Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Lancet Planet Health ; 8(9): e629-e639, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39243779

RESUMEN

BACKGROUND: The proportion of intense tropical cyclones is expected to increase in a changing climate. However, there is currently no consistent and comprehensive assessment of infectious disease risk following tropical cyclone exposure across countries and over decades. We aimed to explore the tropical cyclone-associated hospitalisation risks and burden for cause-specific infectious diseases on a multi-country scale. METHODS: Hospitalisation records for infectious diseases were collected from six countries and territories (Canada, South Korea, New Zealand, Taiwan, Thailand, and Viet Nam) during various periods between 2000 and 2019. The days with tropical cyclone-associated maximum sustained windspeeds of 34 knots or higher derived from a parametric wind field model were considered as tropical cyclone exposure days. The association of monthly infectious diseases hospitalisations and tropical cyclone exposure days was first examined at location level using a distributed lag non-linear quasi-Poisson regression model, and then pooled using a random-effects meta-analysis. The tropical cyclone-attributable number and fraction of infectious disease hospitalisations were also calculated. FINDINGS: Overall, 2·2 million people who were hospitalised for infectious diseases in 179 locations that had at least one tropical cyclone exposure day in the six countries and territories were included in the analysis. The elevated hospitalisation risks for infectious diseases associated with tropical cyclones tended to dissipate 2 months after the tropical cyclone exposure. Overall, each additional tropical cyclone day was associated with a 9% (cumulative relative risk 1·09 [95% CI 1·05-1·14]) increase in hospitalisations for all-cause infectious diseases, 13% (1·13 [1·05-1·21]) for intestinal infectious diseases, 14% (1·14 [1·05-1·23]) for sepsis, and 22% (1·22 [1·03-1·46]) for dengue during the 2 months after a tropical cyclone. Associations of tropical cyclones with hospitalisations for tuberculosis and malaria were not significant. In total, 0·72% (95% CI 0·40-1·01) of the hospitalisations for all-cause infectious diseases, 0·33% (0·15-0·49) for intestinal infectious diseases, 1·31% (0·57-1·95) for sepsis, and 0·63% (0·10-1·04) for dengue were attributable to tropical cyclone exposures. The attributable burdens were higher among young populations (aged ≤19 years) and male individuals compared with their counterparts, especially for intestinal infectious diseases. The heterogeneous spatiotemporal pattern was further revealed at the country and territory level-tropical cyclone-attributable fractions showed a decreasing trend in South Korea during the study period but an increasing trend in Viet Nam, Taiwan, and New Zealand. INTERPRETATION: Tropical cyclones were associated with persistent elevated hospitalisation risks of infectious diseases (particularly sepsis and intestinal infectious diseases). Targeted interventions should be formulated for different populations, regions, and causes of infectious diseases based on evidence on tropical cyclone epidemiology to respond to the increasing risk and burden. FUNDING: Australian Research Council, Australian National Health, and Medical Research Council.


Asunto(s)
Enfermedades Transmisibles , Tormentas Ciclónicas , Hospitalización , Humanos , Hospitalización/estadística & datos numéricos , Enfermedades Transmisibles/epidemiología , Nueva Zelanda/epidemiología , Vietnam/epidemiología , República de Corea/epidemiología , Taiwán/epidemiología , Canadá/epidemiología , Tailandia/epidemiología
2.
Artículo en Inglés | MEDLINE | ID: mdl-39338120

RESUMEN

The influence of global climate change on temperature-related health outcomes among vulnerable populations, particularly young children, is underexplored. Using a case time series design, we analysed 647,000 hospital admissions of children aged under five years old in New Zealand, born between 2000 and 2019. We explored the relationship between daily maximum temperatures and hospital admissions across 2139 statistical areas. We used quasi-Poisson distributed lag non-linear models to account for the delayed effects of temperature over a 0-21-day window. We identified broad ICD code categories associated with heat before combining these for the main analyses. We conducted stratified analyses by ethnicity, sex, and residency, and tested for interactions with long-term temperature, socioeconomic position, and housing tenure. We found J-shaped temperature-response curves with increased risks of hospital admission above 24.1 °C, with greater sensitivity among Maori, Pacific, and Asian compared to European children. Spatial-temporal analysis from 2013-2019 showed rising attributable fractions (AFs) of admissions associated with increasing temperatures, especially in eastern coastal and densely populated areas. Interactive maps were created to allow policymakers to prioritise interventions. Findings emphasize the need for child-specific and location-specific climate change adaptation policies, particularly for socioeconomically disadvantaged groups.


Asunto(s)
Hospitalización , Nueva Zelanda , Humanos , Preescolar , Lactante , Hospitalización/estadística & datos numéricos , Masculino , Femenino , Recién Nacido , Cambio Climático , Temperatura , Calor/efectos adversos
3.
Environ Epidemiol ; 8(4): e320, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39027089

RESUMEN

Background: Precipitation could affect the transmission of diarrheal diseases. The diverse precipitation patterns across different climates might influence the degree of diarrheal risk from precipitation. This study determined the associations between precipitation and diarrheal mortality in tropical, temperate, and arid climate regions. Methods: Daily counts of diarrheal mortality and 28-day cumulative precipitation from 1997 to 2019 were analyzed across 29 locations in eight middle-income countries (Argentina, Brazil, Costa Rica, India, Peru, the Philippines, South Africa, and Thailand). A two-stage approach was employed: the first stage is conditional Poisson regression models for each location, and the second stage is meta-analysis for pooling location-specific coefficients by climate zone. Results: In tropical climates, higher precipitation increases the risk of diarrheal mortality. Under extremely wet conditions (95th percentile of 28-day cumulative precipitation), diarrheal mortality increased by 17.8% (95% confidence interval [CI] = 10.4%, 25.7%) compared with minimum-risk precipitation. For temperate and arid climates, diarrheal mortality increases in both dry and wet conditions. In extremely dry conditions (fifth percentile of 28-day cumulative precipitation), diarrheal mortality risk increases by 3.8% (95% CI = 1.2%, 6.5%) for temperate and 5.5% (95% CI = 1.0%, 10.2%) for arid climates. Similarly, under extremely wet conditions, diarrheal mortality risk increases by 2.5% (95% CI = -0.1%, 5.1%) for temperate and 4.1% (95% CI = 1.1%, 7.3%) for arid climates. Conclusions: Associations between precipitation and diarrheal mortality exhibit variations across different climate zones. It is crucial to consider climate-specific variations when generating global projections of future precipitation-related diarrheal mortality.

4.
Diabetes Care ; 47(9): 1664-1672, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39012781

RESUMEN

OBJECTIVE: To evaluate associations of wildfire fine particulate matter ≤2.5 mm in diameter (PM2.5) with diabetes across multiple countries and territories. RESEARCH DESIGN AND METHODS: We collected data on 3,612,135 diabetes hospitalizations from 1,008 locations in Australia, Brazil, Canada, Chile, New Zealand, Thailand, and Taiwan during 2000-2019. Daily wildfire-specific PM2.5 levels were estimated through chemical transport models and machine-learning calibration. Quasi-Poisson regression with distributed lag nonlinear models and random-effects meta-analysis were applied to estimate associations between wildfire-specific PM2.5 and diabetes hospitalization. Subgroup analyses were by age, sex, location income level, and country or territory. Diabetes hospitalizations attributable to wildfire-specific PM2.5 and nonwildfire PM2.5 were compared. RESULTS: Each 10 µg/m3 increase in wildfire-specific PM2.5 levels over the current day and previous 3 days was associated with relative risks (95% CI) of 1.017 (1.011-1.022), 1.023 (1.011-1.035), 1.023 (1.015-1.032), 0.962 (0.823-1.032), 1.033 (1.001-1.066), and 1.013 (1.004-1.022) for all-cause, type 1, type 2, malnutrition-related, other specified, and unspecified diabetes hospitalization, respectively. Stronger associations were observed for all-cause, type 1, and type 2 diabetes in Thailand, Australia, and Brazil; unspecified diabetes in New Zealand; and type 2 diabetes in high-income locations. An estimate of 0.67% (0.16-1.18%) and 1.02% (0.20-1.81%) for all-cause and type 2 diabetes hospitalizations were attributable to wildfire-specific PM2.5. Compared with nonwildfire PM2.5, wildfire-specific PM2.5 posed greater risks of all-cause, type 1, and type 2 diabetes and were responsible for 38.7% of PM2.5-related diabetes hospitalizations. CONCLUSIONS: We show the relatively underappreciated links between diabetes and wildfire air pollution, which can lead to a nonnegligible proportion of PM2.5-related diabetes hospitalizations. Precision prevention and mitigation should be developed for those in advantaged communities and in Thailand, Australia, and Brazil.


Asunto(s)
Diabetes Mellitus , Hospitalización , Material Particulado , Incendios Forestales , Humanos , Hospitalización/estadística & datos numéricos , Material Particulado/análisis , Material Particulado/efectos adversos , Masculino , Australia/epidemiología , Persona de Mediana Edad , Femenino , Diabetes Mellitus/epidemiología , Anciano , Tailandia/epidemiología , Nueva Zelanda/epidemiología , Brasil/epidemiología , Canadá/epidemiología , Taiwán/epidemiología , Adulto , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/estadística & datos numéricos
5.
J Am Coll Cardiol ; 83(23): 2276-2287, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38839202

RESUMEN

BACKGROUND: The association between nonoptimal temperatures and cardiovascular mortality risk is recognized. However, a comprehensive global assessment of this burden is lacking. OBJECTIVES: The goal of this study was to assess global cardiovascular mortality burden attributable to nonoptimal temperatures and investigate spatiotemporal trends. METHODS: Using daily cardiovascular deaths and temperature data from 32 countries, a 3-stage analytical approach was applied. First, location-specific temperature-mortality associations were estimated, considering nonlinearity and delayed effects. Second, a multivariate meta-regression model was developed between location-specific effect estimates and 5 meta-predictors. Third, cardiovascular deaths associated with nonoptimal, cold, and hot temperatures for each global grid (55 km × 55 km resolution) were estimated, and temporal trends from 2000 to 2019 were explored. RESULTS: Globally, 1,801,513 (95% empirical CI: 1,526,632-2,202,831) annual cardiovascular deaths were associated with nonoptimal temperatures, constituting 8.86% (95% empirical CI: 7.51%-12.32%) of total cardiovascular mortality corresponding to 26 deaths per 100,000 population. Cold-related deaths accounted for 8.20% (95% empirical CI: 6.74%-11.57%), whereas heat-related deaths accounted for 0.66% (95% empirical CI: 0.49%-0.98%). The mortality burden varied significantly across regions, with the highest excess mortality rates observed in Central Asia and Eastern Europe. From 2000 to 2019, cold-related excess death ratios decreased, while heat-related ratios increased, resulting in an overall decline in temperature-related deaths. Southeastern Asia, Sub-Saharan Africa, and Oceania observed the greatest reduction, while Southern Asia experienced an increase. The Americas and several regions in Asia and Europe displayed fluctuating temporal patterns. CONCLUSIONS: Nonoptimal temperatures substantially contribute to cardiovascular mortality, with heterogeneous spatiotemporal patterns. Effective mitigation and adaptation strategies are crucial, especially given the increasing heat-related cardiovascular deaths amid climate change.


Asunto(s)
Enfermedades Cardiovasculares , Salud Global , Humanos , Enfermedades Cardiovasculares/mortalidad , Frío/efectos adversos
6.
Epidemiol Infect ; 152: e64, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38616329

RESUMEN

Occurrence of cryptosporidiosis has been associated with weather conditions in many settings internationally. We explored statistical clusters of human cryptosporidiosis and their relationship with severe weather events in New Zealand (NZ). Notified cases of cryptosporidiosis from 1997 to 2015 were obtained from the national surveillance system. Retrospective space-time permutation was used to identify statistical clusters. Cluster data were compared to severe weather events in a national database. SaTScan analysis detected 38 statistically significant cryptosporidiosis clusters. Around a third (34.2%, 13/38) of these clusters showed temporal and spatial alignment with severe weather events. Of these, nearly half (46.2%, 6/13) occurred in the spring. Only five (38%, 5/13) of these clusters corresponded to a previously reported cryptosporidiosis outbreak. This study provides additional evidence that severe weather events may contribute to the development of some cryptosporidiosis clusters. Further research on this association is needed as rainfall intensity is projected to rise in NZ due to climate change. The findings also provide further arguments for upgrading the quality of drinking water sources to minimize contamination with pathogens from runoff from livestock agriculture.


Asunto(s)
Criptosporidiosis , Tiempo (Meteorología) , Criptosporidiosis/epidemiología , Nueva Zelanda/epidemiología , Humanos , Estudios Retrospectivos , Adulto , Preescolar , Masculino , Persona de Mediana Edad , Niño , Femenino , Anciano , Adolescente , Adulto Joven , Agrupamiento Espacio-Temporal , Lactante , Brotes de Enfermedades , Anciano de 80 o más Años , Estaciones del Año , Recién Nacido
7.
Lancet Planet Health ; 8(3): e146-e155, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38453380

RESUMEN

BACKGROUND: The acute health effects of short-term (hours to days) exposure to fine particulate matter (PM2·5) have been well documented; however, the global mortality burden attributable to this exposure has not been estimated. We aimed to estimate the global, regional, and urban mortality burden associated with short-term exposure to PM2·5 and the spatiotemporal variations in this burden from 2000 to 2019. METHODS: We combined estimated global daily PM2·5 concentrations, annual population counts, country-level mortality rates, and epidemiologically derived exposure-response functions to estimate the mortality attributable to short-term PM2·5 exposure from 2000 to 2019, in the continental regions and in 13 189 urban centres worldwide at a spatial resolution of 0·1°â€ˆ× 0·1°. We tested the robustness of our mortality estimates with different theoretical minimum risk exposure levels, lag effects, and exposure-response functions. FINDINGS: Approximately 1 million (95% CI 690 000-1·3 million) premature deaths per year from 2000 to 2019 were attributable to short-term PM2·5 exposure, representing 2·08% (1·41-2·75) of total global deaths or 17 (11-22) premature deaths per 100 000 population. Annually, 0·23 million (0·15 million-0·30 million) deaths attributable to short-term PM2·5 exposure were in urban areas, constituting 22·74% of the total global deaths attributable to this cause and accounting for 2·30% (1·56-3·05) of total global deaths in urban areas. The sensitivity analyses showed that our worldwide estimates of mortality attributed to short-term PM2·5 exposure were robust. INTERPRETATION: Short-term exposure to PM2·5 contributes a substantial global mortality burden, particularly in Asia and Africa, as well as in global urban areas. Our results highlight the importance of mitigation strategies to reduce short-term exposure to air pollution and its adverse effects on human health. FUNDING: Australian Research Council and the Australian National Health and Medical Research Council.


Asunto(s)
Contaminación del Aire , Material Particulado , Humanos , Material Particulado/análisis , Australia , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Mortalidad Prematura , Asia
8.
PLoS Med ; 21(1): e1004341, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38252630

RESUMEN

BACKGROUND: More intense tropical cyclones (TCs) are expected in the future under a warming climate scenario, but little is known about their mortality effect pattern across countries and over decades. We aim to evaluate the TC-specific mortality risks, periods of concern (POC) and characterize the spatiotemporal pattern and exposure-response (ER) relationships on a multicountry scale. METHODS AND FINDINGS: Daily all-cause, cardiovascular, and respiratory mortality among the general population were collected from 494 locations in 18 countries or territories during 1980 to 2019. Daily TC exposures were defined when the maximum sustained windspeed associated with a TC was ≥34 knots using a parametric wind field model at a 0.5° × 0.5° resolution. We first estimated the TC-specific mortality risks and POC using an advanced flexible statistical framework of mixed Poisson model, accounting for the population changes, natural variation, seasonal and day of the week effects. Then, a mixed meta-regression model was used to pool the TC-specific mortality risks to estimate the overall and country-specific ER relationships of TC characteristics (windspeed, rainfall, and year) with mortality. Overall, 47.7 million all-cause, 15.5 million cardiovascular, and 4.9 million respiratory deaths and 382 TCs were included in our analyses. An overall average POC of around 20 days was observed for TC-related all-cause and cardiopulmonary mortality, with relatively longer POC for the United States of America, Brazil, and Taiwan (>30 days). The TC-specific relative risks (RR) varied substantially, ranging from 1.04 to 1.42, 1.07 to 1.77, and 1.12 to 1.92 among the top 100 TCs with highest RRs for all-cause, cardiovascular, and respiratory mortality, respectively. At country level, relatively higher TC-related mortality risks were observed in Guatemala, Brazil, and New Zealand for all-cause, cardiovascular, and respiratory mortality, respectively. We found an overall monotonically increasing and approximately linear ER curve of TC-related maximum sustained windspeed and cumulative rainfall with mortality, with heterogeneous patterns across countries and regions. The TC-related mortality risks were generally decreasing from 1980 to 2019, especially for the Philippines, Taiwan, and the USA, whereas potentially increasing trends in TC-related all-cause and cardiovascular mortality risks were observed for Japan. CONCLUSIONS: The TC mortality risks and POC varied greatly across TC events, locations, and countries. To minimize the TC-related health burdens, targeted strategies are particularly needed for different countries and regions, integrating epidemiological evidence on region-specific POC and ER curves that consider across-TC variability.


Asunto(s)
Tormentas Ciclónicas , Enfermedades Respiratorias , Humanos , Estados Unidos , Clima , Brasil , Japón
9.
Lancet Reg Health West Pac ; 40: 100954, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38116504

RESUMEN

Recent extreme weather events attributable to climate change have major implications for policy. Here we summarize and evaluate the current state of climate change adaptation policy, from a health perspective, for Aotearoa New Zealand, based on government sources. Legislation relating to both environmental management and health are currently subject to major reforms. At present, adaptation policy emphasises protection of health care facilities from climate extremes; there is insufficient attention paid to broader determinants of health. We argue for greater health input into adaptation planning. Without intersectoral collaboration, contributions from diverse communities, and better support of indigenous solutions, climate change policy is unlikely to achieve effective health outcomes and there is a risk that climate change will exacerbate inequities. We recommend that the Climate Change Commission engage formally and directly with health bodies to strengthen the Commission's advice on the implications of climate change, and of national climate change policies, on health and equity. Climate resilient development does not occur without better public health. For this reason, the health sector has a critical role in the development and implementation of adaptation policy.

10.
Lancet Planet Health ; 7(8): e694-e705, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37558350

RESUMEN

BACKGROUND: The global spatiotemporal pattern of mortality risk and burden attributable to tropical cyclones is unclear. We aimed to evaluate the global short-term mortality risk and burden associated with tropical cyclones from 1980 to 2019. METHODS: The wind speed associated with cyclones from 1980 to 2019 was estimated globally through a parametric wind field model at a grid resolution of 0·5°â€ˆ× 0·5°. A total of 341 locations with daily mortality and temperature data from 14 countries that experienced at least one tropical cyclone day (a day with maximum sustained wind speed associated with cyclones ≥17·5 m/s) during the study period were included. A conditional quasi-Poisson regression with distributed lag non-linear model was applied to assess the tropical cyclone-mortality association. A meta-regression model was fitted to evaluate potential contributing factors and estimate grid cell-specific tropical cyclone effects. FINDINGS: Tropical cyclone exposure was associated with an overall 6% (95% CI 4-8) increase in mortality in the first 2 weeks following exposure. Globally, an estimate of 97 430 excess deaths (95% empirical CI [eCI] 71 651-126 438) per decade were observed over the 2 weeks following exposure to tropical cyclones, accounting for 20·7 (95% eCI 15·2-26·9) excess deaths per 100 000 residents (excess death rate) and 3·3 (95% eCI 2·4-4·3) excess deaths per 1000 deaths (excess death ratio) over 1980-2019. The mortality burden exhibited substantial temporal and spatial variation. East Asia and south Asia had the highest number of excess deaths during 1980-2019: 28 744 (95% eCI 16 863-42 188) and 27 267 (21 157-34 058) excess deaths per decade, respectively. In contrast, the regions with the highest excess death ratios and rates were southeast Asia and Latin America and the Caribbean. From 1980-99 to 2000-19, marked increases in tropical cyclone-related excess death numbers were observed globally, especially for Latin America and the Caribbean and south Asia. Grid cell-level and country-level results revealed further heterogeneous spatiotemporal patterns such as the high and increasing tropical cyclone-related mortality burden in Caribbean countries or regions. INTERPRETATION: Globally, short-term exposure to tropical cyclones was associated with a significant mortality burden, with highly heterogeneous spatiotemporal patterns. In-depth exploration of tropical cyclone epidemiology for those countries and regions estimated to have the highest and increasing tropical cyclone-related mortality burdens is urgently needed to help inform the development of targeted actions against the increasing adverse health impacts of tropical cyclones under a changing climate. FUNDING: Australian Research Council and Australian National Health and Medical Research Council.


Asunto(s)
Tormentas Ciclónicas , Australia , Clima , Temperatura , Viento
11.
Environ Health ; 22(1): 9, 2023 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-36658626

RESUMEN

BACKGROUND: Recent studies linking low levels of nitrate in drinking water to colorectal cancer have raised public concerns over nitrate contamination. The aim of this study was to analyze the media discourse on the potential human health hazard of nitrates in drinking water in a high-income country with a large livestock industry: New Zealand (NZ). METHODS: Searches of media sources ("major newspapers") held by the Factiva database for the NZ setting in the five-year period 17 December 2016 to 20 December 2021. RESULTS: The largest number of media items was observed for 2017 (n = 108), the year of a NZ general election, with a notable decrease in 2020 (n = 20) that was likely due to the Covid-19 pandemic, which dominated health media. However, the percentage of these media items with a health focus steadily increased over time, from 11.1% of all articles in 2017 to 51.2% in 2021. The most commonly mentioned health hazard was colorectal cancer, followed by methemoglobinemia. The temporal pattern of media items suggests that the release of scientific studies and scholarly blogs was associated with the publication of subsequent media items. Major stakeholders involved in the discourse included representatives of local and central government, environmental and recreational interest groups, researchers, local residents, agricultural interest groups, and health organizations. Maori (Indigenous New Zealanders) values or perspectives were rarely mentioned. CONCLUSIONS: Analysis of major newspapers for a five-year period indicated that a wide range of expert comment and opinions were made available to the public and policy makers on the issue of nitrates in water. While many different stakeholder views were captured in the media discourse, there is scope for the media to better report the views of Maori on this topic. There is also a need for articles detailing the health issues to also refer to the environmental, recreational, and cultural aspects of protecting water quality to ensure that the public, policy makers, and regulators are aware of co-benefits.


Asunto(s)
COVID-19 , Neoplasias Colorrectales , Agua Potable , Humanos , Nitratos/efectos adversos , Nitratos/análisis , Agua Potable/análisis , Pandemias
12.
N Z Med J ; 135(1566): 87-95, 2022 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-36455181

RESUMEN

A 2016 drinking water-related campylobacteriosis outbreak in Aotearoa New Zealand made much of an entire town sick leading to reforms colloquially called "Three Waters", which aims to improve the management and delivery of waste, storm and drinking water systems. Public discourse on the Three Waters reforms has been dominated by anti-co-governance rhetoric, concerns around privatisation and loss of local control and alternative less comprehensive reform models. This debate has drowned out the fundamental problem statement justifying the reforms, that is, the management of drinking water resources is currently: 1) demonstrably inadequate to protect public health and promote health equity; and 2) economically inefficient. We discuss four areas where the proposed Three Waters reforms are likely to address current and future challenges and improve public health. We conclude by outlining four areas of remaining contention.


Asunto(s)
Agua Potable , Salud Pública , Humanos , Promoción de la Salud , Nueva Zelanda/epidemiología , Donantes de Tejidos
13.
Ecohealth ; 19(2): 273-289, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35689151

RESUMEN

Public health risks associated with the intensification of dairy farming are an emerging concern. Dairy cattle are a reservoir for a number of pathogens that can cause human illness. This study examined the spatial distribution of dairy cattle density and explored temporal patterns of human campylobacteriosis and cryptosporidiosis notifications in New Zealand from 1997 to 2015. Maps of dairy cattle density were produced, and temporal patterns of disease rates were assessed for urban versus rural areas and for areas with different dairy cattle densities using descriptive temporal analyses. Campylobacteriosis and cryptosporidiosis rates displayed strong seasonal patterns, with highest rates in spring in rural areas and, for campylobacteriosis, summer in urban areas. Increases in rural cases often preceded increases in urban cases. Furthermore, disease rates in areas with higher dairy cattle densities tended to peak before areas with low densities or no dairy cattle. Infected dairy calves may be a direct or indirect source of campylobacteriosis or cryptosporidiosis infection in humans through environmental or occupational exposure routes, including contact with animals or feces, recreational contact with contaminated waterways, and consumption of untreated drinking water. These results have public health implications for populations living, working, or recreating in proximity to dairy farms.


Asunto(s)
Infecciones por Campylobacter , Enfermedades de los Bovinos , Criptosporidiosis , Animales , Infecciones por Campylobacter/epidemiología , Infecciones por Campylobacter/veterinaria , Bovinos , Enfermedades de los Bovinos/epidemiología , Criptosporidiosis/epidemiología , Granjas , Heces , Humanos , Nueva Zelanda/epidemiología
15.
Artículo en Inglés | MEDLINE | ID: mdl-35162928

RESUMEN

Legionnaires' disease (LD) (Legionella) is a common cause of community-acquired pneumonia (CAP) in those requiring hospitalization. Geographical variation in the importance of Legionella species as an aetiologic agent of CAP is poorly understood. We performed a systematic review and meta-analysis of population-based observational studies that reported the proportion of Legionella infection in patients with CAP (1 January 1990 to 31 May 2020). Using five electronic databases, articles were identified, appraised and reported in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. The quality of the included studies was assessed using the Newcastle-Ottawa Scale. Univariate and multivariate meta-regression analyses were conducted using study design, WHO region, study quality and healthcare setting as the explanatory variables. We reviewed 2778 studies, of which 219 were included in the meta-analysis. The mean incidence of CAP was 46.7/100,000 population (95% CI: 46.6-46.8). The mean proportion of Legionella as the causative agent for CAP was 4.6% (95% CI: 4.4 to 4.7). Consequently, the mean Legionella incidence rate was 2.8/100,000 population (95% CI: 2.7-2.9). There was significant heterogeneity across all studies I2 = 99.27% (p < 0.0001). After outliers were removed, there was a decrease in the heterogeneity (I2 = 43.53%). Legionella contribution to CAP has a global distribution. Although the rates appear highest in high income countries in temperate regions, there are insufficient studies from low- and middle-income countries to draw conclusions about the rates in these regions. Nevertheless, this study provides an estimate of the mean incidence of Legionella infection in CAP, which could be used to estimate the regional and global burden of LD to support efforts to reduce the impact of this infection as well as to fill important knowledge gaps.


Asunto(s)
Infecciones Comunitarias Adquiridas , Legionella pneumophila , Legionella , Legionelosis , Enfermedad de los Legionarios , Neumonía , Infecciones Comunitarias Adquiridas/epidemiología , Humanos , Legionelosis/epidemiología , Enfermedad de los Legionarios/epidemiología , Neumonía/epidemiología
16.
Environ Res ; 204(Pt C): 112322, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34740625

RESUMEN

BACKGROUND: Epidemiological evidence in multiple jurisdictions has shown an association between nitrate exposure in drinking water and an increased risk of colorectal cancer (CRC). OBJECTIVE: We aimed to review the extent of nitrate contamination in New Zealand drinking water and estimate the health and financial burden of nitrate-attributable CRC. METHODS: We collated data on nitrate concentrations in drinking water for an estimated 85% of the New Zealand population (∼4 million people) who were on registered supplies. We estimated nitrate levels for the remaining population (∼600,000 people) based on samples from 371 unregistered (private) supplies. We used the effective rate ratio from previous epidemiological studies to estimate CRC cases and deaths attributable to nitrate in drinking water. RESULTS: Three-quarters of New Zealanders are on water supplies with less than 1 mg/L NO3-N. The population weighted average for nitrate exposure for people on registered supplies was 0.49 mg/L NO3-N with 1.91% (95%CI 0.49, 3.30) of CRC cases attributable to nitrates. This correlates to 49.7 cases per year (95%CI 14.9, 101.5) at a cost of 21.3 million USD (95% 6.4, 43.5 million USD). When combining registered and unregistered supplies, we estimated 3.26% (95%CI 0.84, 5.57) of CRC cases were attributable to nitrates, resulting in 100 cases (95%CI 25.7, 171.3) and 41 deaths (95%CI 10.5, 69.7) at a cost of 43.2 million USD (95%CI 10.9, 73.4). CONCLUSION: A substantial minority of New Zealanders are exposed to high or unknown levels of nitrates in their drinking water. Given the international epidemiological studies showing an association between cancer and nitrate ingestion from drinking water, this exposure may cause an important burden of preventable CRC cases, deaths, and economic costs. We consider there is sufficient evidence to justify a review of drinking water standards. Protecting public health adds to the strong environmental arguments to improve water management in New Zealand.


Asunto(s)
Neoplasias Colorrectales , Agua Potable , Contaminantes Químicos del Agua , Neoplasias Colorrectales/inducido químicamente , Neoplasias Colorrectales/epidemiología , Humanos , Nueva Zelanda/epidemiología , Nitratos/análisis , Nitratos/toxicidad , Óxidos de Nitrógeno , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad , Abastecimiento de Agua
17.
Aust N Z J Public Health ; 46(3): 322-324, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34940997

RESUMEN

OBJECTIVE: There is growing epidemiological evidence linking nitrate contamination to adverse health outcomes. Health concerns may drive consumers towards bottled water, however, nitrate levels in bottled water are not readily available. METHODS: We tested water samples from the 10 most popular brands using a TriOS OPUS UV optical nitrate sensor. RESULTS: Overall, all bottled water brands tested returned nitrate levels below 4.4 mg/L NO3. CONCLUSIONS: The growing health concerns associated with nitrate contamination suggest that increased reporting of water quality is required. IMPLICATIONS FOR PUBLIC HEALTH: Mandatory reporting of water quality laboratory reports by bottled water producers would improve transparency to consumers and help public health researchers track potential threats to water quality as new evidence emerges.


Asunto(s)
Agua Potable , Nitratos , Humanos , Nueva Zelanda , Nitratos/análisis , Salud Pública
19.
N Z Med J ; 134(1542): 109-118, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34531589

RESUMEN

The Climate Change Commission's draft report and recommendations provide a pathway towards achieving the New Zealand Government's commitment to net zero emissions by 2050. However, the Commission has not adequately considered the health co-benefits of climate change mitigation. In this viewpoint, we assess how the Commission has considered health co-benefits in the key response domains. Extrapolating UK evidence to the New Zealand context suggests climate change mitigation strategies that reduce air pollution, transition the population towards plant-based diets and increase physical activity via active transport could prevent thousands of deaths per year in coming decades. Substantial health co-benefits would also arise from improved housing, cleaner water, noise reductions, afforestation and more compact cities. The Commission's draft report only briefly mentions many of these health co-benefits, and some are completely absent. We recommend the Commission's final report: (i) use health co-benefits as an explicit frame; (ii) ensure the government's Treaty of Waitangi obligations are met in all the domains covered to maximise benefits for Maori health and wellbeing; (iii) build on the successful COVID-19 response that demonstrated rapid, science-informed and vigorous government action can address major global health threats; (iv) include both public health expertise and Maori health expertise among its commissioners; (v) explain how health co-benefits are likely to generate major cost-savings to the health system.


Asunto(s)
Cambio Climático , Salud Pública/tendencias , COVID-19/epidemiología , COVID-19/prevención & control , Humanos , Nueva Zelanda/epidemiología , Pandemias/prevención & control , SARS-CoV-2
20.
Sci Total Environ ; 801: 149660, 2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34428652

RESUMEN

OBJECTIVES: To investigate associations between long-term exposure to PM2.5, NO2, mortality and morbidity in New Zealand, a country with low levels of exposure. DESIGN: Retrospective cohort study. SETTING: The New Zealand resident population. METHOD: The main analyses included all adults aged 30 years and over with complete data on covariates: N = 2,223,507. People who died, or were admitted to hospital, (2013-2016) were linked anonymously to the 2013 census, and to estimates of ambient PM2.5, and NO2 concentration. We fitted Poisson regression models of mortality and morbidity in adults (≥30) for all natural causes of death, and by sub- group of major cause. Person-time of exposure, censored at the time of death, was included as an offset. We adjusted for confounding by age, sex, ethnicity, income, education, smoking status and ambient temperature. Further analyses stratified by ethnic group, and investigated respiratory hospital admissions in children. RESULTS: There were statistically significant positive associations between pollutants and natural causes of death: RR (per 10 µg/m3) for PM2.5 1.11 (1.07 to 1.15) and for NO2 1.10 (1.07 to 1.12). For morbidity, the strongest associations were for PM2.5 and ischaemic heart disease in adults, RR: 1.29 (1.23 to 1.35) and for NO2 and asthma in children, RR: 1.18 (1.09 to 1.28). In models restricted to specific ethnic groups, we found no consistent differences in any of the associations. CONCLUSIONS: The results for NO2 are higher than those published previously. Other studies have reported that the dose-response for PM2.5 may be higher at low concentrations, but less is known about NO2. It is possible NO2 is acting as a proxy for other traffic-related pollutants that are causally related to health impacts. This study underlines the importance of controlling pollution caused by motor vehicles.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Adulto , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Niño , Estudios de Cohortes , Exposición a Riesgos Ambientales/análisis , Humanos , Morbilidad , Nueva Zelanda/epidemiología , Dióxido de Nitrógeno/análisis , Material Particulado/efectos adversos , Material Particulado/análisis , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA