Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 2991, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38582753

RESUMEN

All-solid-state batteries using Si as the anode have shown promising performance without continual solid-electrolyte interface (SEI) growth. However, the first cycle irreversible capacity loss yields low initial Coulombic efficiency (ICE) of Si, limiting the energy density. To address this, we adopt a prelithiation strategy to increase ICE and conductivity of all-solid-state Si cells. A significant increase in ICE is observed for Li1Si anode paired with a lithium cobalt oxide (LCO) cathode. Additionally, a comparison with lithium nickel manganese cobalt oxide (NCM) reveals that performance improvements with Si prelithiation is only applicable for full cells dominated by high anode irreversibility. With this prelithiation strategy, 15% improvement in capacity retention is achieved after 1000 cycles compared to a pure Si. With Li1Si, a high areal capacity of up to 10 mAh cm-2 is attained using a dry-processed LCO cathode film, suggesting that the prelithiation method may be suitable for high-loading next-generation all-solid-state batteries.

2.
ACS Appl Mater Interfaces ; 14(42): 47706-47715, 2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36239697

RESUMEN

All-solid-state batteries have recently gained considerable attention due to their potential improvements in safety, energy density, and cycle-life compared to conventional liquid electrolyte batteries. Sodium all-solid-state batteries also offer the potential to eliminate costly materials containing lithium, nickel, and cobalt, making them ideal for emerging grid energy storage applications. However, significant work is required to understand the persisting limitations and long-term cyclability of Na all-solid-state-based batteries. In this work, we demonstrate the importance of careful solid electrolyte selection for use against an alloy anode in Na all-solid-state batteries. Three emerging solid electrolyte material classes were chosen for this study: the chloride Na2.25Y0.25Zr0.75Cl6, sulfide Na3PS4, and borohydride Na2(B10H10)0.5(B12H12)0.5. Focused ion beam scanning electron microscopy (FIB-SEM) imaging, X-ray photoelectron spectroscopy (XPS), and electrochemical impedance spectroscopy (EIS) were utilized to characterize the evolution of the anode-electrolyte interface upon electrochemical cycling. The obtained results revealed that the interface stability is determined by both the intrinsic electrochemical stability of the solid electrolyte and the passivating properties of the formed interfacial products. With appropriate material selection for stability at the respective anode and cathode interfaces, stable cycling performance can be achieved for Na all-solid-state batteries.

3.
Science ; 373(6562): 1494-1499, 2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-34554780

RESUMEN

The development of silicon anodes for lithium-ion batteries has been largely impeded by poor interfacial stability against liquid electrolytes. Here, we enabled the stable operation of a 99.9 weight % microsilicon anode by using the interface passivating properties of sulfide solid electrolytes. Bulk and surface characterization, and quantification of interfacial components, showed that such an approach eliminates continuous interfacial growth and irreversible lithium losses. Microsilicon full cells were assembled and found to achieve high areal current density, wide operating temperature range, and high areal loadings for the different cells. The promising performance can be attributed to both the desirable interfacial property between microsilicon and sulfide electrolytes and the distinctive chemomechanical behavior of the lithium-silicon alloy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA