Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 807(Pt 3): 151044, 2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-34673068

RESUMEN

Forest harvest residue is a low-competitive biomass feedstock that is usually left to decay on site after forestry operations. Its removal and pyrolytic conversion to biochar is seen as an opportunity to reduce terrestrial CO2 emissions and mitigate climate change. The mitigation effect of biochar is, however, ultimately dependent on the availability of the biomass feedstock, thus CO2 removal of biochar needs to be assessed in relation to the capacity to supply biochar systems with biomass feedstocks over prolonged time scales, relevant for climate mitigation. In the present study we used an assembly of empirical models to forecast the effects of harvest residue removal on soil C storage and the technical capacity of biochar to mitigate national-scale emissions over the century, using Norway as a case study for boreal conditions. We estimate the mitigation potential to vary between 0.41 and 0.78 Tg CO2 equivalents yr-1, of which 79% could be attributed to increased soil C stock, and 21% to the coproduction of bioenergy. These values correspond to 9-17% of the emissions of the Norwegian agricultural sector and to 0.8-1.5% of the total national emission. This illustrates that deployment of biochar from forest harvest residues in countries with a large forestry sector, relative to economy and population size, is likely to have a relatively small contribution to national emission reduction targets but may have a large effect on agricultural emission and commitments. Strategies for biochar deployment need to consider that biochar's mitigation effect is limited by the feedstock supply which needs to be critically assessed.


Asunto(s)
Cambio Climático , Agricultura Forestal , Carbón Orgánico , Suelo
2.
New Phytol ; 230(4): 1609-1622, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33091152

RESUMEN

In forests, ectomycorrhizal mycelium is pivotal for driving soil carbon and nutrient cycles, but how ectomycorrhizal mycelial dynamics vary in ecosystems with drought periods is unknown. We quantified the production and turnover of mycorrhizal mycelium in Mediterranean Pinus pinaster, Pinus sylvestris and Quercus ilex forests and related the estimates to standardised precipitation index (SPI), to study how mycelial dynamics relates to tree species and drought-moisture conditions. Production and turnover of mycelium was estimated between July and February, by quantifying the fungal biomass (ergosterol) in ingrowth mesh bags and using statistical modelling. SPI for time scales of 1-3 months was calculated from precipitation records and precipitation data over the study period. Forests dominated by Pinus trees displayed higher biomass but were seasonally more variable, as opposed to Q. ilex forests where the mycelial biomass remained lower and stable over the season. Production and turnover, respectively, varied between 1.4-5.9 kg ha-1  d-1 and 7.2-9.9 times yr-1 over the different forest types and were positively correlated with 2-month and 3-month SPI over the study period. Our results demonstrated that mycorrhizal mycelial biomass varied with season and tree species and we speculate that production and turnover are related to physiology and plant host performance during drought.


Asunto(s)
Micorrizas , Pinus sylvestris , Pinus , Quercus , Sequías , Ecosistema , Bosques , Micelio , Suelo , Árboles
3.
New Phytol ; 221(3): 1492-1502, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30281792

RESUMEN

Boreal forest soils retain significant amounts of carbon (C) and nitrogen (N) in purely organic layers, but the regulation of organic matter turnover and the relative importance of leaf litter and root-derived inputs are not well understood. We combined bomb 14 C dating of organic matter with stable isotope profiling for Bayesian parameterization of an organic matter sequestration model. C and N dynamics were assessed across annual depth layers (cohorts), together representing 256 yr of organic matter accumulation. Results were related to ecosystem fertility (soil inorganic N, pH and litter C : N). Root-derived C was estimated to decompose two to 10 times more slowly than leaf litter, but more rapidly in fertile plots. The amounts of C and N per cohort declined during the initial 20 yr of decomposition, but, in older material, the amount of N per cohort increased, indicating N retention driven by root-derived C. The dynamics of root-derived inputs were more important than leaf litter dynamics in regulating the variation in organic matter accumulation along a forest fertility gradient. N retention in the rooting zone combined with impeded mining for N in less fertile ecosystems provides evidence for a positive feedback between ecosystem fertility and organic matter turnover.


Asunto(s)
Secuestro de Carbono/efectos de los fármacos , Bosques , Nitrógeno/farmacología , Raíces de Plantas/fisiología , Suelo/química , Isótopos , Modelos Lineales , Hojas de la Planta/fisiología , Raíces de Plantas/efectos de los fármacos
4.
New Phytol ; 220(4): 1211-1221, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29757469

RESUMEN

Soil microclimate is a potentially important regulator of the composition of plant-associated fungal communities in climates with significant drought periods. Here, we investigated the spatio-temporal dynamics of soil fungal communities in a Mediterranean Pinus pinaster forest in relation to soil moisture and temperature. Fungal communities in 336 soil samples collected monthly over 1 year from 28 long-term experimental plots were assessed by PacBio sequencing of ITS2 amplicons. Total fungal biomass was estimated by analysing ergosterol. Community changes were analysed in the context of functional traits. Soil fungal biomass was lowest during summer and late winter and highest during autumn, concurrent with a greater relative abundance of mycorrhizal species. Intra-annual spatio-temporal changes in community composition correlated significantly with soil moisture and temperature. Mycorrhizal fungi were less affected by summer drought than free-living fungi. In particular, mycorrhizal species of the short-distance exploration type increased in relative abundance under dry conditions, whereas species of the long-distance exploration type were more abundant under wetter conditions. Our observations demonstrate a potential for compositional and functional shifts in fungal communities in response to changing climatic conditions. Free-living fungi and mycorrhizal species with extensive mycelia may be negatively affected by increasing drought periods in Mediterranean forest ecosystems.


Asunto(s)
Bosques , Hongos/fisiología , Microclima , Micobioma , Pinus/microbiología , Microbiología del Suelo , Suelo/química , Biomasa , Modelos Lineales
5.
ISME J ; 11(4): 863-874, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28085155

RESUMEN

Forestry reshapes ecosystems with respect to tree age structure, soil properties and vegetation composition. These changes are likely to be paralleled by shifts in microbial community composition with potential feedbacks on ecosystem functioning. Here, we assessed fungal communities across a chronosequence of managed Pinus sylvestris stands and investigated correlations between taxonomic composition and extracellular enzyme activities. Not surprisingly, clear-cutting had a negative effect on ectomycorrhizal fungal abundance and diversity. In contrast, clear-cutting favoured proliferation of saprotrophic fungi correlated with enzymes involved in holocellulose decomposition. During stand development, the re-establishing ectomycorrhizal fungal community shifted in composition from dominance by Atheliaceae in younger stands to Cortinarius and Russula species in older stands. Late successional ectomycorrhizal taxa correlated with enzymes involved in mobilisation of nutrients from organic matter, indicating intensified nutrient limitation. Our results suggest that maintenance of functional diversity in the ectomycorrhizal fungal community may sustain long-term forest production by retaining a capacity for symbiosis-driven recycling of organic nutrient pools.


Asunto(s)
Basidiomycota/clasificación , Agricultura Forestal , Pinus sylvestris/microbiología , Microbiología del Suelo , Basidiomycota/enzimología , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Enzimológica de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Micorrizas/clasificación , Pinus sylvestris/fisiología , Suelo/química , Simbiosis
6.
New Phytol ; 214(1): 424-431, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27997034

RESUMEN

In boreal forest soils, ectomycorrhizal fungi are fundamentally important for carbon (C) dynamics and nutrient cycling. Although their extraradical mycelium (ERM) is pivotal for processes such as soil organic matter build-up and nitrogen cycling, very little is known about its dynamics and regulation. In this study, we quantified ERM production and turnover, and examined how these two processes together regulated standing ERM biomass in seven sites forming a chronosequence of 12- to 100-yr-old managed Pinus sylvestris forests. This was done by determining ERM biomass, using ergosterol as a proxy, in sequentially harvested in-growth mesh bags and by applying mathematical models. Although ERM production declined with increasing forest age from 1.2 to 0.5 kg ha-1  d-1 , the standing biomass increased from 50 to 112 kg ha-1 . This was explained by a drastic decline in mycelial turnover from seven times to one time per year with increasing forest age, corresponding to mean residence times from 25 d up to 1 yr. Our results demonstrate that ERM turnover is the main factor regulating biomass across differently aged forest stands. Explicit inclusion of ERM parameters in forest ecosystem C models may significantly improve their capacity to predict responses of mycorrhiza-mediated processes to management and environmental changes.


Asunto(s)
Biomasa , Micelio/fisiología , Micorrizas/fisiología , Pinus sylvestris/microbiología , Geografía , Suecia , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA