Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
JAMA Netw Open ; 7(3): e242388, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38488794

RESUMEN

Importance: Screening unselected populations for clinically actionable genetic disease risk can improve ascertainment and facilitate risk management. Genetics visits may encourage at-risk individuals to perform recommended management, but little has been reported on genetics visit completion or factors associated with completion in genomic screening programs. Objective: To identify factors associated with postdisclosure genetics visits in a genomic screening cohort. Design, Setting, and Participants: This was a cohort study of biobank data in a health care system in central Pennsylvania. Participants' exome sequence data were reviewed for pathogenic or likely pathogenic (P/LP) results in all genes on the American College of Medical Genetics and Genomics Secondary Findings list. Clinically confirmed results were disclosed by phone and letter. Participants included adult MyCode biobank participants who received P/LP results between July 2015 and November 2019. Data were analyzed from May 2021 to March 2022. Exposure: Clinically confirmed P/LP result disclosed by phone or letter. Main Outcomes and Measures: Completion of genetics visit in which the result was discussed and variables associated with completion were assessed by electronic health record (EHR) review. Results: Among a total of 1160 participants (703 [60.6%] female; median [IQR] age, 57.0 [42.1-68.5] years), fewer than half of participants (551 of 1160 [47.5%]) completed a genetics visit. Younger age (odds ratio [OR] for age 18-40 years, 2.98; 95% CI, 1.40-6.53; OR for age 41-65 years, 2.36; 95% CI, 1.22-4.74; OR for age 66-80 years, 2.60; 95% CI, 1.41-4.98 vs age ≥81 years); female sex (OR, 1.49; 95% CI, 1.14-1.96); being married (OR, 1.74; 95% CI, 1.23-2.47) or divorced (OR, 1.80; 95% CI, 1.11-2.91); lower Charlson comorbidity index (OR for score of 0-2, 1.76; 95% CI, 1.16-2.68; OR for score of 3-4, 1.73; 95% CI, 1.18-2.54 vs score of ≥5); EHR patient portal use (OR, 1.42; 95% CI, 1.06-1.89); living closer to a genetics clinic (OR, 1.64; 95% CI, 1.14-2.36 for <8.9 miles vs >20.1 miles); successful results disclosure (OR for disclosure by genetic counselor, 16.32; 95% CI, 8.16-37.45; OR for disclosure by research assistant, 20.30; 95% CI, 10.25-46.31 vs unsuccessful phone disclosure); and having a hereditary cancer result (OR, 2.13; 95% CI, 1.28-3.58 vs other disease risk) were significantly associated with higher rates of genetics visit completion. Preference to follow up with primary care was the most common reported reason for declining a genetics visit (68 of 152 patients [44.7%]). Conclusions and Relevance: This cohort study of a biobank-based population genomic screening program suggests that targeted patient engagement, improving multidisciplinary coordination, and reducing barriers to follow-up care may be necessary for enhancing genetics visit uptake.


Asunto(s)
Genómica , Neoplasias , Adulto , Humanos , Femenino , Persona de Mediana Edad , Adolescente , Adulto Joven , Anciano , Anciano de 80 o más Años , Masculino , Estudios de Cohortes , Genómica/métodos , Exoma , Pennsylvania
2.
Eur J Hum Genet ; 31(10): 1165-1174, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37308598

RESUMEN

The Clinical Genome Resource (ClinGen) Consent and Disclosure Recommendation (CADRe) framework proposes that key components of informed consent for genetic testing can be covered with a targeted discussion for many conditions rather than a time-intensive traditional genetic counseling approach. We surveyed US genetics professionals (medical geneticists and genetic counselors) on their response to scenarios that proposed core informed consent concepts for clinical genetic testing developed in a prior expert consensus process. The anonymous online survey included responses to 3 (of 6 possible) different clinical scenarios that summarized the application of the core concepts. There was a binary (yes/no) question asking respondents whether they agreed the scenarios included the minimum necessary and critical educational concepts to allow an informed decision. Respondents then provided open-ended feedback on what concepts were missing or could be removed. At least one scenario was completed by 238 respondents. For all but one scenario, over 65% of respondents agreed that the identified concepts portrayed were sufficient for an informed decision; the exome scenario had the lowest agreement (58%). Qualitative analysis of the open-ended comments showed no consistently mentioned concepts to add or remove. The level of agreement with the example scenarios suggests that the minimum critical educational components for pre-test informed consent proposed in our prior work is a reasonable starting place for targeted pre-test discussions. This may be helpful in providing consistency to the clinical practice of both genetics and non-genetics providers, meeting patients' informational needs, tailoring consent for psychosocial support, and in future guideline development.


Asunto(s)
Consejeros , Humanos , Consentimiento Informado/psicología , Revelación , Pruebas Genéticas , Escolaridad , Asesoramiento Genético/psicología
3.
J Pers Med ; 12(12)2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36556164

RESUMEN

Genomic screening programs have potential to benefit individuals who may not be clinically ascertained, but little is known about the psychological impact of receiving genetic results in this setting. The current study sought to further the understanding of individuals' psychological response to receiving an actionable genetic test result from genomic screening. Telephone surveys were conducted with patient-participants at 6 weeks and 6 months post genetic result disclosure between September 2019 and May 2021 and assessed emotional response to receiving results via the FACToR, PANAS, and decision regret scales. Overall, 354 (29.4%) study participants completed both surveys. Participants reported moderate positive emotions and low levels of negative emotions, uncertainty, privacy concern, and decision regret over time. There were significant decreases in negative emotions (p = 0.0004) and uncertainty (p = 0.0126) between time points on the FACToR scale. "Interested" was the highest scoring discrete emotion (T1 3.6, T2 3.3, scale 0−5) but was significantly lower at 6 months (<0.0001). Coupled with other benefits of genomic screening, these results of modest psychological impact waning over time adds support to clinical utility of population genomic screening programs. However, questions remain regarding how to elicit an emotional response that motivates behavior change without causing psychological harm.

4.
Front Genet ; 13: 883073, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35692820

RESUMEN

Introduction: DNA-based population screening has been proposed as a public health solution to identify individuals at risk for serious health conditions who otherwise may not present for medical care. The clinical utility and public health impact of DNA-based population screening is a subject of active investigation. Geisinger, an integrated healthcare delivery system, was one of the first healthcare systems to implement DNA screening programs (MyCode Community Health Initiative (MyCode) and clinical DNA screening pilot) that leverage exome data to identify individuals at risk for developing conditions with potential clinical actionability. Here, we demonstrate the use of an implementation science framework, RE-AIM (Reach, Effectiveness, Adoption, Implementation and Maintenance), to conduct a post-hoc evaluation and report outcomes from these two programs to inform the potential impact of DNA-based population screening. Methods: Reach and Effectiveness outcomes were determined from the MyCode research program, while Adoption and Implementation outcomes were measured using the clinical DNA screening pilot. Reach was defined as the number of patients who were offered and consented to participate in MyCode. Effectiveness of DNA screening was measured by reviewing MyCode program publications and synthesizing findings from themes. Adoption was measured by the total number of DNA screening tests ordered by clinicians at the clinical pilot sites. Implementation was assessed by interviewing a subset of clinical pilot clinicians about the deployment of and recommended adaptations to the pilot that could inform future program dissemination. Results: Reach: As of August 2020, 68% (215,078/316,612) of individuals approached to participate in the MyCode program consented. Effectiveness: Published evidence reported from MyCode demonstrates that DNA screening identifies at-risk individuals more comprehensively than clinical ascertainment based on phenotypes or personal/family history. Adoption: From July 2018 to June 2021, a total of 1,026 clinical DNA screening tests were ordered by 60 clinicians across the three pilot clinic sites. Implementation: Interviews with 14 clinicians practicing at the pilot clinic sites revealed motivation to provide patients with DNA screening results and yielded future implementation strategies. Conclusion: The RE-AIM framework offers a pragmatic solution to organize, analyze, and report outcomes across differently resourced and designed precision health programs that include genomic sequencing and return of clinically actionable genomic information.

5.
BMC Med ; 20(1): 205, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-35668420

RESUMEN

BACKGROUND: In current care, patients' personal and self-reported family histories are primarily used to determine whether genetic testing for hereditary endocrine tumor syndromes (ETS) is indicated. Population genomic screening for other conditions has increased ascertainment of individuals with pathogenic/likely pathogenic (P/LP) variants, leading to improved management and earlier diagnoses. It is unknown whether such benefits occur when screening broader populations for P/LP ETS variants. This manuscript assesses clinical utility outcomes of a large, unselected, healthcare-based genomic screening program by describing personal and family history of syndrome-related features, risk management behaviors after result disclosure, and rates of relevant post-disclosure diagnoses in patient-participants with P/LP ETS variants. METHODS: Observational study of individuals informed of a P/LP variant in MEN1, RET, SDHAF2, SDHB, SDHC, SDHD, or VHL through Geisinger's MyCode Community Health Initiative between June 2016 and October 2019. Electronic health records (EHRs) of participants were evaluated for a report of pre-disclosure personal and self-reported family histories and post-disclosure risk management and diagnoses. RESULTS: P/LP variants in genes of interest were identified in 199 of 130,490 (1 in 656) adult Geisinger MyCode patient-participants, 80 of which were disclosed during the study period. Eighty-one percent (n = 65) did not have prior evidence of the result in their EHR and, because they were identified via MyCode, were included in further analyses. Five participants identified via MyCode (8%) had a personal history of syndrome-related features; 16 (25%) had a positive self-reported family history. Time from result disclosure to EHR review was a median of 0.7 years. Post-disclosure, 36 (55.4%) completed a recommended risk management behavior; 11 (17%) were diagnosed with a syndrome-related neoplasm after completing a risk management intervention. CONCLUSIONS: Broader screening for pathogenic/likely pathogenic variants associated with endocrine tumor syndromes enables detection of at-risk individuals, leads to the uptake of risk management, and facilitates relevant diagnoses. Further research will be necessary to continue to determine the clinical utility of screening diverse, unselected populations for such variants.


Asunto(s)
Metagenómica , Neoplasias , Adulto , Atención a la Salud , Pruebas Genéticas , Humanos , Síndrome
6.
J Pers Med ; 11(12)2021 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-34945775

RESUMEN

PURPOSE: Informed consent for genetic testing has historically been acquired during pretest genetic counseling, without specific guidance defining which core concepts are required. METHODS: The Clinical Genome Resource (ClinGen) Consent and Disclosure Recommendations Workgroup (CADRe) used an expert consensus process to identify the core concepts essential to consent for clinical genetic testing. A literature review identified 77 concepts that are included in informed consent for genetic tests. Twenty-five experts (9 medical geneticists, 8 genetic counselors, and 9 bioethicists) completed two rounds of surveys ranking concepts' importance to informed consent. RESULTS: The most highly ranked concepts included: (1) genetic testing is voluntary; (2) why is the test recommended and what does it test for?; (3) what results will be returned and to whom?; (4) are there other types of potential results, and what choices exist?; (5) how will the prognosis and management be impacted by results?; (6) what is the potential family impact?; (7) what are the test limitations and next steps?; and (8) potential risk of genetic discrimination and legal protections. CONCLUSION: Defining the core concepts necessary for informed consent for genetic testing provides a foundation for quality patient care across a variety of healthcare providers and clinical indications.

8.
JNCI Cancer Spectr ; 5(4)2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34377931

RESUMEN

Background: Unbiased estimates of penetrance are challenging but critically important to make informed choices about strategies for risk management through increased surveillance and risk-reducing interventions. Methods: We studied the penetrance and clinical outcomes of 7 breast cancer susceptibility genes (BRCA1, BRCA2, TP53, CHEK2, ATM, PALB2, and PTEN) in almost 13 458 participants unselected for personal or family history of breast cancer. We identified 242 female participants with pathogenic or likely pathogenic variants in 1 of the 7 genes for penetrance analyses, and 147 women did not previously know their genetic results. Results: Out of the 147 women, 32 women were diagnosed with breast cancer at an average age of 52.8 years. Estimated penetrance by age 60 years ranged from 17.8% to 43.8%, depending on the gene. In clinical-impact analysis, 42.3% (95% confidence interval = 31.3% to 53.3%) of women had taken actions related to their genetic results, and 2 new breast cancer cases were identified within the first 12 months after genetic results disclosure. Conclusions: Our study provides population-based penetrance estimates for the understudied genes CHEK2, ATM, and PALB2 and highlights the importance of using unselected populations for penetrance studies. It also demonstrates the potential clinical impact of genetic testing to improve health care through early diagnosis and preventative screening.


Asunto(s)
Neoplasias de la Mama/genética , Predisposición Genética a la Enfermedad/genética , Penetrancia , Adulto , Proteínas de la Ataxia Telangiectasia Mutada/genética , Neoplasias de la Mama/diagnóstico , Quinasa de Punto de Control 2/genética , Intervalos de Confianza , Proteína del Grupo de Complementación N de la Anemia de Fanconi/genética , Femenino , Genes BRCA1 , Genes BRCA2 , Genes p53 , Pruebas Genéticas , Humanos , Estimación de Kaplan-Meier , Persona de Mediana Edad , Fosfohidrolasa PTEN/genética
9.
Genome Med ; 13(1): 71, 2021 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-33926532

RESUMEN

BACKGROUND: Genetic information is increasingly relevant across healthcare. Traditional genetic counseling (GC) may limit access to genetic information and may be more information and support than some individuals need. We report on the application and clinical implications of a framework to consistently integrate genetics expertise where it is most useful to patients. METHODS: The Clinical Genome Resource's (ClinGen) Consent and Disclosure Recommendations (CADRe) workgroup designed rubrics to guide pre- and post-genetic test communication. Using a standard set of testing indications, pre- and post-test rubrics were applied to 40 genetic conditions or testing modalities with diverse features, including variability in levels of penetrance, clinical actionability, and evidence supporting a gene-disease relationship. Final communication recommendations were reached by group consensus. RESULTS: Communication recommendations were determined for 478 unique condition-indication or testing-indication pairs. For half of the conditions and indications (238/478), targeted discussions (moderate communication depth) were the recommended starting communication level for pre- and post-test conversations. Traditional GC was recommended pre-test for adult-onset neurodegenerative conditions for individuals with no personal history and post-test for most conditions when genetic testing revealed a molecular diagnosis as these situations are likely higher in complexity and uncertainty. A brief communication approach was recommended for more straightforward conditions and indications (e.g., familial hypercholesterolemia; familial variant testing). CONCLUSIONS: The CADRe recommendations provide guidance for clinicians in determining the depth of pre- and post-test communication, strategically aligning the anticipated needs of patients with the starting communication approach. Shorter targeted discussions or brief communications are suggested for many tests and indications. Longer traditional GC consultations would be reserved for patients with more complex and uncertain situations where detailed information, education, and psychological support can be most beneficial. Future studies of the CADRe communication framework will be essential for determining if CADRe-informed care supports quality patient experience while improving access to genetic information across healthcare.


Asunto(s)
Comunicación , Pruebas Genéticas , Revelación , Humanos , Consentimiento Informado
10.
J Genet Couns ; 30(3): 634-644, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33786929

RESUMEN

Emerging genetic testing delivery models have enabled individuals to receive testing without a medical indication. This article will highlight key considerations for patient care in the setting of adult patients with positive results for monogenic disease identified through genomic screening. Suggestions for how to adapt genetic counseling to a genomic screening population will encompass topics such as phenotyping, risk assessments, and the use of existing guidelines and resources. Case examples will demonstrate principles of genotype-first patient care.


Asunto(s)
Asesoramiento Genético , Pruebas Genéticas , Adulto , Genómica , Humanos
11.
Patient Educ Couns ; 104(2): 403-412, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32782180

RESUMEN

OBJECTIVE: Examine the uncertainty management process of individuals with Lynch syndrome (LS). METHODS: 19 phone interviews were conducted with individuals with LS. The interview guide included questions on family communication, risk perceptions, and uncertainty management. Data were analyzed using the constant comparison method to code for emergent themes. RESULTS: Qualitative analysis found individuals with LS tried to manage their uncertainty through preventive care, but were often confounded by healthcare barriers. Healthcare barriers included cost and insurance issues, absence of coordinated care, insufficient provider knowledge, and lack of patient-centered communication. Participants reported increased uncertainty and anxiety due to these barriers and used alternative uncertainty management strategies such as advocating for themselves with providers, seeking information online, and communicating with family for emotional support. CONCLUSION: Healthcare barriers identified in this study exacerbated uncertainty and anxiety for individuals with LS and challenged their ability to engage in preventive care. In response, participants used alternative uncertainty management strategies to reduce their uncertainty, which may have unintended negative consequences. PRACTICE IMPLICATIONS: Findings support the need for providers to partner with specialists in genetics and/or LS to better care for individuals with LS. Findings highlight opportunities for interventions in healthcare to better support individuals with LS.


Asunto(s)
Neoplasias Colorrectales Hereditarias sin Poliposis , Neoplasias Colorrectales Hereditarias sin Poliposis/genética , Comunicación , Humanos , Satisfacción del Paciente , Encuestas y Cuestionarios , Incertidumbre
12.
Genet Med ; 22(11): 1874-1882, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32601386

RESUMEN

PURPOSE: Three genetic conditions-hereditary breast and ovarian cancer syndrome, Lynch syndrome, and familial hypercholesterolemia-have tier 1 evidence for interventions that reduce morbidity and mortality, prompting proposals to screen unselected populations for these conditions. We examined the impact of genomic screening on risk management and early detection in an unselected population. METHODS: Observational study of electronic health records (EHR) among individuals in whom a pathogenic/likely pathogenic variant in a tier 1 gene was discovered through Geisinger's MyCode project. EHR of all eligible participants was evaluated for a prior genetic diagnosis and, among participants without such a diagnosis, relevant personal/family history, postdisclosure clinical diagnoses, and postdisclosure risk management. RESULTS: Eighty-seven percent of participants (305/351) did not have a prior genetic diagnosis of their tier 1 result. Of these, 65% had EHR evidence of relevant personal and/or family history of disease. Of 255 individuals eligible to have risk management, 70% (n = 179) had a recommended risk management procedure after results disclosure. Thirteen percent of participants (41/305) received a relevant clinical diagnosis after results disclosure. CONCLUSION: Genomic screening programs can identify previously unrecognized individuals at increased risk of cancer and heart disease and facilitate risk management and early cancer detection.


Asunto(s)
Neoplasias Colorrectales Hereditarias sin Poliposis , Síndrome de Cáncer de Mama y Ovario Hereditario , Hiperlipoproteinemia Tipo II , Neoplasias Colorrectales Hereditarias sin Poliposis/diagnóstico , Neoplasias Colorrectales Hereditarias sin Poliposis/genética , Detección Precoz del Cáncer , Femenino , Predisposición Genética a la Enfermedad , Pruebas Genéticas , Genómica , Humanos , Hiperlipoproteinemia Tipo II/genética
13.
Genet Med ; 22(8): 1348-1354, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32350418

RESUMEN

PURPOSE: Cancer genetics clinics have seen increasing demand, challenging genetic counselors (GCs) to increase efficiency and prompting some clinics to implement genetic counseling assistants (GCAs). To evaluate the impact of GCAs on Geisinger's cancer genetics clinic, we tracked GC time utilization, new patient volume, and clinic cost per patient before and after implementing a GCA program. METHODS: GCs used time-tracking software while completing preappointment activities. Electronic health records were reviewed for appointment length and number of patients per week. Internal salary data for GCs and GCAs were used to calculate clinic costs per patient. RESULTS: Time spent by GCs completing each preappointment activity (21.8 vs. 15.1 minutes) and appointment length (51.6 vs. 44.5 minutes) significantly decreased after GCA program implementation (p values < 0.001). New patients per week per GC significantly increased (7.9 vs. 11.4, p < 0.001). Weekly clinic cost per patient significantly decreased ($233 vs. $176, p = 0.03). CONCLUSION: Implementing a GCA program increased GC efficiency in preappointment activities and clinic appointments, increased patient volume, and decreased clinic cost per patient. Such a program can improve access to GC services and assist GCs in focusing on the direct patient care for which they are specially trained.


Asunto(s)
Consejeros , Neoplasias , Consejo , Registros Electrónicos de Salud , Asesoramiento Genético , Humanos
14.
Genet Med ; 21(3): 727-735, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-29976988

RESUMEN

PURPOSE: In response to genetic testing being widely ordered by nongenetics clinicians, the Consent and Disclosure Recommendations (CADRe) Workgroup of the Clinical Genome Resource (ClinGen; clinicalgenome.org ) developed guidance to facilitate communication about genetic testing and efficiently improve the patient experience. Considering ethical, legal, and social implications, and medical factors, CADRe developed and pilot tested two rubrics addressing consent for genetic testing and results disclosure. The CADRe rubrics allow for adjusting the communication approach based on circumstances specific to patients and ordering clinicians. METHODS: We present results of a formative survey of 66 genetics clinicians to assess the consent rubric for nine genes (MLH1, CDH1, TP53, GJB2, OTC; DMD, HTT, and CYP2C9/VKORC1). We also conducted interviews and focus groups with family and patient stakeholders (N = 18), nongenetics specialists (N = 27), and genetics clinicians (N = 32) on both rubrics. RESULTS: Formative evaluation of the CADRe rubrics suggests key factors on which to make decisions about consent and disclosure discussions for a "typical" patient. CONCLUSION: We propose that the CADRe rubrics include the primary issues necessary to guide communication recommendations, and are ready for pilot testing by nongenetics clinicians. Consultation with genetics clinicians can be targeted toward more complex or intensive consent and disclosure counseling.


Asunto(s)
Revelación/ética , Asesoramiento Genético/métodos , Personal de Salud/educación , Adulto , Competencia Clínica , Comunicación , Confidencialidad , Toma de Decisiones/ética , Femenino , Asesoramiento Genético/normas , Pruebas Genéticas/ética , Genética/educación , Humanos , Consentimiento Informado/normas , Lenguaje , Masculino , Estudiantes
15.
Am J Hum Genet ; 103(3): 328-337, 2018 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-30100086

RESUMEN

There is growing interest in communicating clinically relevant DNA sequence findings to research participants who join projects with a primary research goal other than the clinical return of such results. Since Geisinger's MyCode Community Health Initiative (MyCode) was launched in 2007, more than 200,000 participants have been broadly consented for discovery research. In 2013 the MyCode consent was amended to include a secondary analysis of research genomic sequences that allows for delivery of clinical results. Since May 2015, pathogenic and likely pathogenic variants from a set list of genes associated with monogenic conditions have prompted "genome-first" clinical encounters. The encounters are described as genome-first because they are identified independent of any clinical parameters. This article (1) details our process for generating clinical results from research data, delivering results to participants and providers, facilitating condition-specific clinical evaluations, and promoting cascade testing of relatives, and (2) summarizes early results and participant uptake. We report on 542 participants who had results uploaded to the electronic health record as of February 1, 2018 and 291 unique clinical providers notified with one or more participant results. Of these 542 participants, 515 (95.0%) were reached to disclose their results and 27 (5.0%) were lost to follow-up. We describe an exportable model for delivery of clinical care through secondary use of research data. In addition, subject and provider participation data from the initial phase of these efforts can inform other institutions planning similar programs.


Asunto(s)
Genoma Humano/genética , Estudios de Cohortes , Registros Electrónicos de Salud , Genómica/métodos , Personal de Salud , Humanos , Análisis de Secuencia de ADN/métodos
16.
Health Aff (Millwood) ; 37(5): 757-764, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29733722

RESUMEN

Health care delivery is increasingly influenced by the emerging concepts of precision health and the learning health care system. Although not synonymous with precision health, genomics is a key enabler of individualized care. Delivering patient-centered, genomics-informed care based on individual-level data in the current national landscape of health care delivery is a daunting challenge. Problems to overcome include data generation, analysis, storage, and transfer; knowledge management and representation for patients and providers at the point of care; process management; and outcomes definition, collection, and analysis. Development, testing, and implementation of a genomics-informed program requires multidisciplinary collaboration and building the concepts of precision health into a multilevel implementation framework. Using the principles of a learning health care system provides a promising solution. This article describes the implementation of population-based genomic medicine in an integrated learning health care system-a working example of a precision health program.


Asunto(s)
Prestación Integrada de Atención de Salud/organización & administración , Genómica , Atención Dirigida al Paciente/organización & administración , Medicina de Precisión , Femenino , Humanos , Aprendizaje , Masculino , Desarrollo de Programa , Evaluación de Programas y Proyectos de Salud , Estados Unidos
17.
JAMA Netw Open ; 1(5): e182140, 2018 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-30646163

RESUMEN

Importance: Detection of disease-associated variants in the BRCA1 and BRCA2 (BRCA1/2) genes allows for cancer prevention and early diagnosis in high-risk individuals. Objectives: To identify pathogenic and likely pathogenic (P/LP) BRCA1/2 variants in an unselected research cohort, and to characterize the features associated with P/LP variants. Design, Setting, and Participants: This is a cross-sectional study of adult volunteers (n = 50 726) who underwent exome sequencing at a single health care system (Geisinger Health System, Danville, Pennsylvania) from January 1, 2014, to March 1, 2016. Participants are part of the DiscovEHR cohort and were identified through the Geisinger MyCode Community Health Initiative. They consented to a research protocol that included sequencing and return of actionable test results. Clinical data from electronic health records and clinical visits were correlated with variants. Comparisons were made between those with (cases) and those without (controls) P/LP variants in BRCA1/2. Main Outcomes: Prevalence of P/LP BRCA1/2 variants in cohort, proportion of variant carriers not previously ascertained through clinical testing, and personal and family history of relevant cancers among BRCA1/2 variant carriers and noncarriers. Results: Of the 50 726 health system patients who underwent exome sequencing, 50 459 (99.5%) had no expected pathogenic BRCA1/2 variants and 267 (0.5%) were BRCA1/2 carriers. Of the 267 cases (148 [55.4%] were women and 119 [44.6%] were men with a mean [range] age of 58.9 [23-90] years), 183 (68.5%) received clinically confirmed results in their electronic health record. Among the 267 participants with P/LP BRCA1/2 variants, 219 (82.0%) had no prior clinical testing, 95 (35.6%) had BRCA1 variants, and 172 (64.4%) had BRCA2 variants. Syndromic cancer diagnoses were present in 11 (47.8%) of the 23 deceased BRCA1/2 carriers and in 56 (20.9%) of all 267 BRCA1/2 carriers. Among women, 31 (20.9%) of 148 variant carriers had a personal history of breast cancer, compared with 1554 (5.2%) of 29 880 noncarriers (odds ratio [OR], 5.95; 95% CI, 3.88-9.13; P < .001). Ovarian cancer history was present in 15 (10.1%) of 148 variant carriers and in 195 (0.6%) of 29 880 variant noncarriers (OR, 18.30; 95% CI, 10.48-31.4; P < .001). Among 89 BRCA1/2 carriers without prior testing but with comprehensive personal and family history data, 44 (49.4%) did not meet published guidelines for clinical testing. Conclusions and Relevance: This study found that compared with previous clinical care, exome sequencing-based screening identified 5 times as many individuals with P/LP BRCA1/2 variants. These findings suggest that genomic screening may identify BRCA1/2-associated cancer risk that might otherwise remain undetected within health care systems and may provide opportunities to reduce morbidity and mortality in patients.


Asunto(s)
Proteína BRCA1/análisis , Proteína BRCA2/análisis , Secuenciación del Exoma/métodos , Adulto , Anciano , Anciano de 80 o más Años , Proteína BRCA1/genética , Proteína BRCA2/genética , Bancos de Muestras Biológicas/estadística & datos numéricos , Biomarcadores de Tumor/análisis , Biomarcadores de Tumor/sangre , Estudios Transversales , Detección Precoz del Cáncer/métodos , Exoma/genética , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pennsylvania , Virulencia/genética , Secuenciación del Exoma/estadística & datos numéricos
18.
Genet Med ; 20(5): 554-558, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29261187

RESUMEN

PurposeThe clinical utility of screening unselected individuals for pathogenic BRCA1/2 variants has not been established. Data on cancer risk management behaviors and diagnoses of BRCA1/2-associated cancers can help inform assessments of clinical utility.MethodsWhole-exome sequences of participants in the MyCode Community Health Initiative were reviewed for pathogenic/likely pathogenic BRCA1/2 variants. Clinically confirmed variants were disclosed to patient-participants and their clinicians. We queried patient-participants' electronic health records for BRCA1/2-associated cancer diagnoses and risk management that occurred within 12 months after results disclosure, and calculated the percentage of patient-participants of eligible age who had begun risk management.ResultsThirty-seven MyCode patient-participants were unaware of their pathogenic/likely pathogenic BRCA1/2 variant, had not had a BRCA1/2-associated cancer, and had 12 months of follow-up. Of the 33 who were of an age to begin BRCA1/2-associated risk management, 26 (79%) had performed at least one such procedure. Three were diagnosed with an early-stage, BRCA1/2-associated cancer-including a stage 1C fallopian tube cancer-via these procedures.ConclusionScreening for pathogenic BRCA1/2 variants among unselected individuals can lead to occult cancer detection shortly after disclosure. Comprehensive outcomes data generated within our learning healthcare system will aid in determining whether population-wide BRCA1/2 genomic screening programs offer clinical utility.


Asunto(s)
Bancos de Muestras Biológicas , Detección Precoz del Cáncer/métodos , Genes BRCA1 , Genes BRCA2 , Mutación , Neoplasias/diagnóstico , Neoplasias/genética , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Mutación de Línea Germinal , Síndrome de Cáncer de Mama y Ovario Hereditario/diagnóstico , Síndrome de Cáncer de Mama y Ovario Hereditario/genética , Humanos , Persona de Mediana Edad , Linaje , Secuenciación Completa del Genoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA