Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Front Immunol ; 15: 1448041, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39376560

RESUMEN

Natural killer (NK) cell therapy represents an attractive immunotherapy approach against recurrent epithelial ovarian cancer (EOC), as EOC is sensitive to NK cell-mediated cytotoxicity. However, NK cell antitumor activity is dampened by suppressive factors in EOC patient ascites. Here, we integrated functional assays, soluble factor analysis, high-dimensional flow cytometry cellular component data and clinical parameters of advanced EOC patients to study the mechanisms of ascites-induced inhibition of NK cells. Using a suppression assay, we found that ascites from EOC patients strongly inhibits peripheral blood-derived NK cells and CD34+ progenitor-derived NK cells, albeit the latter were more resistant. Interestingly, we found that higher ascites-induced NK cell inhibition correlated with reduced progression-free and overall survival in EOC patients. Furthermore, we identified transforming growth factor (TGF)-ß1 to correlate with ascites-induced NK cell dysfunction and reduced patient survival. In functional assays, we showed that proliferation and anti-tumor reactivity of CD34+ progenitor-derived NK cells are significantly affected by TGF-ß1 exposure. Moreover, inhibition of TGF-ß1 signaling with galunisertib partly restored NK cell functionality in some donors. For the cellular components, we showed that the secretome is associated with a different composition of CD45+ cells between ascites of EOC and benign reference samples with higher proportions of macrophages in the EOC patient samples. Furthermore, we revealed that higher TGF-ß1 levels are associated with the presence of M2-like macrophages, B cell populations and T-regulatory cells in EOC patient ascites. These findings reveal that targeting TGF-ß1 signaling could increase NK cell immune responses in high-grade EOC patients.


Asunto(s)
Ascitis , Carcinoma Epitelial de Ovario , Células Asesinas Naturales , Neoplasias Ováricas , Factor de Crecimiento Transformador beta1 , Humanos , Femenino , Factor de Crecimiento Transformador beta1/metabolismo , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Carcinoma Epitelial de Ovario/inmunología , Carcinoma Epitelial de Ovario/mortalidad , Ascitis/inmunología , Neoplasias Ováricas/inmunología , Neoplasias Ováricas/mortalidad , Neoplasias Ováricas/patología , Persona de Mediana Edad , Clasificación del Tumor , Anciano , Pirazoles/uso terapéutico , Pirazoles/farmacología , Quinolinas
3.
J Nanobiotechnology ; 20(1): 64, 2022 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-35109860

RESUMEN

BACKGROUND: While immune checkpoint inhibitors such as anti-PD-L1 antibodies have revolutionized cancer treatment, only subgroups of patients show durable responses. Insight in the relation between clinical response, PD-L1 expression and intratumoral localization of PD-L1 therapeutics could improve patient stratification. Therefore, we present the modular synthesis of multimodal antibody-based imaging tools for multiscale imaging of PD-L1 to study intratumoral distribution of PD-L1 therapeutics. RESULTS: To introduce imaging modalities, a peptide containing a near-infrared dye (sulfo-Cy5), a chelator (DTPA), an azide, and a sortase-recognition motif was synthesized. This peptide and a non-fluorescent intermediate were used for site-specific functionalization of c-terminally sortaggable mouse IgG1 (mIgG1) and Fab anti-PD-L1. To increase the half-life of the Fab fragment, a 20 kDa PEG chain was attached via strain-promoted azide-alkyne cycloaddition (SPAAC). Biodistribution and imaging studies were performed with 111In-labeled constructs in 4T1 tumor-bearing mice. Comparing our site-specific antibody-conjugates with randomly conjugated antibodies, we found that antibody clone, isotype and method of DTPA conjugation did not change tumor uptake. Furthermore, addition of sulfo-Cy5 did not affect the biodistribution. PEGylated Fab fragment displayed a significantly longer half-life compared to unPEGylated Fab and demonstrated the highest overall tumor uptake of all constructs. PD-L1 in tumors was clearly visualized by SPECT/CT, as well as whole body fluorescence imaging. Immunohistochemistry staining of tumor sections demonstrated that PD-L1 co-localized with the fluorescent and autoradiographic signal. Intratumoral localization of the imaging agent could be determined with cellular resolution using fluorescent microscopy. CONCLUSIONS: A set of molecularly defined multimodal antibody-based PD-L1 imaging agents were synthesized and validated for multiscale monitoring of PD-L1 expression and localization. Our modular approach for site-specific functionalization could easily be adapted to other targets.


Asunto(s)
Inmunoconjugados , Neoplasias , Animales , Antígeno B7-H1/metabolismo , Línea Celular Tumoral , Humanos , Inmunoconjugados/metabolismo , Inmunohistoquímica , Ratones , Neoplasias/diagnóstico por imagen , Distribución Tisular
4.
Sci Adv ; 5(8): eaaw1822, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31489367

RESUMEN

Hybridoma technology is instrumental for the development of novel antibody therapeutics and diagnostics. Recent preclinical and clinical studies highlight the importance of antibody isotype for therapeutic efficacy. However, since the sequence encoding the constant domains is fixed, tuning antibody function in hybridomas has been restricted. Here, we demonstrate a versatile CRISPR/HDR platform to rapidly engineer the constant immunoglobulin domains to obtain recombinant hybridomas, which secrete antibodies in the preferred format, species, and isotype. Using this platform, we obtained recombinant hybridomas secreting Fab' fragments, isotype-switched chimeric antibodies, and Fc-silent mutants. These antibody products are stable, retain their antigen specificity, and display their intrinsic Fc-effector functions in vitro and in vivo. Furthermore, we can site-specifically attach cargo to these antibody products via chemoenzymatic modification. We believe that this versatile platform facilitates antibody engineering for the entire scientific community, empowering preclinical antibody research.


Asunto(s)
Anticuerpos Monoclonales/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Hibridomas/fisiología , Animales , Especificidad de Anticuerpos/genética , Línea Celular Tumoral , Genómica/métodos , Fragmentos Fab de Inmunoglobulinas/genética , Ratones , Ratones Endogámicos C57BL , Proteínas Recombinantes de Fusión/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA