecto , Ligamiento Genético , Mutación , Fenotipo , Somitos/citología , Especificidad de la Especie
20.
Dev Biol ; 199(2): 261-72, 1998 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-9698446

RESUMEN

Nodal-related 1 (ndr1) and nodal-related 2 (ndr2) genes in zebrafish encode members of the nodal subgroup of the transforming growth factor-beta superfamily. We report the expression patterns and functional characteristics of these factors, implicating them in the establishment of dorsal-ventral polarity and left-right asymmetry. Ndr1 is expressed maternally, and ndr1 and ndr2 are expressed during blastula stage in the blastoderm margin. During gastrulation, ndr expression subdivides the shield into two domains: a small group of noninvoluting cells, the dorsal forerunner cells, express ndr1, while ndr2 RNA is found in the hypoblast layer of the shield and later in notochord, prechordal plate, and overlying anterior neurectoderm. During somitogenesis, ndr2 is expressed asymmetrically in the lateral plate as are nodal-related genes of other organisms, and in a small domain in the left diencephalon, providing the first observation of asymmetric gene expression in the embryonic forebrain. RNA injections into Xenopus animal caps showed that Ndr1 acts as a mesoderm inducer, whereas Ndr2 is an efficient neural but very inefficient mesoderm inducer. We suggest that Ndr1 has a role in mesoderm induction, while Ndr2 is involved in subsequent specification and patterning of the nervous system and establishment of laterality.


Asunto(s)
Tipificación del Cuerpo/genética , Factor de Crecimiento Transformador beta/genética , Proteínas de Xenopus , Proteínas de Pez Cebra , Pez Cebra/embriología , Pez Cebra/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Tipificación del Cuerpo/fisiología , Clonación Molecular , Cartilla de ADN/genética , Inducción Embrionaria/genética , Inducción Embrionaria/fisiología , Femenino , Regulación del Desarrollo de la Expresión Génica , Hibridación in Situ , Péptidos y Proteínas de Señalización Intracelular , Masculino , Ratones , Datos de Secuencia Molecular , Proteína Nodal , Ligandos de Señalización Nodal , Reacción en Cadena de la Polimerasa , Proteínas/genética , ARN/genética , Homología de Secuencia de Aminoácido , Especificidad de la Especie , Factor de Crecimiento Transformador beta/fisiología , Xenopus/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA