Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Structure ; 22(10): 1467-77, 2014 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-25295398

RESUMEN

The Staphylococcus aureus virulence factor staphylococcal protein A (SpA) is a major contributor to bacterial evasion of the host immune system, through high-affinity binding to host proteins such as antibodies. SpA includes five small three-helix-bundle domains (E-D-A-B-C) separated by conserved flexible linkers. Prior attempts to crystallize individual domains in the absence of a binding partner have apparently been unsuccessful. There have also been no previous structures of tandem domains. Here we report the high-resolution crystal structures of a single C domain, and of two B domains connected by the conserved linker. Both structures exhibit extensive multiscale conformational heterogeneity, which required novel modeling protocols. Comparison of domain structures shows that helix1 orientation is especially heterogeneous, coordinated with changes in side chain conformational networks and contacting protein interfaces. This represents the kind of structural plasticity that could enable SpA to bind multiple partners.


Asunto(s)
Proteína Estafilocócica A/química , Proteína Estafilocócica A/metabolismo , Staphylococcus aureus/química , Cristalografía por Rayos X , Modelos Moleculares , Conformación Proteica , Estructura Terciaria de Proteína
2.
Structure ; 22(8): 1184-1195, 2014 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-25087509

RESUMEN

Staphylococcal protein A (SpA) is a multidomain protein consisting of five globular IgG binding domains separated by a conserved six- to nine-residue flexible linker. We collected SAXS data on the N-terminal protein-binding half of SpA (SpA-N) and constructs consisting of one to five domain modules in order to determine statistical conformation of this important S. aureus virulence factor. We fit the SAXS data to a scattering function based on a new polymer physics model, which provides an analytical description of the SpA-N statistical conformation. We describe a protocol for systematically determining the appropriate level of modeling to fit a SAXS data set based on goodness of fit and whether the addition of parameters improves it. In the case of SpA-N, the analytical polymer physics description provides a depiction of the statistical conformation of a flexible protein that, while lacking atomistic detail, properly reflects the information content of the data.


Asunto(s)
Modelos Moleculares , Biología Molecular/métodos , Proteína Estafilocócica A/química , Staphylococcus aureus/química , Secuencia de Aminoácidos , Datos de Secuencia Molecular , Conformación Proteica , Dispersión del Ángulo Pequeño
3.
Proteins ; 81(6): 955-67, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23229832

RESUMEN

We performed a conformational analysis of the central residues of three tripeptides glycyl-L-isoleucyl-glycine (GIG), glycyl-L-tyrosyl-glycine (GYG) and glycyl-L-arginyl-glycine (GRG) in aqueous solution, based on a global analysis of amide I' band profiles and NMR J-coupling constants. The results are compared with recently reported distributions of GVG, GFG and GEG. For GIG and GYG, we found that even though the polyproline II (pPII) fraction is below 0.5, it is still the most populated conformation, whereas GVG and GFG show both a larger ß-strand fraction. For GRG, we observed a clear dominance of pPII over ß-strand, reminiscent of observations for GEG and GKG. This finding indicates that terminal charges on otherwise hydrophobic residue side chains stabilize pPII over ß-strand conformations. For all peptides investigated we found that a variety of compact and turn-like conformations constitute nearly 20 percent of their conformational distributions. Attempts to analyze our data with a simple two-state pPII-->/<--ß model therefore do not yield any satisfactory reproduction of experimental results. A comparison of the obtained GxG ensembles with conformational distributions of GxG segments in truncated coil libraries (helices and sheets omitted) revealed a much larger fraction of type II ß(i+2) and type III ß like conformations for the latter. Thus, a comparison of conformational distributions of unfolded peptide segments in solution and in coil libraries reveal interesting information on how the interplay between intrinsic propensities of amino acid residues and non-local interactions in polypeptide chains determine the conformations of loop segments in proteins.


Asunto(s)
Oligopéptidos/química , Desplegamiento Proteico , Interacciones Hidrofóbicas e Hidrofílicas , Conformación Molecular , Resonancia Magnética Nuclear Biomolecular , Estructura Secundaria de Proteína
4.
Chemistry ; 17(24): 6789-97, 2011 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-21547966

RESUMEN

Local structure in unfolded proteins, especially turn segments, has been suggested to initiate the hierarchical protein-folding process. To determine the intrinsic propensity to form such turn structures, amide I' band profiles of the Raman, IR, and vibrational circular dichroism (VCD) spectra, and several structure-sensitive NMR J-coupling constants, have been measured for a series of GxG (x=D, N, T, C) peptides, in which the central x residues are abundant in various turn motifs in folded proteins. In addition, we revisited earlier measured GSG experimental data. To check whether this relatively high propensity for these residues to sample turns reflects an intrinsic propensity, the experimental data were analyzed in terms of conformational distributions that can be described as a superposition of two-dimensional Gaussian distributions associated with different so-called mesostates. The analysis reveals that the investigated residues sample dihedral angles similar to those found in the corner residues of various turns, namely, type I/I', II/II', and IV ß-turns. Aspartic acid (D) was found to predominantly sample regions attributed to turns, including distributions at the upper border of the upper-right quadrant of the Ramachandran plot, which bear some resemblance to asx-turns observed in proteins. This conformation enables hydrogen bonding between the side-chain carboxylate and the C-terminal amide group. Altogether, the study shows that the high propensity for T, S, C, N, and D to be located in turn motifs reflects, to a substantial degree, an intrinsic property and supports the role of these residues as initiation sites for hierarchical folding processes that can lead to compact structures in the unfolded state of peptides and proteins.


Asunto(s)
Aminoácidos/química , Péptidos/química , Soluciones/química , Agua/química , Secuencia de Aminoácidos , Ácido Aspártico/química , Dicroismo Circular , Enlace de Hidrógeno , Modelos Moleculares , Conformación Molecular , Pliegue de Proteína , Espectrometría Raman
5.
J Phys Chem B ; 114(11): 3965-78, 2010 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-20184301

RESUMEN

Conformational properties of small, flexible peptides are a matter of ongoing interest since they can be considered as models for unfolded proteins. However, the investigation of the conformations of small peptides is challenging as they are ensembles of rapidly interconverting conformers; moreover, the different methods used are prone to different approximations and errors. In order to obtain more reliable results, it is prudent to combine different techniques; here, molecular dynamics (MD) simulations together with nuclear magnetic resonance (NMR), Fourier transform IR (FTIR), polarized Raman, and vibrational circular dichroism (VCD) measurements were used to study the conformational propensity of phenylalanine in the tripeptides AFA and GFG, motivated by the relevance of phenylalanine for the self-aggregation of peptides. The results of this analysis indicate that the F residue predominantly populates the beta-strand (beta) and polyproline II (PPII) conformations in both AFA and GFG. However, while phenylalanine exhibits a propensity for beta-strand conformations in GFG (0.40 < or = beta population < or = 0.69 and 0.29 < or = PPII population < or = 0.42), the substitution of terminal glycines with alanine residues induces a higher population of PPII (0.31 < or = beta population < or = 0.50 and 0.37 < or = PPII population < or = 0.57).


Asunto(s)
Oligopéptidos/química , Fenilalanina/química , Secuencia de Aminoácidos , Dicroismo Circular , Simulación de Dinámica Molecular , Resonancia Magnética Nuclear Biomolecular , Estructura Secundaria de Proteína , Espectroscopía Infrarroja por Transformada de Fourier , Espectrometría Raman
6.
J Am Chem Soc ; 132(2): 540-51, 2010 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-20014772

RESUMEN

A reliable intrinsic propensity scale of amino acid residues is indispensable for an assessment of how local conformational distributions in the unfolded state can affect the folding of peptides and proteins. Short host-guest peptides, such as GxG tripeptides, are suitable tools for probing such propensities. To explore the conformational distributions sampled by the central amino acid residue in these motifs, we combined vibrational (IR, Raman, and VCD) with NMR spectroscopy. The data were analyzed in terms of a superposition of two-dimensional Gaussian distribution functions in the Ramachandran space pertaining to subensembles of polyproline II, beta-strand, right- and left-handed helical, and gamma-turn-like conformations. The intrinsic propensities of eight amino acid residues (x = A, V, F, L, S, E, K, and M) in GxG peptides were determined as mole fractions of these subensembles. Our results show that alanine adopts primarily (approximately 80%) a PPII-like conformation, while valine and phenylalanine were found to sample PPII and beta-strand-like conformations equally. The centers of the respective beta-strand distributions generally do not coincide with canonical values of dihedral angles of residues in parallel or antiparallel beta-strands. In fact, the distributions for most residues found in the beta-region significantly overlap the PPII-region. A comparison with earlier reported results for trivaline reveals that the terminal valines increase the beta-strand propensity of the central valine residue even further. Of the remaining investigated amino acids, methionine preferred PPII the most (0.64), and E, S, L, and K exhibit moderate (0.56-0.45) PPII propensities. Residues V, F, S, E, and L sample, to a significant extent, a region between the canonical PPII and (antiparallel) beta-strand conformations. This region coincides with the sampling reported for L and V using theoretical predictions (Tran et al. Biochemistry 2005, 44, 11369). The distributions of all investigated residues differ from coil library and computationally predicted distributions in that they do not exhibit a substantial sampling of helical conformations. We conclude that this sampling of helical conformations arises from the context dependence, for example, neighboring residues, in proteins and longer peptides, some of which is long-range.


Asunto(s)
Amidas/química , Aminoácidos/química , Oligopéptidos/química , Espectroscopía de Resonancia Magnética
7.
J Biol Inorg Chem ; 14(8): 1289-300, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19639347

RESUMEN

We measured the circular dichroism (CD) and absorption spectra of the B-band region of microperoxidase 11 (MP11) as a function of temperature and peptide concentration. At micromolar concentrations, small MP11 dimers or trimers lead to excitonic coupling between low-spin and high-spin heme groups, to which the NH(2) group of the MP11 N-terminal and H(2)O are bound as a sixth ligand, respectively. These aggregates convert into monomers with hexacoordinated high-spin heme groups with increasing temperature. This transition can be described by a two-state model. Aggregation becomes more extended at 50 microM concentration and causes some B-band hyperchromism, which reflects a J-type arrangement of heme groups linked together in the aggregates formed. At near-millimolar concentration, the CD and absorption spectra of the B-band region suggest the existence of even more extended and thermally stable aggregates, which might involve mu-oxo dimers of the heme groups. The degree of aggregation at 50 and 500 microM concentration increases substantially if the sample is freed from most of its oxygen in a N(2) atmosphere. The CD spectrum of the monomeric high-spin species is reminiscent of that observed for the unfolded alkaline conformation of the intact protein. Finally, we investigated the binding of acetylmethionine (AcM) ligands to the heme at aggregation-supporting conditions (500 microM concentration). The data suggest that the ligand prevents any substantial aggregation. As a surprising result, our data reveal that AcM-MP11 complexes exhibit a high-spin/low-spin mixture, with the high-spin configuration being stabilized at high temperatures.


Asunto(s)
Hemo , Peroxidasas/metabolismo , Porfirinas , Animales , Dicroismo Circular , Citocromos c/química , Citocromos c/metabolismo , Hemo/química , Hemo/metabolismo , Caballos , Peroxidasas/química , Porfirinas/química , Porfirinas/metabolismo , Conformación Proteica , Espectrometría Raman , Temperatura
8.
Biochemistry ; 48(13): 2990-6, 2009 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-19222214

RESUMEN

We have measured and analyzed the pH dependence of the 695 nm charge transfer band of horse heart ferricytochrome c as a function of pH between 7.0 and 10.5 at high (50 mM) and low (0.5 mM) phosphate ion concentrations. Our data clearly reveal that the transition from the native state (III) to the two alkaline states (IV) involves two deprotonation steps which cannot be assigned to the two different lysine ligands associated with the two alkaline states. While the respective pK values are rather similar at high phosphate concentrations (9.23 and 9.14), they are clearly different at low anion concentrations (9.65 and 8.5). Apparently, the deprotonation that can be assigned to a pK of 8.5 populates an intermediate state termed III*, in which M80 is still an axial ligand. A comparison of Soret band CD spectra suggests that III* bears some similarity with the recently characterized thermally excited state IIIh. Our data suggest that the current picture of the alkaline transition is incomplete. The obtained results might be of relevance for characterizing the structure of ferricytochrome c bound to anionic phospholipids.


Asunto(s)
Álcalis/química , Citocromos c/química , Animales , Dicroismo Circular , Caballos , Concentración de Iones de Hidrógeno , Iones , Conformación Proteica , Protones , Rotación , Volumetría
9.
Methods Enzymol ; 466: 109-53, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-21609860

RESUMEN

Over the last 50 years cytochrome c has been used as a model system for studying electron transfer and protein folding processes. Recently, convincing evidence has been provided that this protein is also involved in other biological processes such as the apoptosis and α-synuclein aggregation. Numerous lines of evidence suggest that the diversity of the functional properties of cytochrome c is linked to its conformational plasticity. This chapter introduces circular dichroism and absorption spectroscopy, as an ideal tool to explore this protein's conformational in solution. Besides assisting in distinguishing different conformations and in obtaining the equilibrium thermodynamics of the transitions between them, the two spectroscopies can also be used to explore details of heme-protein interaction, for example, the influence of the external electric field on the prosthetic heme group.


Asunto(s)
Dicroismo Circular/métodos , Citocromos c/química , Espectrofotometría Atómica/métodos , Animales , Humanos , Modelos Moleculares , Conformación Proteica , Estabilidad Proteica
10.
Biochemistry ; 47(36): 9667-77, 2008 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-18702508

RESUMEN

The oxidized state of cytochrome c is a subject of continuous interest, owing to the multitude of conformations which the protein can adopt in solution and on surfaces of artificial and cell membranes. The structural diversity corresponds to a variety of functions in electron transfer, peroxidase and apoptosis processes. In spite of numerous studies, a comprehensive analysis and comparison of native and non-native states of ferricytochrome c has thus far not been achieved. This results in part from the fact that the influence of solvent conditions (i.e., ionic strength, anion concentration, temperature dependence of pH values) on structure, function and equilibrium thermodynamics has not yet been thoroughly assessed. The current study is a first step in this direction, in that it provides the necessary experimental data to compare different non-native states adopted at high temperature and alkaline pH. To this end, we employed visible electronic circular dichroism (ECD) and absorption spectroscopy to probe structural changes of the heme environment in bovine and horse heart ferricytochrome c as a function of temperature between 278 and 363 K at different neutral and alkaline pH values. A careful selection of buffers enabled us to monitor the partial unfolding of the native state at room temperature while avoiding a change to an alkaline state at high temperatures. We found compelling evidence for the existence of a thermodynamic intermediate of the thermal unfolding/folding process, termed III h, which is structurally different from the alkaline states, IV 1 and IV 2, contrary to current belief. At neutral or slightly acidic pH, III h is populated in a temperature region between 320 and 345 K. The unfolded state of the protein becomes populated at higher temperatures. The ECD spectra of the B-bands of bovine and horse heart cytochrome c (pH 7.0) exhibit a pronounced couplet that is maintained below 343 K, before protein unfolding replaces it by a rather strong positive Cotton band. A preliminary vibronic analysis of the B-band profile reveals that the couplet reflects a B-band splitting of 350 cm (-1), which is mostly of electronic origin, due to the internal electric field in the heme cavity. Our results suggest that the conformational transition from the native state, III, into a thermally activated intermediate state, III h, does not substantially affect the internal electric field and causes only moderate rearrangements of the heme pocket, which involves changes, rather than a rupture, of the Fe (3+)-M80 linkage. In the unfolded state, as well as in the alkaline states IV and V, the band splitting is practically eliminated, but the positive Cotton effect observed for the B-band suggests that the proximal environment, encompassing H18 and the two cysteine residues 14 and 17, is most likely still intact and covalently bound to the heme chromophore. Both alkaline states IV and V were found to melt via intermediate states. Unfolded states probed at neutral and alkaline pH can be discriminated, owing to the different intensities of the Cotton bands of the respective B-band transitions. Differences between the ECD intensities of the B-bands of the different unfolded states and alkaline states most likely reflect different degrees of openness of the corresponding heme crevice.


Asunto(s)
Citocromos c/química , Miocardio/enzimología , Pliegue de Proteína , Animales , Apoptosis/fisiología , Bovinos , Membrana Celular/química , Membrana Celular/enzimología , Dicroismo Circular , Citocromos c/metabolismo , Transporte de Electrón/fisiología , Caballos , Calor , Concentración de Iones de Hidrógeno , Membranas Artificiales , Concentración Osmolar , Peroxidasa/química , Peroxidasa/metabolismo , Estructura Terciaria de Proteína , Espectrofotometría Ultravioleta , Relación Estructura-Actividad
11.
Bioinorg Chem Appl ; : 257038, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18431450

RESUMEN

The N- and C-terminal blocked hexapeptide Ac-Leu-Ala-His-Tyr-Asn-Lys-amide (LAHYNK) representing the 80-85 fragment of histone H2B was synthesized and its interactions with Cu(II) and Ni(II) ions were studied by potentiometric, UV-Vis, CD, EPR, and NMR spectroscopic techniques in solution. Our data reveal that the imidazole N(3) nitrogen atom is the primary ligating group for both metal ions. Sequential amide groups deprotonation and subsequent coordination to metal ions indicated an {N(imidazole), 3N(amide)} coordination mode above pH approximately 9, in all cases. In the case of Cu(II)-peptide system, the almost exclusive formation of the predominant species CuL in neutral media accounting for almost 98% of the total metal ion concentration at pH 7.3 strongly indicates that at physiological pH values the sequence -LAHYNK- of histone H2B provides very efficient binding sites for metal ions. The imidazole pyrrole N(1) ionization (but not coordination) was also detected in species CuH(-4)L present in solution above pH approximately 11.

12.
J Chem Phys ; 127(13): 135103, 2007 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-17919056

RESUMEN

We measured the Soret band of deoxymyoglobin (deoxyMb), myoglobin cyanide (MbCN), and aquo-metmyoglobin (all from horse heart) with absorption and circular dichroism (CD) spectroscopies. A clear non-coincidence was observed between the absorption and CD profiles of deoxyMb and MbCN, with the CD profiles red- and blueshifted with respect to the absorption band position, respectively. On the contrary, the CD and absorption profiles of aquametMb were nearly identical. The observed noncoincidence indicates a splitting of the excited B state due to heme-protein interactions. CD and absorption profiles of deoxyMb and MbCN were self-consistently analyzed by employing a perturbation approach for weak vibronic coupling as well as the relative intensities and depolarization ratios of seven bands in the respective resonance Raman spectra measured with B-band excitation. The respective B(y) component was found to dominate the observed Cotton effect of both myoglobin derivatives. The different signs of the noncoincidences between CD and absorption bands observed for deoxyMb and MbCN are due to different signs of the respective matrix elements of A(1g) electronic interstate coupling, which reflects an imbalance of Gouterman's 50:50 states. The splitting of the B band reflects contributions from electronic and vibronic perturbations of B(1g) symmetry. The results of our analysis suggest that the broad and asymmetric absorption band of deoxyMb results from this band splitting rather than from its dependence on heme doming. Thus, we are able to explain recent findings that the temperature dependences of CO rebinding to myoglobin and the Soret band profile are uncorrelated[Ormos et al., Proc. Natl. Acad. Sci U.S.A. 95, 6762 (1998)].


Asunto(s)
Hemo/química , Modelos Químicos , Modelos Moleculares , Mioglobina/química , Simulación por Computador , Electrones , Conformación Proteica , Vibración
13.
J Phys Chem B ; 111(32): 9603-7, 2007 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-17628093

RESUMEN

The charge transfer (CT) band at 695 nm in the spectrum of ferri-cytochrome c is highly asymmetric, indicating conformational heterogeneity due to the coexistence of different conformational substates. We have measured the respective band profile of horse heart ferri-cytochrome c as a function of temperature between 283 K (10 degrees C) and 333 K (60 degrees C) and found that the well-known decrease of the absorptivity is wavenumber-dependent and exhibits a biphasic behavior. This indicates that the underlying conformational substates differ in their thermodynamic stability with respect to the structural changes associated with the disappearance of the 695 nm band, which eventually (at high temperatures) involves the replacement of M80 by a nearby lysine residue. Our data further indicates that the thermal unfolding process involves two structurally different intermediate states.


Asunto(s)
Citocromos c/química , Miocardio/química , Pliegue de Proteína , Temperatura , Animales , Caballos , Miocardio/enzimología , Conformación Proteica , Desnaturalización Proteica
14.
J Phys Chem B ; 111(23): 6527-33, 2007 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-17508736

RESUMEN

The function of heme proteins is, to a significant extent, influenced by the ligand field probed by the heme iron, which itself can be affected by deformations of the heme macrocycle. The exploration of this field is difficult because the heme structure obtained from X-ray crystallography is not resolved enough to unambiguously identify structural changes on the scale of 10(-2) A. However, asymmetric deformations in this order of magnitude affect the depolarization ratio of the resonance Raman lines assignable to normal vibrations of the heme group. We have measured the dispersion of the depolarization ratios of four structure sensitive Raman bands (i.e., nu4, nu11, nu21, and nu28) in yeast iso-1-ferrocytochrome c and its mutants N52V, Y67F, and N52VY67F with B- and Q-band excitation. The DPR dispersion of all bands indicates the presence of asymmetric in-plane and out-of-plane deformations. The replacement of the polar tyrosine residue at position 67 by phenylalanine significantly increases the triclinic B2g deformation, which involves a distortion of the pyrrole symmetry. We relate this deformation to changes of the electronic structure of pyrrole A, which modulates the interaction between its propionate substituents and the protein environment. This specific heme deformation is eliminated in the double mutant N52VY67F. The additional substitution of N52 by valine induces a tetragonal B1g deformation which involves asymmetric changes of the Fe-N distances and increases the rhombicity of the ligand field probed by the heme iron. This heme deformation might be caused by the elimination of the water-protein hydrogen-bonding network in the heme cavity. The single mutation N52V does not significantly perturb the heme symmetry, but a small B1g deformation is consistent with our data and the heme structure obtained from a 1 ns molecular dynamics simulation of the protein.


Asunto(s)
Citocromos c/química , Hemo/química , Mutación/genética , Saccharomyces cerevisiae/química , Espectrometría Raman , Algoritmos , Fenómenos Químicos , Química Física , Simulación por Computador , Modelos Químicos , Modelos Moleculares , Conformación Molecular , Conformación Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
15.
Biophys J ; 92(3): 989-98, 2007 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-17098790

RESUMEN

We have measured the electronic circular dichroism (ECD) of the ferri- and ferro-states of several natural cytochrome c derivatives (horse heart, chicken, bovine, and yeast) and the Y67F mutant of yeast in the region between 300 and 750 nm. Thus, we recorded the ECD of the B- and Q-band region as well as the charge-transfer band at approximately 695 nm. The B-band region of the ferri-state displays a nearly symmetric couplet at the B0-position that overlaps with a couplet 790 cm-1 higher in energy, which we assigned to a vibronic side-band transition. For the ferro-state, the couplet is greatly reduced, but still detectable. The B-band region is dominated by a positive Cotton effect at energies lower than B0 that is attributed to a magnetically allowed iron-->heme charge-transfer transition as earlier observed for nitrosyl myoglobin and hemoglobin. The Q-band region of the ferri-state is poorly resolved, but displays a pronounced positive signal at higher wavenumbers. This must result from a magnetically allowed transition, possibly from the methionine ligand to the dxy-hole of Fe3+. For the ferro-state, the spectra resolve the vibronic structure of the Qv-band. A more detailed spectral analysis reveals that the positively biased spectrum can be understood as a superposition of asymmetric couplets of split Q0 and Qv-states. Substantial qualitative and quantitative differences between the respective B-state and Q-state ECD spectra of yeast and horse heart cytochrome c can clearly be attributed to the reduced band splitting in the former, which results from a less heterogeneous internal electric field. Finally, we investigated the charge-transfer band at 695 nm in the ferri-state spectrum and found that it is composed of at least three bands, which are assignable to different taxonomic substates. The respective subbands differ somewhat with respect to their Kuhn anisotropy ratio and their intensity ratios are different for horse and yeast cytochrome c. Our data therefore suggests different substate populations for these proteins, which is most likely assignable to a structural heterogeneity of the distal Fe-M80 coordination of the heme chromophore.


Asunto(s)
Dicroismo Circular/métodos , Citocromos c/química , Hemo/química , Modelos Químicos , Simulación por Computador , Citocromos c/efectos de la radiación , Transporte de Electrón/efectos de la radiación , Hemo/efectos de la radiación , Luz , Temperatura
16.
J Phys Chem B ; 110(26): 13235-41, 2006 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-16805637

RESUMEN

Charge transfer (CT) transitions between the C-terminal carboxylate and peptide group have been investigated for alanyl-X and X-alanine dipeptides by far-UV absorption and electronic circular dichroism (ECD) spectroscopy (where X represents different amino acid residues). The spectra used in the present study were obtained by subtracting the spectrum of the cationic species from that of the corresponding zwitterionic peptide spectrum. These spectra displayed three bands, e.g., band I between 44 and 50 kK (kK = 10(3) cm(-1)), band II at 53 kK, and band III above 55 kK, which were, respectively, assigned to a n(COO-) --> pi* CT transition, a pi(COO-) --> pi* CT transition, and a carboxylate pi --> pi* (NV1) transition, respectively By comparison of the intensity, bandwidth, and wavenumber position of band I of some of the investigated dipeptides, we found that positive charges on the N-terminal side chain (for X = K), and to a minor extent also the N-terminal proton, reduce its intensity. This can be understood in terms of attractive Coulomb interactions that stabilize the ground state over the charge transfer state. For alanylphenylalanine, we assigned band I to a n(COO-) --> pi* CT transition into the aromatic side chain, indicating that aromatic side chains interact electronically with the backbone. We also performed ECD measurements at different pH values (pH 1-6) for a selected subset of XA and AX peptides. By subtraction of the pH 1 spectrum from that observed at pH 6, the ECD spectrum of the CT transition was obtained. A titration curve of their spectra reveals a substantial dependence on the protonation state of the aspartic acid side chain of AD, which is absent in DA and AE. This most likely reflects a conformational transition of the C-terminus into a less extended state, though the involvement of a side chain --> peptide CT transition cannot be completely ruled out.


Asunto(s)
Dicroismo Circular/métodos , Dipéptidos/química , Espectrofotometría Ultravioleta/métodos , Concentración de Iones de Hidrógeno , Modelos Moleculares
17.
J Phys Chem B ; 110(13): 6979-86, 2006 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-16571011

RESUMEN

We measured the temperature-dependent electronic circular dichroism (ECD) spectra of AX, XA, and XG dipeptides in D2O. The spectra of all XA and AX peptides indicate a substantial population of the polyproline II (PPII) conformation, while the ECD spectra of LG, KG, PG, and AG were found to be quantitatively different from the alanine-based dipeptides. Additional UV absorption data indicate that the ECD spectra of the XG peptides stem from electronic coupling between the peptide and the C-terminal group, and that spectral differences reflect different orientations of the latter. We also measured the 1H NMR spectra of the investigated dipeptides to determine the 3JHalphaNH coupling constants for the C-terminal residue. The observed temperature dependence of the ECD spectra and the respective room-temperature 3JHalphaNH coupling constants were analyzed by a two-state model encompassing PPII and a beta-like conformation. The PPII propensity of alanine in the XA series is only slightly modulated by the N-terminal side chain, and is larger than 50%. As compared to AA, XA peptides containing L, P, S, K V, E, T, and I all cause a relative stabilization of the extended beta-strand conformation. The PPII fractions of XA peptides varied between 0.64 for AA and 0.58 for DA, whereas the PPII fractions of AX peptides were much lower. From the investigated AX peptides, only AL and AQ showed the expected PPII propensity. We found that AT, AI, and AV clearly prefer an extended beta-strand conformation. A quantitative comparison of AA, AAA, and AAAA revealed a hierarchy AAAA > AAA approximately AA for the PPII population, in agreement with predictions from MD calculations and results from Raman optical activity studies (McColl et al. J. Am. Chem. Soc. 2004, 126, 5076).


Asunto(s)
Alanina/química , Dipéptidos/química , Electrones , Agua/química , Dicroismo Circular , Concentración de Iones de Hidrógeno , Espectroscopía de Resonancia Magnética , Conformación Proteica , Temperatura , Termodinámica
18.
Biochemistry ; 45(9): 2810-9, 2006 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-16503636

RESUMEN

The molecular conformations of salmon calcitonin in aqueous solution have been investigated by exploiting the different influences of excitonic coupling on the amide I band profile in the isotropic and anisotropic Raman, FTIR, and vibrational circular dichroism spectra of a polypeptide. The N-terminal loop, caused by a disulfide bridge between cysteines at positions 1 and 7, was modeled by performing a conformational search by molecular mechanics calculations. The remaining part of the peptide chain was modeled as a mixture of three sequences containing different fractions of residues adopting poly-l-proline II (PPII), extended beta-strand, and alpha-helix-like conformations. This yielded an excellent reproduction of the experimentally observed amide I' band profiles. A comparison with recent data on the beta-amyloid fragment Abeta(1)(-)(28) revealed a lower PPII content and more conformational heterogeneity for calcitonin. Thus, our results underscore the notion that individual structural propensities of amino acid residues give rise to structural differences between the unfolded states of even long peptide chains, at variance with expectations based on a random or statistical coil model.


Asunto(s)
Péptidos beta-Amiloides/química , Calcitonina/química , Péptidos/química , Aminoácidos/química , Dicroismo Circular , Humanos , Conformación Proteica , Pliegue de Proteína , Espectroscopía Infrarroja por Transformada de Fourier , Espectrometría Raman , Homología Estructural de Proteína , Termodinámica
19.
J Chem Phys ; 123(5): 054508, 2005 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-16108670

RESUMEN

We have measured and analyzed the low-temperature (T=10 K) absorption spectrum of reduced horse heart and yeast cytochrome c. Both spectra show split and asymmetric Q(0) and Q(upsilon) bands. The spectra were first decomposed into the individual split vibronic sidebands assignable to B(1g) (nu15) and A(2g) (nu19, nu21, and nu22) Herzberg-Teller active modes due to their strong intensity in resonance Raman spectra acquired with Q(0) and Q(upsilon) excitations. The measured band splittings and asymmetries cannot be rationalized solely in terms of electronic perturbations of the heme macrocycle. On the contrary, they clearly point to the importance of considering not only electronic perturbations but vibronic perturbations as well. The former are most likely due to the heterogeneity of the electric field produced by charged side chains in the protein environment, whereas the latter reflect a perturbation potential due to multiple heme-protein interactions, which deform the heme structure in the ground and excited states. Additional information about vibronic perturbations and the associated ground-state deformations are inferred from the depolarization ratios of resonance Raman bands. The results of our analysis indicate that the heme group in yeast cytochrome c is more nonplanar and more distorted along a B(2g) coordinate than in horse heart cytochrome c. This conclusion is supported by normal structural decomposition calculations performed on the heme extracted from molecular-dynamic simulations of the two investigated proteins. Interestingly, the latter are somewhat different from the respective deformations obtained from the x-ray structures.

20.
J Phys Chem B ; 109(16): 8195-205, 2005 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-16851958

RESUMEN

A series of AX and XA dipeptides in D2O have been investigated by FTIR, isotropic, and anisotropic Raman spectroscopy at acidic, neutral, and alkaline pD, to probe the influence of amino acid side chains on the amide I' band. We obtained a set of spectral parameters for each peptide, including intensities, wavenumbers, half-widths, and dipole moments, and found that these amide I' parameters are indeed dependent on the side chain. Side chains with similar characteristic properties were found to have similar effects on the amide I'. For example, dipeptides with aliphatic side chains were found to exhibit a downshift of the amide I' wavenumber, while those containing polar side chains experienced an increase in wavenumber. The N-terminal charge causes a substantial upshift of amide I', whereas the C-terminal charge causes a moderate decrease of the transition dipole moment. Density functional theory (DFT) calculations on the investigated dipeptides in vacuo yielded different correlations between theoretically and experimentally obtained wavenumbers for aliphatic/aromatic and polar/charged side chains, respectively. This might be indicative of a role of the hydration shell in transferring side chain-backbone interactions. For Raman bands, we found a correlation between amide I' depolarization ratio and wavenumber which reflects that some side chains (valine, histidine) have a significant influence on the Raman tensor. Altogether, the obtained data are of utmost importance for utilizing amide I as a tool for secondary structure analysis of polypeptides and proteins and providing an experimental basis for theoretical modeling of this important backbone mode. This is demonstrated by a rather accurate modeling for the amide I' band profiles of the IR, isotropic Raman, and anisotropic Raman spectra of the beta-amyloid fragment Abeta(1-82).


Asunto(s)
Amidas/química , Aminoácidos/química , Dipéptidos/química , Espectrometría Raman , Espectrofotometría Infrarroja
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA