Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Front Immunol ; 14: 1197650, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37545524

RESUMEN

Imiquimod (IMQ) is a topical agent that induces local inflammation via the Toll-like receptor 7 pathway. Recently, an IMQ-driven skin inflammation model was developed in healthy volunteers for proof-of-pharmacology trials. The aim of this study was to profile the cellular, biochemical, and clinical effects of the marketed anti-inflammatory compound prednisolone in an IMQ model. This randomized, double-blind, placebo-controlled study was conducted in 24 healthy volunteers. Oral prednisolone (0.25 mg/kg/dose) or placebo (1:1) was administered twice daily for 6 consecutive days. Two days after treatment initiation with prednisolone or placebo, 5 mg imiquimod (IMQ) once daily for two following days was applied under occlusion on the tape-stripped skin of the back for 48 h in healthy volunteers. Non-invasive (imaging and biophysical) and invasive (skin punch biopsies and blister induction) assessments were performed, as well as IMQ ex vivo stimulation of whole blood. Prednisolone reduced blood perfusion and skin erythema following 48 h of IMQ application (95% CI [-26.4%, -4.3%], p = 0.0111 and 95% CI [-7.96, -2.13], p = 0.0016). Oral prednisolone suppressed the IMQ-elevated total cell count (95% CI [-79.7%, -16.3%], p = 0.0165), NK and dendritic cells (95% CI [-68.7%, -5.2%], p = 0.0333, 95% CI [-76.9%, -13.9%], p = 0.0184), and classical monocytes (95% CI [-76.7%, -26.6%], p = 0.0043) in blister fluid. Notably, TNF, IL-6, IL-8, and Mx-A responses in blister exudate were also reduced by prednisolone compared to placebo. Oral prednisolone suppresses IMQ-induced skin inflammation, which underlines the value of this cutaneous challenge model in clinical pharmacology studies of novel anti-inflammatory compounds. In these studies, prednisolone can be used as a benchmark.


Asunto(s)
Vesícula , Dermatitis , Humanos , Imiquimod/farmacología , Voluntarios Sanos , Prednisolona/farmacología , Prednisolona/uso terapéutico , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico
2.
Clin Pharmacol Ther ; 111(4): 964-971, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34935141

RESUMEN

The intradermal lipopolysaccharide (LPS) challenge in healthy volunteers has proven to be a valuable tool to study local inflammation in vivo. In the current study the inhibitory effects of oral and topical corticosteroid treatment on intradermal LPS responses were evaluated to benchmark the challenge for future investigational drugs. Twenty-four healthy male volunteers received a two-and-a-half-day twice daily (b.i.d.) pretreatment with topical clobetasol propionate 0.05% and six healthy volunteers received a two-and-a-half-day b.i.d. pretreatment with oral prednisolone at 0.25 mg/kg body weight per administration. Participants received one injection regimen of either 0, 2, or 4 intradermal LPS injections (5 ng LPS in 50 µL 0.9% sodium chloride solution). The LPS response was evaluated by noninvasive (perfusion, skin temperature, and erythema) and invasive assessments (cellular and cytokine responses) in suction blister exudate. Both corticosteroids significantly suppressed the clinical inflammatory response (erythema P = 0.0001 for clobetasol and P = 0.0016 for prednisolone; heat P = 0.0245 for clobetasol, perfusion P < 0.0001 for clobetasol and P = 0.0036 for prednisolone). Clobetasol also significantly reduced the number of monocytes subsets, dendritic cells, natural killer cells, and T cells in blister exudate. A similar effect was observed for prednisolone. No relevant corticosteroid effects were observed on the cytokine response to LPS. We successfully demonstrated that the anti-inflammatory effects of corticosteroids can be detected using our intradermal LPS challenge model, validating it for evaluation of future investigational drugs, as an initial assessment of the anti-inflammatory effects of such compounds in a minimally invasive manner.


Asunto(s)
Clobetasol , Lipopolisacáridos , Corticoesteroides , Antiinflamatorios/uso terapéutico , Vesícula/tratamiento farmacológico , Clobetasol/farmacología , Clobetasol/uso terapéutico , Citocinas , Drogas en Investigación , Eritema/tratamiento farmacológico , Glucocorticoides/farmacología , Voluntarios Sanos , Humanos , Masculino , Prednisolona/farmacología
3.
Br J Clin Pharmacol ; 88(2): 680-690, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34293819

RESUMEN

AIMS: Whereas intravenous administration of Toll-like receptor 4 ligand lipopolysaccharide (LPS) to human volunteers is frequently used in clinical pharmacology studies, systemic use of LPS has practical limitations. We aimed to characterize the intradermal LPS response in healthy volunteers, and as such qualify the method as local inflammation model for clinical pharmacology studies. METHODS: Eighteen healthy male volunteers received 2 or 4 intradermal 5 ng LPS injections and 1 saline injection on the forearms. The LPS response was evaluated by noninvasive (perfusion, skin temperature and erythema) and invasive assessments (cellular and cytokine responses) in skin biopsy and blister exudate. RESULTS: LPS elicited a visible response and returned to baseline at 48 hours. Erythema, perfusion and temperature were statistically significant (P < .0001) over a 24-hour time course compared to saline. The protein response was dominated by an acute interleukin (IL)-6, IL-8 and tumour necrosis factor response followed by IL-1ß, IL-10 and interferon-γ. The cellular response consisted of an acute neutrophil influx followed by different monocyte subsets and dendritic cells. DISCUSSION: Intradermal LPS administration in humans causes an acute, localized and transient inflammatory reaction that is well-tolerated by healthy volunteers. This may be a valuable inflammation model for evaluating the pharmacological activity of anti-inflammatory investigational compounds in proof of pharmacology studies.


Asunto(s)
Lipopolisacáridos , Factor de Necrosis Tumoral alfa , Citocinas/metabolismo , Voluntarios Sanos , Humanos , Inflamación/inducido químicamente , Interleucina-6/metabolismo , Masculino , Factor de Necrosis Tumoral alfa/metabolismo
4.
Br J Clin Pharmacol ; 87(5): 2290-2302, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33197078

RESUMEN

AIMS: Huntington's disease (HD) is a neurodegenerative disease with cognitive, motor and psychiatric symptoms. Toxic accumulation of misfolded mutant huntingtin protein induces mitochondrial dysfunction, leading to a bioenergetic insufficiency in neuronal and muscle cells. We evaluated the safety, pharmacokinetics and pharmacodynamics of SBT-020, a novel compound to improve mitochondrial function, in a 2-part study in early stage HD patients. METHODS: Part 1 consisted of 7-day multiple ascending dose study to select the highest tolerable dose for Part 2, a 28-day multiple dose study. Mitochondrial function was measured in the visual cortex and calf muscle, using phosphorous magnetic resonance spectroscopy, and in circulating peripheral blood mononuclear cells. RESULTS: Treatment-emergent adverse events were mild and more present in the SBT-020 group. Injection site reactions occurred in 91% in Part 1 and 97% in Part 2. Mitochondrial function in calf muscle, peripheral blood mononuclear cells or visual cortex was not changed overall due to treatment with SBT-020. In a posthoc analysis, patients with a higher degree of mitochondrial dysfunction (below the median [∆Ψm < 3412 and τPCr > 42.5 s]) showed more improvement than patients with a relatively lower level of mitochondrial dysfunction. CONCLUSION: SBT-020 was safe at all doses, but no significant differences in any of the pharmacodynamic measurements between the treatment groups and placebo group could be demonstrated. The data suggest that the better than expected mitochondrial function in our patient population at baseline might explain the lack of effect of SBT-020.


Asunto(s)
Enfermedad de Huntington , Enfermedades Neurodegenerativas , Humanos , Enfermedad de Huntington/tratamiento farmacológico , Leucocitos Mononucleares , Imagen por Resonancia Magnética
5.
J Huntingtons Dis ; 9(4): 335-344, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33325391

RESUMEN

BACKGROUND: Huntington's disease (HD) is a neurodegenerative disease with cognitive, motor and psychiatric symptoms. A toxic accumulation of misfolded mutant huntingtin protein (Htt) induces mitochondrial dysfunction, leading to a bioenergetic insufficiency in neuronal and muscle cells. Improving mitochondrial function has been proposed as an opportunity to treat HD, but it is not known how mitochondrial function in different tissues relates. OBJECTIVE: We explored associations between central and peripheral mitochondrial function in a group of mild to moderate staged HD patients. METHODS: We used phosphorous magnetic resonance spectroscopy (31P-MRS) to measure mitochondrial function in vivo in the calf muscle (peripheral) and the bio-energetic state in the visual cortex (central). Mitochondrial function was also assessed ex vivo in circulating peripheral blood mononuclear cells (PBMCs). Clinical function was determined by the Unified Huntington's Disease Rating Scale (UHDRS) total motor score. Pearson correlation coefficients were computed to assess the correlation between the different variables. RESULTS: We included 23 manifest HD patients for analysis. There was no significant correlation between central bio-energetics and peripheral mitochondrial function. Central mitochondrial function at rest correlated significantly to the UHDRS total motor score (R = -0.45 and -0.48), which increased in a subgroup with the largest number of CAG repeats. DISCUSSION: We did not observe a correlation between peripheral and central mitochondrial function. Central, but not peripheral, mitochondrial function correlated to clinical function. Muscle mitochondrial function is a promising biomarker to evaluate disease-modifying compounds that improve mitochondrial function, but Huntington researchers should use central mitochondrial function to demonstrate proof-of-pharmacology of disease-modifying compounds.


Asunto(s)
Metabolismo Energético , Enfermedad de Huntington/metabolismo , Mitocondrias Musculares/metabolismo , Mitocondrias/metabolismo , Corteza Visual/metabolismo , Adulto , Encéfalo/metabolismo , Femenino , Humanos , Enfermedad de Huntington/fisiopatología , Pierna , Leucocitos Mononucleares/metabolismo , Espectroscopía de Resonancia Magnética , Masculino , Persona de Mediana Edad , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA