Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 20373, 2024 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-39223182

RESUMEN

Vitamin A plays a critical role in various biological functions, including vision, cellular differentiation, and immune regulation. However, accurately assessing its status, particularly in obese individuals, presents challenges due to potential alterations in metabolism and distribution. This study utilized Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) methodology to precisely measure serum vitamin A concentrations in population of UAE. The methodology's reliability and precision, as demonstrated through validation procedures, underscore its potential utility in clinical settings. Employing the Multiple Reaction Monitoring mode of positive ion electrospray ionization, the LC-MS/MS system achieves a limit of detection (LOD) of 0.48 ng/mL in serum, while adhering to FDA-US regulations for accuracy and compliance. A key aspect of this study was the application of LC-MS/MS to assess vitamin A status in an obese population within UAE. By employing a diverse cohort of 452 Emirati participants, including 277 individuals from a randomized controlled trial who were assessed at baseline and at 6th month, and 175 healthy individuals aged 18-82 assessed at baseline, this study explores the relationship between obesity and vitamin A levels, shedding light on potential implications for health and well-being. It was an observational study based on a new vitamin A method and participants were asked to eat vitamin A rich foods. The robust performance of the LC-MS/MS methodology positions it as a valuable tool for clinical research. By accurately quantifying vitamin A levels in human serum, this methodology opens avenues for advancing our understanding of vitamin A physiology and its implications for health, particularly in obese populations. In summary, this LC-MS/MS methodology presents a potent tool for clinical studies, providing reliable, specific, and robust detection of vitamin A in human serum, thus, opening a new frontier for advancing our understanding of vitamin A related physiology and health in the obese population.


Asunto(s)
Obesidad , Espectrometría de Masas en Tándem , Vitamina A , Humanos , Vitamina A/sangre , Obesidad/sangre , Adulto , Emiratos Árabes Unidos/epidemiología , Masculino , Persona de Mediana Edad , Espectrometría de Masas en Tándem/métodos , Femenino , Cromatografía Liquida/métodos , Anciano , Adolescente , Adulto Joven , Anciano de 80 o más Años , Reproducibilidad de los Resultados
2.
ACS Omega ; 7(38): 34154-34165, 2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36188263

RESUMEN

In this work, a simple and sensitive electrochemical method was developed to determine ethyl violet (EV) dye in aqueous systems by using square wave anodic stripping voltammetry (SWASV) employing a glassy carbon electrode modified with acidic-functionalized carbon nanotubes (COOH-fCNTs). In square wave anodic stripping voltammetry, EV exhibited a well-defined oxidation peak at 0.86 V at the modified GCE. Impedance spectroscopy and cyclic voltammetry were used to examine the charge transduction and sensing capabilities of the modified electrode. The influence of pH, deposition potential, and accumulation time on the electro-oxidation of EV was optimized. Under the optimum experimental conditions, the limit of detection with a value of 0.36 nM demonstrates high sensitivity of COOH-fCNTs/GCE for EV. After detection, it was envisioned to devise a method for the efficient removal of EV from an aqueous system. In this regard a photocatalytic degradation method of EV using Ho/TiO2 nanoparticles was developed. The Ho/TiO2 nanoparticles synthesized by the sol-gel method were characterized by UV-vis, XRD, FTIR, SEM, and EDX. The photocatalytic degradation studies revealed that basic medium is more suitable for a higher degradation rate of EV than acidic and neutral media. The photodegradation kinetic parameters were evaluated using UV-vis spectroscopic and electrochemical methods. The results revealed that the degradation process of EV follows first-order kinetics.

3.
RSC Adv ; 12(25): 15658-15669, 2022 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-35685705

RESUMEN

The presence of organic pollutants in water and food samples is a risk for the environment. To avoid this hazard a variety of analytical tools are used for the detection of toxic organic contaminants. Herein we present a selective and sensitive electrochemical sensor based on amino group functionalized multi walled carbon nanotubes and carboxylic group functionalized multi walled carbon nanotubes (HOOC-fMWCNTs/NH2-fMWCNTs) as modifiers of the glassy carbon electrode for the detection of a toxic dye, Rhodamine B. The sensing ability of the designed sensor was examined by electrochemical impedance spectroscopy, cyclic voltammetry and square wave voltammetry. The synergistic effect of HOOC-fMWCNTs and NH2-fMWCNTs (layer by layer) led to enhanced electrocatalytic activity of the modified electrode surface for Rhodamine B detection. Under optimized conditions, the graph between concentration and peak current followed a linear trend in the concentration range of 0.1 nM to 0.05 µM. The limits of detection and quantification were found to be 57.4 pM and 191.3 pM respectively. The designed sensor was also used for probing the degradation of Rhodamine B. Sodium borohydride was found to degrade Rhodamine B in neutral media under ambient conditions. The kinetics of degradation followed first order kinetics. Rhodamine B degraded to the extent of more than 80% as revealed by electrochemical and spectrophotometric techniques. The developed method is promising for the treatment of dye contaminated wastewater. Moreover, it uses only a microliter volume of the sample for analysis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA