Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Malar J ; 18(1): 431, 2019 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-31852507

RESUMEN

BACKGROUND: The development of Plasmodium resistance to the last effective anti-malarial drugs necessitates the urgent development of new anti-malarial therapeutic strategies. To this end, plants are an important source of new molecules. The objective of this study was to evaluate the anti-malarial effects of Terminalia albida, a plant used in Guinean traditional medicine, as well as its anti-inflammatory and antioxidant properties, which may be useful in treating cases of severe malaria. METHODS: In vitro antiplasmodial activity was evaluated on a chloroquine-resistant strain of Plasmodium falciparum (K-1). In vivo efficacy of the plant extract was measured in the experimental cerebral malaria model based on Plasmodium berghei (strain ANKA) infection. Mice brains were harvested on Day 7-8 post-infection, and T cells recruitment to the brain, expression levels of pro- and anti-inflammatory markers were measured by flow cytometry, RT-qPCR and ELISA. Non-malarial in vitro models of inflammation and oxidative response were used to confirm Terminalia albida effects. Constituents of Terminalia albida extract were characterized by ultra-high performance liquid chromatography coupled with high resolution mass spectrometry. Top ranked compounds were putatively identified using plant databases and in silico fragmentation patterns. RESULTS: In vitro antiplasmodial activity of Terminalia albida was confirmed with an IC50 of 1.5 µg/mL. In vivo, Terminalia albida treatment greatly increased survival rates in P. berghei-infected mice. Treated mice were all alive until Day 12, and the survival rate was 50% on Day 20. Terminalia albida treatment also significantly decreased parasitaemia by 100% on Day 4 and 89% on Day 7 post-infection. In vivo anti-malarial activity was related to anti-inflammatory properties, as Terminalia albida treatment decreased T lymphocyte recruitment and expression of pro-inflammatory markers in brains of treated mice. These properties were confirmed in vitro in the non-malarial model. In vitro, Terminalia albida also demonstrated a remarkable dose-dependent neutralization activity of reactive oxygen species. Twelve compounds were putatively identified in Terminalia albida stem bark. Among them, several molecules already identified may be responsible for the different biological activities observed, especially tannins and triterpenoids. CONCLUSION: The traditional use of Terminalia albida in the treatment of malaria was validated through the combination of in vitro and in vivo studies.


Asunto(s)
Antiinflamatorios/farmacología , Antimaláricos/farmacología , Malaria Cerebral/prevención & control , Extractos Vegetales/farmacología , Especies Reactivas de Oxígeno/farmacología , Terminalia/química , Animales , Antimaláricos/química , Femenino , Ratones , Ratones Endogámicos C57BL , Extractos Vegetales/química , Plasmodium berghei/efectos de los fármacos , Plasmodium falciparum/efectos de los fármacos
2.
Molecules ; 24(20)2019 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-31618826

RESUMEN

Dunnione, a natural product isolated from the leaves of Streptocarpus dunnii (Gesneriaceae), acts as a substrate for quinone-reductases that may be associated with its antimalarial properties. Following our exploration of reactive oxygen species-producing compounds such as indolones, as possible new approaches for the research of new ways to treat this parasitosis, we explored derivatives of this natural product and their possible antiplasmodial and antimalarial properties, in vitro and in vivo, respectively. Apart from one compound, all the products tested had weak to moderate antiplasmodial activities, the best IC50 value being equal to 0.58 µM. In vivo activities in the murine model were moderate (at a dose of 50 mg/kg/mice, five times higher than the dose of chloroquine). These results encourage further pharmacomodulation steps to improve the targeting of the parasitized red blood cells and antimalarial activities.


Asunto(s)
Antimaláricos/química , Naftoquinonas/química , Quinona Reductasas/química , Animales , Antimaláricos/farmacología , Modelos Animales de Enfermedad , Células HeLa , Humanos , Ratones , Estructura Molecular , Naftoquinonas/farmacología , Quinona Reductasas/metabolismo , Especies Reactivas de Oxígeno/química , Especies Reactivas de Oxígeno/metabolismo , Relación Estructura-Actividad , Especificidad por Sustrato
3.
Malar J ; 17(1): 68, 2018 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-29402267

RESUMEN

BACKGROUND: Plasmodium falciparum malaria is still one of the most deadly pathology worldwide. Efficient treatment is jeopardized by parasite resistance to artemisinin and its derivatives, and by poor access to treatment in endemic regions. Anti-malarial traditional remedies still offer new tracks for identifying promising antiplasmodial molecules, and a way to ensure that all people have access to care. The present study aims to validate the traditional use of Terminalia macroptera, a Malian plant used in traditional medicine. METHODS: Terminalia macroptera was collected in Mali. Leaves (TML) and roots ethanolic extracts (TMR) were prepared and tested at 2000 mg/kg for in vivo acute toxicity in Albino Swiss mice. Antiplasmodial activity of the extracts was assessed against a chloroquine resistant strain P. falciparum (FcB1) in vitro. In vivo, anti-malarial efficacy was assessed by a 4-day suppressive test at 100 mg/kg in two malaria murine models of uncomplicated malaria (Plasmodium chabaudi chabaudi infection) and cerebral malaria (Plasmodium berghei strain ANKA infection). Constituents of TMR were characterized by ultra-high-performance liquid chromatography coupled to high resolution mass spectrometry. Top ranked compounds were putatively identified using plant databases and in silico fragmentation pattern. RESULTS: Lethal dose of TML and TMR were greater than 2000 mg/kg in Albino Swiss mice. According to the OECD's Globally Harmonized System of Classification, both extracts are non-toxic orally. Antiplasmodial activity of T. macroptera extracts was confirmed in vitro against P. falciparum FcB1 strain with IC50 values of 1.2 and 1.6 µg/mL for TML and TMR, respectively. In vivo, oral administration of TML and TMR induced significant reduction of parasitaemia (37.2 and 46.4% respectively) in P. chabaudi chabaudi infected mice at the 7th day of infection compared to untreated mice. In the cerebral malaria experimental model, mice treated with TMR and TML presented respectively 50 and 66.7% survival rates at day 9 post-infection when all untreated mice died. Eleven major compounds were found in TMR. Among them, several molecules already known could be responsible for the antiplasmodial activity of the roots extract of T. macroptera. CONCLUSIONS: This study confirms both safety and anti-malarial activity of T. macroptera, thus validating its traditional use.


Asunto(s)
Antimaláricos/farmacología , Plasmodium berghei/efectos de los fármacos , Plasmodium chabaudi/efectos de los fármacos , Terminalia/química , Animales , Femenino , Malí , Medicina Tradicional , Ratones , Extractos Vegetales/farmacología , Hojas de la Planta/química , Raíces de Plantas/química , Plantas Medicinales , Pruebas de Toxicidad Aguda
4.
Nat Prod Commun ; 11(3): 339-52, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27169180

RESUMEN

Today, ethno-pharmacology is a very important resource in order to discover new therapies for the current diseases. Moreover, another good justification for the ethno-pharmacological approach is to obtain new, effective, less expensive and simple therapies, limiting at the same time the cost of pharmaceutical research. Two major anti-malarial drugs widely used today, i.e. quinine and artemisinin, came respectively from Peruvian and Chinese ancestral treatments reported in the traditional medicines. In this contest, there is an urgent need for the discovery of new drugs, due to the critical epidemiological situation of this disease and to the growth of resistances. In Mali, malaria and liver diseases remain one of the leading public health problems. Many medicinal plants are often used, in local traditional medicine, for the treatment at the same time of malaria and liver diseases, including hepatic syndromes, jaundice, hepatitis and other hepatic disorders. Moreover, in the local language Bamanan, the word "Sumaya" is used both for malaria and some liver diseases. In addition, we noted that some of the improved traditional phytomedicines produced by the Department of Traditional Medicine are prescribed by modern doctors both for malaria and liver diseases. In this review, pharmacological, toxicological and phytochemical data on Argemone mexicana L. (Papaveraceae), Cochlospermum tinctorium Perr. ex A. Rich (Cochlospermaceae), Combretum micranthum G.Don (Combretaceae), Entada africana Guillet Perr. (Mimosaceae), Erythrina senegalensis A. DC (Fabaceae), Mitragyna inermis (Willd) Kuntze (Rubiaceae), Nauclea latifolia Smith syn. Sarcocephalus latifolius (Smith) Bruce (Rubiaceae), Securidaca longepedunculata Fresen (Polygalaceae), Trichilia emetica Vahl. (Meliaceae), and Vernonia colorata (Willd) Drake (Asteraceae) are reported. Some of the collected data could be used to improve the actual herbal drugs and to propose new phytomedicines for the management of malaria and liver diseases.


Asunto(s)
Antimaláricos/uso terapéutico , Hepatopatías/tratamiento farmacológico , Malaria/tratamiento farmacológico , Fitoterapia , Plantas Medicinales/química , Antimaláricos/química , Humanos , Hepatopatías/epidemiología , Malaria/epidemiología , Malí/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA