Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Gut Microbes ; 14(1): 2073784, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35579971

RESUMEN

Ruminococcus gnavus is a prevalent member of the human gut microbiota, which is over-represented in inflammatory bowel disease and neurological disorders. We previously showed that the ability of R. gnavus to forage on mucins is strain-dependent and associated with sialic acid metabolism. Here, we showed that mice monocolonized with R. gnavus ATCC 29149 (Rg-mice) display changes in major sialic acid derivatives in their cecum content, blood, and brain, which is accompanied by a significant decrease in the percentage of sialylated residues in intestinal mucins relative to germ-free (GF) mice. Changes in metabolites associated with brain function such as tryptamine, indolacetate, and trimethylamine N-oxide were also detected in the cecal content of Rg-mice when compared to GF mice. Next, we investigated the effect of R. gnavus monocolonization on hippocampus cell proliferation and behavior. We observed a significant decrease of PSA-NCAM immunoreactive granule cells in the dentate gyrus (DG) of Rg-mice as compared to GF mice and recruitment of phagocytic microglia in the vicinity. Behavioral assessments suggested an improvement of the spatial working memory in Rg-mice but no change in other cognitive functions. These results were also supported by a significant upregulation of genes involved in proliferation and neuroplasticity. Collectively, these data provide first insights into how R. gnavus metabolites may influence brain regulation and function through modulation of granule cell development and synaptic plasticity in the adult hippocampus. This work has implications for further understanding the mechanisms underpinning the role of R. gnavus in neurological disorders.


Asunto(s)
Encéfalo , Clostridiales , Microbioma Gastrointestinal , Mucinas , Animales , Encéfalo/metabolismo , Ratones , Mucinas/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Polisacáridos/metabolismo
2.
Cell Rep ; 39(2): 110663, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35417692

RESUMEN

Fibroblast growth factor 10 (FGF10) is well established as a mesenchyme-derived growth factor and a critical regulator of fetal organ development in mice and humans. Using a single-cell RNA sequencing (RNA-seq) atlas of salivary gland (SG) and a tamoxifen inducible Fgf10CreERT2:R26-tdTomato mouse, we show that FGF10pos cells are exclusively mesenchymal until postnatal day 5 (P5) but, after P7, there is a switch in expression and only epithelial FGF10pos cells are observed after P15. Further RNA-seq analysis of sorted mesenchymal and epithelial FGF10pos cells shows that the epithelial FGF10pos population express the hallmarks of ancient ionocyte signature Forkhead box i1 and 2 (Foxi1, Foxi2), Achaete-scute homolog 3 (Ascl3), and the cystic fibrosis transmembrane conductance regulator (Cftr). We propose that epithelial FGF10pos cells are specialized SG ionocytes located in ducts and important for the ionic modification of saliva. In addition, they maintain FGF10-dependent gland homeostasis via communication with FGFR2bpos ductal and myoepithelial cells.


Asunto(s)
Factor 10 de Crecimiento de Fibroblastos , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos , Glándulas Salivales , Animales , Células Epiteliales/metabolismo , Factor 10 de Crecimiento de Fibroblastos/genética , Factor 10 de Crecimiento de Fibroblastos/metabolismo , Factores de Transcripción Forkhead/metabolismo , Ratones , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/metabolismo , Glándulas Salivales/citología , Glándulas Salivales/metabolismo , Transducción de Señal
3.
J Anat ; 238(6): 1371-1385, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33455001

RESUMEN

A common question in organ regeneration is the extent to which regeneration recapitulates embryonic development. To investigate this concept, we compared the expression of two highly interlinked and essential genes for salivary gland development, Sox9 and Fgf10, during submandibular gland development, homeostasis and regeneration. Salivary gland duct ligation/deligation model was used as a regenerative model. Fgf10 and Sox9 expression changed during regeneration compared to homeostasis, suggesting that these key developmental genes play important roles during regeneration, however, significantly both displayed different patterns of expression in the regenerating gland compared to the developing gland. Regenerating glands, which during homeostasis had very few weakly expressing Sox9-positive cells in the striated/granular ducts, displayed elevated expression of Sox9 within these ducts. This pattern is in contrast to embryonic development, where Sox9 expression was absent in the proximally developing ducts. However, similar to the elevated expression at the distal tip of the epithelium in developing salivary glands, regenerating glands displayed elevated expression in a subpopulation of acinar cells, which during homeostasis expressed Sox9 at lower levels. A shift in expression of Fgf10 was observed from a widespread mesenchymal pattern during organogenesis to a more limited and predominantly epithelial pattern during homeostasis in the adult. This restricted expression in epithelial cells was maintained during regeneration, with no clear upregulation in the surrounding mesenchyme, as might be expected if regeneration recapitulated development. As both Fgf10 and Sox9 were upregulated in proximal ducts during regeneration, this suggests that the positive regulation of Sox9 by Fgf10, essential during development, is partially reawakened during regeneration using this model. Together these data suggest that developmentally important genes play a key role in salivary gland regeneration but do not precisely mimic the roles observed during development.


Asunto(s)
Organogénesis/fisiología , Regeneración/fisiología , Glándula Submandibular/fisiología , Animales , Femenino , Factor 10 de Crecimiento de Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Masculino , Ratones , Factor de Transcripción SOX9/metabolismo , Glándula Submandibular/embriología
4.
Front Cell Dev Biol ; 8: 609643, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33363172

RESUMEN

The pinna (or auricle) is part of the external ear, acting to capture and funnel sound toward the middle ear. The pinna is defective in a number of craniofacial syndromes, including Lacrimo-auriculo-dento-digital (LADD) syndrome, which is caused by mutations in FGF10 or its receptor FGFR2b. Here we study pinna defects in the Fgf10 knockout mouse. We show that Fgf10 is expressed in both the muscles and forming cartilage of the developing external ear, with loss of signaling leading to a failure in the normal extension of the pinna over the ear canal. Conditional knockout of Fgf10 in the neural crest fails to recapitulate this phenotype, suggesting that the defect is due to loss of Fgf10 from the muscles, or that this source of Fgf10 can compensate for loss in the forming cartilage. The defect in the Fgf10 null mouse is driven by a reduction in proliferation, rather than an increase in cell death, which can be partially phenocopied by inhibiting cell proliferation in explant culture. Overall, we highlight the mechanisms that could lead to the phenotype observed in LADD syndrome patients and potentially explain the formation of similar low-set and cup shaped ears observed in other syndromes.

5.
Development ; 147(13)2020 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-32661019

RESUMEN

New neurons are generated in the postnatal rodent hypothalamus, with a subset of tanycytes in the third ventricular (3V) wall serving as neural stem/progenitor cells. However, the precise stem cell niche organization, the intermediate steps and the endogenous regulators of postnatal hypothalamic neurogenesis remain elusive. Quantitative lineage-tracing in vivo revealed that conditional deletion of fibroblast growth factor 10 (Fgf10) from Fgf10-expressing ß-tanycytes at postnatal days (P)4-5 results in the generation of significantly more parenchymal cells by P28, composed mostly of ventromedial and dorsomedial neurons and some glial cells, which persist into adulthood. A closer scrutiny in vivo and ex vivo revealed that the 3V wall is not static and is amenable to cell movements. Furthermore, normally ß-tanycytes give rise to parenchymal cells via an intermediate population of α-tanycytes with transient amplifying cell characteristics. Loss of Fgf10 temporarily attenuates the amplification of ß-tanycytes but also appears to delay the exit of their α-tanycyte descendants from the germinal 3V wall. Our findings suggest that transience of cells through the α-tanycyte domain is a key feature, and Fgf10 is a negative regulator of postnatal hypothalamic neurogenesis.


Asunto(s)
Factor 10 de Crecimiento de Fibroblastos/metabolismo , Hipotálamo/citología , Hipotálamo/metabolismo , Neurogénesis/fisiología , Animales , Movimiento Celular/fisiología , Células Ependimogliales/citología , Células Ependimogliales/metabolismo , Femenino , Factor 10 de Crecimiento de Fibroblastos/genética , Masculino , Ratones , Ratones Transgénicos , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neurogénesis/genética , Neuroglía/citología , Neuroglía/metabolismo , Neuronas/citología , Neuronas/metabolismo
6.
Dev Dyn ; 248(9): 882-893, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31290205

RESUMEN

BACKGROUND: Fibroblast growth factor 18 (FGF18) functions in the development of several tissues, including the lung, limb bud, palate, skeleton, central nervous system, and hair follicle. Mice containing a germline knockout of Fgf18 (Fgf18 -/- ) die shortly after birth. Postnatally, FGF18 is being evaluated for pathogenic roles in fibrosis and several types of cancer. The specific cell types that express FGF18 have been difficult to identify, and the function of FGF18 in postnatal development and tissue homeostasis has been hampered by the perinatal lethality of Fgf18 null mice. RESULTS: We engineered a floxed allele of Fgf18 (Fgf18 flox ) that allows conditional gene inactivation and a CreERT2 knockin allele (Fgf18 CreERT2 ) that allows the precise identification of cells that express Fgf18 and their lineage. We validated the Fgf18 flox allele by targeting it in mesenchymal tissue and primary mesoderm during embryonic development, resulting in similar phenotypes to those observed in Fgf18 null mice. We also use the Fgf18 CreERT2 allele, in combination with a conditional fluorescent reporter to confirm known and identify new sites of Fgf18 expression. CONCLUSION: These alleles will be useful to investigate FGF18 function during organogenesis and tissue homeostasis, and to target specific cell lineages at embryonic and postnatal time points.


Asunto(s)
Alelos , Factores de Crecimiento de Fibroblastos/metabolismo , Integrasas/genética , Ingeniería de Proteínas/métodos , Animales , Linaje de la Célula , Desarrollo Embrionario , Factores de Crecimiento de Fibroblastos/antagonistas & inhibidores , Factores de Crecimiento de Fibroblastos/fisiología , Homeostasis , Mesodermo , Ratones , Organogénesis
7.
J Neuroendocrinol ; 31(8): e12750, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31111569

RESUMEN

The mammalian hypothalamus regulates key homeostatic and neuroendocrine functions ranging from circadian rhythm and energy balance to growth and reproductive cycles via the hypothalamic-pituitary and hypothalamic-thyroid axes. In addition to its neurones, tanycytes are taking centre stage in the short- and long-term augmentation and integration of diverse hypothalamic functions, although the genetic regulators and mediators of their involvement are poorly understood. Exogenous interventions have implicated fibroblast growth factor (FGF) signalling, although the focal point of the action of FGF and any role for putative endogenous players also remains elusive. We carried out a comprehensive high-resolution screen of FGF signalling pathway mediators and modifiers using a combination of in situ hybridisation, immunolabelling and transgenic reporter mice, aiming to map their spatial distribution in the adult hypothalamus. Our findings suggest that ß-tanycytes are the likely focal point of exogenous and endogenous action of FGF in the third ventricular wall, utilising FGF receptor (FGFR)1 and FGFR2 IIIc isoforms, but not FGFR3. Key IIIc-activating endogenous ligands include FGF1, 2, 9 and 18, which are expressed by a subset of ependymal and parenchymal cells. In the parenchymal compartment, FGFR1-3 show divergent patterns, with FGFR1 being predominant in neuronal nuclei and expression of FGFR3 being associated with glial cell function. Intracrine FGFs are also present, suggestive of multiple modes of FGF function. Our findings provide a testable framework for understanding the complex role of FGFs with respect to regulating the metabolic endocrine and neurogenic functions of hypothalamus in vivo.


Asunto(s)
Regulación del Apetito/genética , Metabolismo Energético/genética , Células Ependimogliales/fisiología , Factores de Crecimiento de Fibroblastos/fisiología , Hipotálamo/citología , Animales , Regulación del Apetito/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Células Ependimogliales/efectos de los fármacos , Femenino , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Factores de Crecimiento de Fibroblastos/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Hipotálamo/efectos de los fármacos , Hipotálamo/metabolismo , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Transgénicos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptores de Factores de Crecimiento de Fibroblastos/genética , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
8.
Histol Histopathol ; 33(12): 1253-1270, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29749591

RESUMEN

The Blood-Brain Barrier (BBB) is a highly specialised interface separating the Central Nervous System (CNS) from circulating blood. Dysregulation of the BBB is a key early event in pathological conditions such as inflammation, in which the entry of activated leukocytes into the CNS is facilitated by BBB breakdown. The metzincin family of metalloproteinases (MPs) is one of the major contributors to BBB permeability as they cleave endothelial cell-cell contacts and underlying basal lamina components. However, the mechanisms by which MPs regulate BBB integrity has not yet been fully elucidated. The aim of this review is to provide an overview of pathways by which MPs could regulate the BBB in the context of neuroinflammation.


Asunto(s)
Barrera Hematoencefálica/patología , Permeabilidad Capilar/fisiología , Metaloproteasas/metabolismo , Transducción de Señal/fisiología , Animales , Barrera Hematoencefálica/metabolismo , Humanos , Inflamación/metabolismo , Inflamación/patología
9.
Biochem J ; 473(24): 4593-4607, 2016 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-27742760

RESUMEN

Heterozygous mutations in the gene encoding fibroblast growth factor 10 (FGF10) or its cognate receptor, FGF-receptor 2 IIIb result in two human syndromes - LADD (lacrimo-auriculo-dento-digital) and ALSG (aplasia of lacrimal and salivary glands). To date, the partial loss-of-FGF10 function in these patients has been attributed solely to perturbed paracrine signalling functions between FGF10-producing mesenchymal cells and FGF10-responsive epithelial cells. However, the functioning of a LADD-causing G138E FGF10 mutation, which falls outside its receptor interaction interface, has remained enigmatic. In the present study, we interrogated this mutation in the context of FGF10's protein sequence and three-dimensional structure, and followed the subcellular fate of tagged proteins containing this or other combinatorial FGF10 mutations, in vitro We report that FGF10 harbours two putative nuclear localization sequences (NLSs), termed NLS1 and NLS2, which individually or co-operatively promote nuclear translocation of FGF10. Furthermore, FGF10 localizes to a subset of dense fibrillar components of the nucleolus. G138E falls within NLS1 and abrogates FGF10's nuclear translocation whilst attenuating its progression along the secretory pathway. Our findings suggest that in addition to its paracrine roles, FGF10 may normally play intracrine role/s within FGF10-producing cells. Thus, G138E may disrupt both paracrine and intracrine function/s of FGF10 through attenuated secretion and nuclear translocation, respectively.


Asunto(s)
Anomalías Múltiples/metabolismo , Núcleo Celular/metabolismo , Factor 10 de Crecimiento de Fibroblastos/química , Factor 10 de Crecimiento de Fibroblastos/metabolismo , Pérdida Auditiva/metabolismo , Enfermedades del Aparato Lagrimal/metabolismo , Sindactilia/metabolismo , Anomalías Dentarias/metabolismo , Anomalías Múltiples/genética , Transporte Activo de Núcleo Celular/genética , Transporte Activo de Núcleo Celular/fisiología , Secuencia de Aminoácidos , Western Blotting , Proliferación Celular/genética , Proliferación Celular/fisiología , Factor 10 de Crecimiento de Fibroblastos/genética , Células HEK293 , Pérdida Auditiva/genética , Humanos , Inmunohistoquímica , Enfermedades del Aparato Lagrimal/genética , Datos de Secuencia Molecular , Mutación , Transporte de Proteínas/genética , Transporte de Proteínas/fisiología , Sindactilia/genética , Anomalías Dentarias/genética
10.
Front Neurosci ; 9: 387, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26578855

RESUMEN

There is a resurgent interest in tanycytes, a radial glial-like cell population occupying the floor and ventro-lateral walls of the third ventricle (3V). Tanycytes reside in close proximity to hypothalamic neuronal nuclei that regulate appetite and energy expenditure, with a subset sending projections into these nuclei. Moreover, tanycytes are exposed to 3V cerebrospinal fluid and have privileged access to plasma metabolites and hormones, through fenestrated capillaries. Indeed, some tanycytes act as conduits for trafficking of these molecules into the brain parenchyma. Tanycytes can also act as neural stem/progenitor cells, supplying the postnatal and adult hypothalamus with new neurons. Collectively, these findings suggest that tanycytes regulate and integrate important trophic and metabolic processes and possibly endow functional malleability to neuronal circuits of the hypothalamus. Hence, manipulation of tanycyte biology could provide a valuable tool for modulating hypothalamic functions such as energy uptake and expenditure in order to tackle prevalent eating disorders such as obesity and anorexia.

11.
PLoS One ; 9(6): e100447, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24956260

RESUMEN

The secreted molecule fibroblast growth factor 9 (FGF9) plays a critical role in testis determination in the mouse. In embryonic gonadal somatic cells it is required for maintenance of SOX9 expression, a key determinant of Sertoli cell fate. Conditional gene targeting studies have identified FGFR2 as the main gonadal receptor for FGF9 during sex determination. However, such studies can be complicated by inefficient and variable deletion of floxed alleles, depending on the choice of Cre deleter strain. Here, we report a novel, constitutive allele of Fgfr2, hobbyhorse (hob), which was identified in an ENU-based forward genetic screen for novel testis-determining loci. Fgr2hob is caused by a C to T mutation in the invariant exon 7, resulting in a polypeptide with a mis-sense mutation at position 263 (Pro263Ser) in the third extracellular immunoglobulin-like domain of FGFR2. Mutant homozygous embryos show severe limb and lung defects and, when on the sensitised C57BL/6J (B6) genetic background, undergo complete XY gonadal sex reversal associated with failure to maintain expression of Sox9. Genetic crosses employing a null mutant of Fgfr2 suggest that Fgr2hob is a hypomorphic allele, affecting both the FGFR2b and FGFR2c splice isoforms of the receptor. We exploited the consistent phenotype of this constitutive mutant by analysing MAPK signalling at the sex-determining stage of gonad development, but no significant abnormalities in mutant embryos were detected.


Asunto(s)
Extremidades/patología , Disgenesia Gonadal/genética , Gónadas/anomalías , Enfermedades Pulmonares/patología , Mutación/genética , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/fisiología , Secuencia de Aminoácidos , Animales , Western Blotting , Células Cultivadas , Embrión de Mamíferos/metabolismo , Embrión de Mamíferos/patología , Femenino , Gónadas/metabolismo , Gónadas/patología , Homocigoto , Humanos , Técnicas para Inmunoenzimas , Enfermedades Pulmonares/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Fenotipo , Homología de Secuencia de Aminoácido
12.
PLoS One ; 8(10): e76248, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24167544

RESUMEN

The vertebrate limbs develop through coordinated series of inductive, growth and patterning events. Fibroblast Growth Factor receptor 2b (FGFR2b) signaling controls the induction of the Apical Ectodermal Ridge (AER) but its putative roles in limb outgrowth and patterning, as well as in AER morphology and cell behavior have remained unclear. We have investigated these roles through graded and reversible expression of soluble dominant-negative FGFR2b molecules at various times during mouse limb development, using a doxycycline/transactivator/tet(O)-responsive system. Transient attenuation (≤ 24 hours) of FGFR2b-ligands signaling at E8.5, prior to limb bud induction, leads mostly to the loss or truncation of proximal skeletal elements with less severe impact on distal elements. Attenuation from E9.5 onwards, however, has an irreversible effect on the stability of the AER, resulting in a progressive loss of distal limb skeletal elements. The primary consequences of FGFR2b-ligands attenuation is a transient loss of cell adhesion and down-regulation of P63, ß1-integrin and E-cadherin, and a permanent loss of cellular ß-catenin organization and WNT signaling within the AER. Combined, these effects lead to the progressive transformation of the AER cells from pluristratified to squamous epithelial-like cells within 24 hours of doxycycline administration. These findings show that FGFR2b-ligands signaling has critical stage-specific roles in maintaining the AER during limb development.


Asunto(s)
Receptores ErbB/metabolismo , Miembro Posterior/embriología , Organogénesis/fisiología , Vía de Señalización Wnt/fisiología , beta Catenina/metabolismo , Animales , Adhesión Celular/fisiología , Regulación hacia Abajo/fisiología , Receptores ErbB/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Ligandos , Ratones Transgénicos , Fosfoproteínas/biosíntesis , Fosfoproteínas/genética , Transactivadores/biosíntesis , Transactivadores/genética , beta Catenina/genética
13.
J Neurosci ; 33(14): 6170-80, 2013 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-23554498

RESUMEN

Increasing evidence suggests that neurogenesis occurs in the postnatal and adult mammalian hypothalamus. However, the identity and location of the putative progenitor cells is under much debate, and little is known about the dynamics of neurogenesis in unchallenged brain. Previously, we postulated that Fibroblast growth factor 10-expressing (Fgf10(+)) tanycytes constitute a population of progenitor cells in the mouse hypothalamus. Here, we show that Fgf10(+) tanycytes express markers of neural stem/progenitor cells, divide late into postnatal life, and can generate both neurons and astrocytes in vivo. Stage-specific lineage-tracing of Fgf10(+) tanycytes using Fgf10-creERT2 mice, reveals robust neurogenesis at postnatal day 28 (P28), lasting as late as P60. Furthermore, we present evidence for amplification of Fgf10-lineage traced neural cells within the hypothalamic parenchyma itself. The neuronal descendants of Fgf10(+) tanycytes predominantly populate the arcuate nucleus, a subset of which express the orexigenic neuronal marker, Neuropeptide-Y, and respond to fasting and leptin-induced signaling. These studies provide direct evidence in support of hypothalamic neurogenesis during late postnatal and adult life, and identify Fgf10(+) tanycytes as a source of parenchymal neurons with putative roles in appetite and energy balance.


Asunto(s)
Apetito/fisiología , Citosol/metabolismo , Metabolismo Energético/fisiología , Factor 10 de Crecimiento de Fibroblastos/metabolismo , Hipotálamo/metabolismo , Neurogénesis/fisiología , Factores de Edad , Análisis de Varianza , Animales , Animales Recién Nacidos , Apetito/efectos de los fármacos , Proteínas Bacterianas/genética , Bromodesoxiuridina , Metabolismo Energético/efectos de los fármacos , Antagonistas de Estrógenos/farmacología , Proteína de Unión a los Ácidos Grasos 7 , Proteínas de Unión a Ácidos Grasos/metabolismo , Factor 10 de Crecimiento de Fibroblastos/genética , Privación de Alimentos/fisiología , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/genética , Hipotálamo/efectos de los fármacos , Hipotálamo/crecimiento & desarrollo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis/efectos de los fármacos , Compuestos de Fenilurea/administración & dosificación , Proteínas/genética , ARN no Traducido , Tamoxifeno/farmacología , beta-Galactosidasa/metabolismo
14.
PLoS One ; 7(6): e38452, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22719891

RESUMEN

Fibroblast growth factor 10 (Fgf10) is a key regulator of diverse organogenetic programs during mouse development, particularly branching morphogenesis. Fgf10-null mice suffer from lung and limb agenesis as well as cecal and colonic atresia and are thus not viable. To date, the Mlcv1v-nLacZ-24 transgenic mouse strain (referred to as Fgf10(LacZ)), which carries a LacZ insertion 114 kb upstream of exon 1 of Fgf10 gene, has been the only strain to allow transient lineage tracing of Fgf10-positive cells. Here, we describe a novel Fgf10(Cre-ERT2) knock-in line (Fgf10(iCre)) in which a Cre-ERT2-IRES-YFP cassette has been introduced in frame with the ATG of exon 1 of Fgf10 gene. Our studies show that Cre-ERT2 insertion disrupts Fgf10 function. However, administration of tamoxifen to Fgf10(iCre); Tomato(flox) double transgenic embryos or adult mice results in specific labeling of Fgf10-positive cells, which can be lineage-traced temporally and spatially. Moreover, we show that the Fgf10(iCre) line can be used for conditional gene inactivation in an inducible fashion during early developmental stages. We also provide evidence that transcription factors located in the first intron of Fgf10 gene are critical for maintaining Fgf10 expression over time. Thus, the Fgf10(iCre) line should serve as a powerful tool to explore the functions of Fgf10 in a controlled and stage-specific manner.


Asunto(s)
Desarrollo Embrionario , Factor 10 de Crecimiento de Fibroblastos/genética , Células Madre Mesenquimatosas/metabolismo , Animales , Secuencia de Bases , Cartilla de ADN , Exones , Silenciador del Gen , Células Madre Mesenquimatosas/citología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Reacción en Cadena de la Polimerasa , Tamoxifeno/administración & dosificación
15.
Arthritis Rheum ; 64(6): 1909-19, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22143896

RESUMEN

OBJECTIVE: To use an in vitro model of chondrogenesis to identify microRNAs (miRNAs) with a functional role in cartilage homeostasis. METHODS: The expression of miRNAs was measured in the ATDC5 cell model of chondrogenesis using microarray and was verified using quantitative reverse transcription-polymerase chain reaction. MicroRNA expression was localized by in situ hybridization. Predicted miRNA target genes were validated using 3'-untranslated region-Luc reporter plasmids containing either wild-type sequences or mutants of the miRNA target sequence. Signaling through the Smad pathway was measured using a (CAGA)(12) -Luc reporter. RESULTS: The expression of several miRNAs was regulated during chondrogenesis. These included 39 miRNAs that are coexpressed with miRNA-140 (miR-140), which is known to be involved in cartilage homeostasis and osteoarthritis (OA). Of these miRNAs, miR-455 resides within an intron of COL27A1 that encodes a cartilage collagen. When human OA cartilage was compared with cartilage obtained from patients with femoral neck fractures, the expression of both miR-140-5p and miR-455-3p was increased in OA cartilage. In situ hybridization showed miR-455-3p expression in the developing limbs of chicks and mice and in human OA cartilage. The expression of miR-455-3p was regulated by transforming growth factor ß (TGFß) ligands, and miRNA regulated TGFß signaling. ACVR2B, SMAD2, and CHRDL1 were direct targets of miR-455-3p and may mediate its functional impact on TGFß signaling. CONCLUSION: MicroRNA-455 is expressed during chondrogenesis and in adult articular cartilage, where it can regulate TGFß signaling, suppressing the Smad2/3 pathway. Diminished signaling through this pathway during the aging process and in OA chondrocytes is known to contribute to cartilage destruction. We propose that the increased expression of miR-455 in OA exacerbates this process and contributes to disease pathology.


Asunto(s)
Cartílago Articular/metabolismo , Condrocitos/metabolismo , Condrogénesis/fisiología , Articulación de la Cadera/metabolismo , MicroARNs/metabolismo , Osteoartritis de la Cadera/metabolismo , Células 3T3 , Adulto , Anciano , Anciano de 80 o más Años , Animales , Cartílago Articular/patología , Células Cultivadas , Condrocitos/patología , Femenino , Articulación de la Cadera/patología , Humanos , Masculino , Ratones , MicroARNs/genética , Persona de Mediana Edad , Osteoartritis de la Cadera/genética , Osteoartritis de la Cadera/patología
16.
Biochem J ; 436(1): 71-81, 2011 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-21355848

RESUMEN

AS (Apert syndrome) is a congenital disease composed of skeletal, visceral and neural abnormalities, caused by dominant-acting mutations in FGFR2 [FGF (fibroblast growth factor) receptor 2]. Multiple FGFR2 splice variants are generated through alternative splicing, including PTC (premature termination codon)-containing transcripts that are normally eliminated via the NMD (nonsense-mediated decay) pathway. We have discovered that a soluble truncated FGFR2 molecule encoded by a PTC-containing transcript is up-regulated and persists in tissues of an AS mouse model. We have termed this IIIa-TM as it arises from aberrant splicing of FGFR2 exon 7 (IIIa) into exon 10 [TM (transmembrane domain)]. IIIa-TM is glycosylated and can modulate the binding of FGF1 to FGFR2 molecules in BIAcore-binding assays. We also show that IIIa-TM can negatively regulate FGF signalling in vitro and in vivo. AS phenotypes are thought to result from gain-of-FGFR2 signalling, but our findings suggest that IIIa-TM can contribute to these through a loss-of-FGFR2 function mechanism. Moreover, our findings raise the interesting possibility that FGFR2 signalling may be a regulator of the NMD pathway.


Asunto(s)
Acrocefalosindactilia/genética , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , Regulación hacia Arriba , Acrocefalosindactilia/metabolismo , Animales , Células COS , Células Cultivadas , Chlorocebus aethiops , Exones , Humanos , Ratones , Ratones Endogámicos , Modelos Animales , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/metabolismo , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/metabolismo
17.
Dev Biol ; 335(1): 143-55, 2009 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-19716814

RESUMEN

Formation of the vertebrate nervous system requires coordinated cell-cell interactions, intracellular signalling events, gene transcription, and morphogenetic cell movements. Wnt signalling has been involved in regulating a wide variety of biological processes such as embryonic patterning, cell proliferation, cell polarity, motility, and the specification of cell fate. Wnt ligands associate with their receptors, members of the frizzled family (Fz). In Xenopus, five members of the frizzled family are expressed in the early nervous system. We have investigated the role of Xenopus frizzled-10 (Fz10) in neural development. We show that Fz10 is expressed in the dorsal neural ectoderm and neural folds in the region where primary sensory neurons develop. Fz10 mediates canonical Wnt signalling and interacts with Wnt1 and Wnt8 but not Wnt3a as shown in synergy assays. We find that Fz10 is required for the late stages of sensory neuron differentiation. Overexpression of Fz10 in Xenopus leads to an increase in the number of sensory neurons. Loss of Fz10 function using morpholinos inhibits the development of sensory neurons in Xenopus at later stages of neurogenesis and this can be rescued by co-injection of modified Fz10B and beta-catenin. In mouse P19 cells induced by retinoic acid to undergo neural differentiation, overexpression of Xenopus Fz10 leads to an increase in the number of neurons generated while siRNA knockdown of endogenous mouse Fz10 inhibits neurogenesis. Thus we propose Fz10 mediates Wnt1 signalling to determine sensory neural differentiation in Xenopus in vivo and in mouse cell culture.


Asunto(s)
Diferenciación Celular/fisiología , Receptores Frizzled/metabolismo , Neurogénesis/fisiología , Células Receptoras Sensoriales/fisiología , Transducción de Señal/fisiología , Proteínas de Xenopus/metabolismo , Xenopus laevis , Animales , Biomarcadores/metabolismo , Línea Celular , Receptores Frizzled/genética , Técnicas de Silenciamiento del Gen , Humanos , Ratones , Oligonucleótidos Antisentido/genética , Oligonucleótidos Antisentido/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Células Receptoras Sensoriales/citología , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Proteínas de Xenopus/genética , Xenopus laevis/anatomía & histología , Xenopus laevis/embriología , Xenopus laevis/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
18.
Pediatr Res ; 66(4): 386-90, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19581825

RESUMEN

Patients with Apert syndrome (AS) display a wide range of congenital malformations including tracheal stenosis, which is a disease characterized by a uniform cartilaginous sleeve in place of a normally ribbed cartilagenous trachea. We have studied the cellular and molecular basis of this phenotype in a mouse model of AS (Fgfr2c(+/Delta) mice), which shows ectopic expression of Fgfr2b in mesenchymal tissues. Here we report that tracheal stenosis is associated with increased proliferation of mesenchymal cells, where the expression of Fgf10 and its upstream regulators Tbx4 and Tbx5 are abnormally elevated. We show that Fgf10 has a critical inductive role in tracheal stenosis, as genetic knockdown of Fgf10 in Fgfr2c(+/Delta) mice rescues this phenotype. These novel findings demonstrate a regulatory role for Fgf10 in tracheal development and shed more light on the underlying cause of tracheal defects in AS.


Asunto(s)
Acrocefalosindactilia/patología , Cartílago/anomalías , Factor 10 de Crecimiento de Fibroblastos/metabolismo , Tráquea/anatomía & histología , Acrocefalosindactilia/metabolismo , Animales , Tipificación del Cuerpo , Embrión de Mamíferos/anatomía & histología , Embrión de Mamíferos/fisiología , Factor 10 de Crecimiento de Fibroblastos/genética , Humanos , Ratones , Ratones Transgénicos , Fenotipo , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/metabolismo , Transducción de Señal/fisiología , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo
19.
Brain Res ; 1250: 20-6, 2009 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-19056356

RESUMEN

microRNAs are short RNA molecules that are often expressed in specific tissues and regulate a variety of developmental processes. We used locked nucleic acid probes in in situ hybridisation reactions to study the distribution of microRNA-449 (miR449) during mouse embryonic development in order to obtain clues about its function/s. Between E9.75 and E11.5, miR449 was found to be expressed specifically in the developing roof plate of the fourth ventricle within the domain of roof plate marker, Lmx1a. From E12.5 onwards, this expression became restricted to the epithelial cell layer of the fourth ventricle choroid plexus. MiR449 also became detectable specifically in the choroid plexuses of the lateral and 3rd ventricles at E13.5 and E15.5, respectively. Northern blot analysis of adult brain also showed a selective and enriched expression in the choroid plexus tissue. Potential target genes regulated by miR449 were selected for experimental validation in luciferase-reporter assays and the transcription factor E2f5, which regulates CSF production, was verified as a miR449 target gene. Taken together, these findings suggest that miR449 has a specific role in the development and functioning of choroid plexuses.


Asunto(s)
Plexo Coroideo/embriología , Plexo Coroideo/fisiología , MicroARNs/genética , MicroARNs/metabolismo , Animales , Northern Blotting , Encéfalo/embriología , Encéfalo/metabolismo , Corteza Cerebral/embriología , Corteza Cerebral/metabolismo , Plexo Coroideo/crecimiento & desarrollo , Plexo Coroideo/metabolismo , Factor de Transcripción E2F5/metabolismo , Embrión de Mamíferos/metabolismo , Células Epiteliales/metabolismo , Cuarto Ventrículo/embriología , Cuarto Ventrículo/metabolismo , Proteínas de Homeodominio/metabolismo , Hibridación in Situ , Proteínas con Homeodominio LIM , Ventrículos Laterales/embriología , Ventrículos Laterales/metabolismo , Ratones , Oligonucleótidos/metabolismo , Tercer Ventrículo/embriología , Tercer Ventrículo/metabolismo , Factores de Transcripción , Proteína Wnt1/metabolismo
20.
Dev Dyn ; 238(2): 376-85, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18773495

RESUMEN

Apert syndrome (AS) is a severe congenital disease caused by mutations in fibroblast growth factor receptor-2 (FGFR2), and characterised by craniofacial, limb, visceral, and neural abnormalities. AS-type FGFR2 molecules exert a gain-of-function effect in a ligand-dependent manner, but the causative FGFs and their relative contribution to each of the abnormalities observed in AS remains unknown. We have generated mice that harbour an AS mutation but are deficient in or heterozygous for Fgf10. The genetic knockdown of Fgf10 can rescue the skeletal as well as some of the visceral defects observed in this AS model, and restore a near normal level of FgfR2 signaling involving an apparent switch between ERK(p44/p42) and p38 phosphorylation. Surprisingly, it can also yield de novo cleft palate and blind colon in a subset of the compound mutants. These findings strongly suggest that Fgf10 contributes to AS-like pathologies and highlight a complexity of Fgf10 function in different tissues.


Asunto(s)
Acrocefalosindactilia/metabolismo , Huesos/anomalías , Factor 10 de Crecimiento de Fibroblastos/fisiología , Vísceras/anomalías , Acrocefalosindactilia/genética , Acrocefalosindactilia/patología , Animales , Fisura del Paladar/genética , Colon/anomalías , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Factor 10 de Crecimiento de Fibroblastos/genética , Técnicas de Silenciamiento del Gen , Pulmón/metabolismo , Ratones , Ratones Mutantes , Mutación , Fosforilación , Isoformas de Proteínas/biosíntesis , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/biosíntesis , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/fisiología , Transducción de Señal , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA