Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Nucleic Acids Res ; 49(10): 5985-5997, 2021 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-34037778

RESUMEN

Pentatricopeptide repeat (PPR) proteins are helical repeat-proteins that bind RNA in a modular fashion with a sequence-specificity that can be manipulated by the use of an amino acid code. As such, PPR repeats are promising scaffolds for the design of RNA binding proteins for synthetic biology applications. However, the in vivo functional capabilities of artificial PPR proteins built from consensus PPR motifs are just starting to be explored. Here, we report in vivo functions of an artificial PPR protein, dPPRrbcL, made of consensus PPR motifs that were designed to bind a sequence near the 5' end of rbcL transcripts in Arabidopsis chloroplasts. We used a functional complementation assay to demonstrate that this protein bound its intended RNA target with specificity in vivo and that it substituted for a natural PPR protein by stabilizing processed rbcL mRNA. We targeted a second protein of analogous design to the petL 5' UTR, where it substituted for the native stabilizing PPR protein PGR3, albeit inefficiently. These results showed that artificial PPR proteins can be engineered to functionally mimic the class of native PPR proteins that serve as physical barriers against exoribonucleases.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Ingeniería de Proteínas/métodos , ARN del Cloroplasto/metabolismo , Motivos de Unión al ARN/genética , Regiones no Traducidas 5' , Arabidopsis/genética , Cloroplastos/genética , Expresión Génica , Plantas Modificadas Genéticamente , Unión Proteica , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas Recombinantes , Ribulosa-Bifosfato Carboxilasa/genética
2.
Nucleic Acids Res ; 49(2): 1114-1132, 2021 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-33398331

RESUMEN

The mitochondrial transcription termination factor proteins are nuclear-encoded nucleic acid binders defined by degenerate tandem helical-repeats of ∼30 amino acids. They are found in metazoans and plants where they localize in organelles. In higher plants, the mTERF family comprises ∼30 members and several of these have been linked to plant development and response to abiotic stress. However, knowledge of the molecular basis underlying these physiological effects is scarce. We show that the Arabidopsis mTERF9 protein promotes the accumulation of the 16S and 23S rRNAs in chloroplasts, and interacts predominantly with the 16S rRNA in vivo and in vitro. Furthermore, mTERF9 is found in large complexes containing ribosomes and polysomes in chloroplasts. The comprehensive analysis of mTERF9 in vivo protein interactome identified many subunits of the 70S ribosome whose assembly is compromised in the null mterf9 mutant, putative ribosome biogenesis factors and CPN60 chaperonins. Protein interaction assays in yeast revealed that mTERF9 directly interact with these proteins. Our data demonstrate that mTERF9 integrates protein-protein and protein-RNA interactions to promote chloroplast ribosomal assembly and translation. Besides extending our knowledge of mTERF functional repertoire in plants, these findings provide an important insight into the chloroplast ribosome biogenesis.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Proteínas de Cloroplastos/metabolismo , Cloroplastos/metabolismo , Biogénesis de Organelos , Factores de Terminación de Péptidos/fisiología , ARN de Planta/metabolismo , Ribonucleoproteínas/metabolismo , Ribosomas/metabolismo , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Polirribosomas/metabolismo , Biosíntesis de Proteínas , ARN Ribosómico 16S/metabolismo , ARN Ribosómico 23S/metabolismo , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato
3.
New Phytol ; 227(5): 1376-1391, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32343843

RESUMEN

The mTERF gene family encodes for nucleic acid binding proteins that are predicted to regulate organellar gene expression in eukaryotes. Despite the implication of this gene family in plant development and response to abiotic stresses, a precise molecular function was assigned to only a handful number of its c. 30 members in plants. Using a reverse genetics approach in Arabidopsis thaliana and combining molecular and biochemical techniques, we revealed new functions for the chloroplast mTERF protein, MDA1. We demonstrated that MDA1 associates in vivo with components of the plastid-encoded RNA polymerase and transcriptional active chromosome complexes. MDA1 protein binds in vivo and in vitro with specificity to 27-bp DNA sequences near the 5'-end of psbE and ndhA chloroplast genes to stimulate their transcription, and additionally promotes the stabilization of the 5'-ends of processed psbE and ndhA messenger (m)RNAs. Finally, we provided evidence that MDA1 function in gene transcription likely coordinates RNA folding and the action of chloroplast RNA-binding proteins on mRNA stabilization. Our results provide examples for the unexpected implication of DNA binding proteins and gene transcription in the regulation of mRNA stability in chloroplasts, blurring the boundaries between DNA and RNA metabolism in this organelle.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Cloroplastos/genética , Proteínas de Cloroplastos/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Regulación de la Expresión Génica de las Plantas , Mutación , Operón , Factores de Transcripción
4.
Nucleic Acids Res ; 44(9): 4278-88, 2016 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-27095196

RESUMEN

Pentatricopeptide repeat (PPR) proteins are a large family of helical-repeat proteins that bind RNA in mitochondria and chloroplasts. Precise RNA targets and functions have been assigned to only a small fraction of the >400 members of the PPR family in plants. We used the amino acid code governing the specificity of RNA binding by PPR repeats to infer candidate-binding sites for the maize protein PPR103 and its ortholog Arabidopsis EMB175. Genetic and biochemical data confirmed a predicted binding site in the chloroplast rpl16 5'UTR to be a site of PPR103 action. This site maps to the 5' end of transcripts that fail to accumulate in ppr103 mutants. A small RNA corresponding to the predicted PPR103 binding site accumulates in a PPR103-dependent fashion, as expected of PPR103's in vivo footprint. Recombinant PPR103 bound specifically to this sequence in vitro These observations imply that PPR103 stabilizes rpl16 mRNA by impeding 5'→3' RNA degradation. Previously described PPR proteins with this type of function consist of canonical PPR motifs. By contrast, PPR103 is a PLS-type protein, an architecture typically associated with proteins that specify sites of RNA editing. However, PPR103 is not required to specify editing sites in chloroplasts.


Asunto(s)
Cloroplastos/genética , Proteínas de Plantas/fisiología , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/fisiología , Zea mays/genética , Regiones no Traducidas 5' , Secuencia de Aminoácidos , Secuencia de Bases , Cloroplastos/metabolismo , Unión Proteica , Edición de ARN , Estabilidad del ARN , ARN Mensajero/genética , ARN de Planta/genética , ARN de Planta/metabolismo , Ribosomas/metabolismo , Zea mays/metabolismo
5.
Nucleic Acids Res ; 42(8): 5033-42, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24500208

RESUMEN

The mitochondrial transcription termination factor (mTERF) proteins are nucleic acid binding proteins characterized by degenerate helical repeats of ∼30 amino acids. Metazoan genomes encode a small family of mTERF proteins whose members influence mitochondrial gene expression and DNA replication. The mTERF family in higher plants consists of roughly 30 members, which localize to mitochondria or chloroplasts. Effects of several mTERF proteins on plant development and physiology have been described, but molecular functions of mTERF proteins in plants are unknown. We show that a maize mTERF protein, Zm-mTERF4, promotes the splicing of group II introns in chloroplasts. Zm-mTERF4 coimmunoprecipitates with many chloroplast introns and the splicing of some of these introns is disrupted even in hypomorphic Zm-mterf4 mutants. Furthermore, Zm-mTERF4 is found in high molecular weight complexes that include known chloroplast splicing factors. The splicing of two transfer RNAs (trnI-GAU and trnA-UGC) and one ribosomal protein messenger RNA (rpl2) is particularly sensitive to the loss of Zm-mTERF4, accounting for the loss of plastid ribosomes in Zm-mTERF4 mutants. These findings extend the known functional repertoire of the mTERF family to include group II intron splicing and suggest that a conserved role in chloroplast RNA splicing underlies the physiological defects described for mutations in BSM/Rugosa2, the Zm-mTERF4 ortholog in Arabidopsis.


Asunto(s)
Proteínas de Cloroplastos/metabolismo , Cloroplastos/genética , Intrones , Empalme del ARN , Zea mays/genética , Proteínas de Cloroplastos/análisis , Proteínas de Cloroplastos/genética , Cloroplastos/química , Cloroplastos/metabolismo , Mutación , Proteínas de Unión al ARN/metabolismo , Ribosomas/metabolismo , Zea mays/metabolismo
6.
Trends Plant Sci ; 19(6): 380-9, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24462302

RESUMEN

Mitochondria are essential for the eukaryotic cell and are derived from the endosymbiosis of an α-proteobacterial ancestor. Compared to other eukaryotes, RNA metabolism in plant mitochondria is complex and combines bacterial-like traits with novel features that evolved in the host cell. These complex RNA processes are regulated by families of nucleus-encoded RNA-binding proteins. Transcription is particularly relaxed and is initiated from multiple promoters covering the entire genome. The variety of RNA precursors accumulating in mitochondria highlights the importance of post-transcriptional processes to determine the size and abundance of transcripts. Here we review RNA metabolism in plant mitochondria, from RNA transcription to translation, with a special focus on their unique features that are controlled by trans-factors.


Asunto(s)
Mitocondrias/metabolismo , Plantas/metabolismo , ARN de Planta/metabolismo , Biosíntesis de Proteínas , ARN/metabolismo , ARN Mitocondrial , Transcripción Genética
7.
Biochimie ; 100: 141-50, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24021622

RESUMEN

Mitochondria and chloroplasts are often described as semi-autonomous organelles because they have retained a genome. They thus require fully functional gene expression machineries. Many of the required processes going all the way from transcription to translation have specificities in organelles and arose during eukaryote history. Most factors involved in these RNA maturation steps have remained elusive for a long time. The recent identification of a number of novel protein families including pentatricopeptide repeat proteins, half-a-tetratricopeptide proteins, octotricopeptide repeat proteins and mitochondrial transcription termination factors has helped to settle long-standing questions regarding organelle gene expression. In particular, their functions have been related to replication, transcription, RNA processing, RNA editing, splicing, the control of RNA turnover and translation throughout eukaryotes. These families of proteins, although evolutionary independent, seem to share a common overall architecture. For all of them, proteins contain tandem arrays of repeated motifs. Each module is composed of two to three α-helices and their succession forms a super-helix. Here, we review the features characterising these protein families, in particular, their distribution, the identified functions and mode of action and propose that they might share similar substrate recognition mechanisms.


Asunto(s)
Cloroplastos/genética , Regulación de la Expresión Génica de las Plantas , Mitocondrias/genética , Proteínas Mitocondriales/genética , Proteínas de Plantas/genética , Plantas/genética , Secuencias de Aminoácidos , Animales , Cloroplastos/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Edición de ARN , Empalme del ARN , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
8.
RNA Biol ; 10(9): 1457-68, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23925311

RESUMEN

A fast growing number of studies identify pentatricopeptide repeat (PPR) proteins as major players in gene expression processes. Among them, a subset of PPR proteins called PRORP possesses RNase P activity in several eukaryotes, both in nuclei and organelles. RNase P is the endonucleolytic activity that removes 5' leader sequences from tRNA precursors and is thus essential for translation. Before the characterization of PRORP, RNase P enzymes were thought to occur universally as ribonucleoproteins, although some evidence implied that some eukaryotes or cellular compartments did not use RNA for RNase P activity. The characterization of PRORP reveals a two-domain enzyme, with an N-terminal domain containing multiple PPR motifs and assumed to achieve target specificity and a C-terminal domain holding catalytic activity. The nature of PRORP interactions with tRNAs suggests that ribonucleoprotein and protein-only RNase P enzymes share a similar substrate binding process.


Asunto(s)
Proteínas de Unión al ARN/metabolismo , Ribonucleasa P/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Células Eucariotas/metabolismo , Humanos , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Conformación Proteica , Estructura Terciaria de Proteína , Precursores del ARN/genética , Precursores del ARN/metabolismo , ARN de Transferencia/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Ribonucleasa P/genética , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo
9.
Proc Natl Acad Sci U S A ; 110(12): E1169-78, 2013 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-23487777

RESUMEN

Plant RNA editing modifies cytidines (C) to uridines (U) at specific sites in the transcripts of both mitochondria and plastids. Specific targeting of particular Cs is achieved by pentatricopeptide proteins that recognize cis elements upstream of the C that is edited. Members of the RNA-editing factor interacting protein (RIP) family in Arabidopsis have recently been shown to be essential components of the plant editosome. We have identified a gene that contains a pair of truncated RIP domains (RIP-RIP). Unlike any previously described RIP family member, the encoded protein carries an RNA recognition motif (RRM) at its C terminus and has therefore been named Organelle RRM protein 1 (ORRM1). ORRM1 is an essential plastid editing factor; in Arabidopsis and maize mutants, RNA editing is impaired at particular sites, with an almost complete loss of editing for 12 sites in Arabidopsis and 9 sites in maize. Transfection of Arabidopsis orrm1 mutant protoplasts with constructs encoding a region encompassing the RIP-RIP domain or a region spanning the RRM domain of ORRM1 demonstrated that the RRM domain is sufficient for the editing function of ORRM1 in vitro. According to a yeast two-hybrid assay, ORRM1 interacts selectively with pentatricopeptide transfactors via its RIP-RIP domain. Phylogenetic analysis reveals that the RRM in ORRM1 clusters with a clade of RRM proteins that are targeted to organelles. Taken together, these results suggest that other members of the ORRM family may likewise function in RNA editing.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Plastidios/metabolismo , Edición de ARN/fisiología , ARN de Planta/metabolismo , Proteínas de Unión al ARN/metabolismo , Zea mays/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Mutación , Plastidios/genética , Estructura Terciaria de Proteína , ARN de Planta/genética , Proteínas de Unión al ARN/genética , Zea mays/genética
10.
Plant Cell ; 24(9): 3684-94, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23001034

RESUMEN

After transcription, mRNA editing in angiosperm chloroplasts and mitochondria results in the conversion of cytidine to uridine by deamination. Analysis of Arabidopsis thaliana mutants affected in RNA editing have shown that many pentatricopeptide repeat proteins (PPRs) are required for specific cytidine deamination events. PPR proteins have been shown to be sequence-specific RNA binding proteins allowing the recognition of the C to be edited. The C-terminal DYW domain present in many editing factors has been proposed to catalyze C deamination, as it shows sequence similarities with cytidine deaminases in other organisms. However, many editing factors, such as the first to be discovered, CHLORORESPIRATORY REDUCTION4 (CRR4), lack this domain, so its importance has been unclear. Using a reverse genetic approach, we identified DYW1, an RNA editing factor acting specifically on the plastid ndhD-1 editing site recognized by CRR4. Unlike other known editing factors, DYW1 contains no identifiable PPR motifs but does contain a clear DYW domain. We were able to show interaction between CRR4 and DYW1 by bimolecular fluorescence complementation and to reconstitute a functional chimeric CRR4-DYW1 protein complementing the crr4 dyw1double mutant. We propose that CRR4 and DYW1 act together to edit the ndhD-1 site.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Edición de ARN/genética , ARN de Planta/genética , Alelos , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/ultraestructura , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Cloroplastos/metabolismo , Técnicas de Inactivación de Genes , Datos de Secuencia Molecular , Mutación , Plastidios/metabolismo , Mapeo de Interacción de Proteínas , Estructura Terciaria de Proteína , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Alineación de Secuencia
11.
Proc Natl Acad Sci U S A ; 109(15): 5651-6, 2012 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-22451905

RESUMEN

The half-a-tetratricopeptide repeat (HAT) motif is a helical repeat motif found in proteins that influence various aspects of RNA metabolism, including rRNA biogenesis, RNA splicing, and polyadenylation. This functional association with RNA suggested that HAT repeat tracts might bind RNA. However, RNA binding activity has not been reported for any HAT repeat tract, and recent literature has emphasized a protein binding role. In this study, we show that a chloroplast-localized HAT protein, HCF107, is a sequence-specific RNA binding protein. HCF107 consists of 11 tandem HAT repeats and short flanking regions that are also predicted to form helical hairpins. The minimal HCF107 binding site spans ∼11 nt, consistent with the possibility that HAT repeats bind RNA through a modular one repeat-1 nt mechanism. Binding of HCF107 to its native RNA ligand in the psbH 5' UTR remodels local RNA structure and protects the adjacent RNA from exonucleases in vitro. These activities can account for the RNA stabilizing, RNA processing, and translational activation functions attributed to HCF107 based on genetic data. We suggest that analogous activities contribute to the functions of HAT domains found in ribonucleoprotein complexes in the nuclear-cytosolic compartment.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de la Membrana/metabolismo , Proteínas de Plantas/metabolismo , ARN de Planta/genética , Zea mays/genética , Regiones no Traducidas 5'/genética , Secuencia de Aminoácidos , Arabidopsis/enzimología , Proteínas de Arabidopsis/química , Secuencia de Bases , Sitios de Unión , Ensayo de Cambio de Movilidad Electroforética , Exorribonucleasas/metabolismo , Proteínas de la Membrana/química , Datos de Secuencia Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Conformación de Ácido Nucleico , Proteínas de Plantas/química , Unión Proteica , Biosíntesis de Proteínas , ARN de Planta/metabolismo , Secuencias Repetitivas de Aminoácido , Zea mays/enzimología
12.
Nucleic Acids Res ; 40(7): 3092-105, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22156165

RESUMEN

Most chloroplast mRNAs are processed from larger precursors. Several mechanisms have been proposed to mediate these processing events, including site-specific cleavage and the stalling of exonucleases by RNA structures. A protein barrier mechanism was proposed based on analysis of the pentatricopeptide repeat (PPR) protein PPR10: PPR10 binds two intercistronic regions and impedes 5'- and 3'-exonucleases, resulting in processed RNAs with PPR10 bound at the 5'- or 3'-end. In this study, we provide evidence that protein barriers are the predominant means for defining processed mRNA termini in chloroplasts. First, we map additional RNA termini whose arrangement suggests biogenesis via a PPR10-like mechanism. Second, we show that the PPR protein HCF152 binds to the immediate 5'- or 3'-termini of transcripts that require HCF152 for their accumulation, providing evidence that HCF152 defines RNA termini by blocking exonucleases. Finally, we build on the observation that the PPR10 and HCF152 binding sites accumulate as small chloroplast RNAs to infer binding sites of other PPR proteins. We show that most processed mRNA termini are represented by small RNAs whose sequences are highly conserved. We suggest that each such small RNA is the footprint of a PPR-like protein that protects the adjacent RNA from degradation.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo , Procesamiento Postranscripcional del ARN , ARN del Cloroplasto/metabolismo , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Arabidopsis/metabolismo , Secuencia de Bases , Sitios de Unión , Exorribonucleasas/metabolismo , Hordeum/enzimología , Hordeum/genética , Hordeum/metabolismo , Datos de Secuencia Molecular , Estabilidad del ARN , ARN del Cloroplasto/química , ARN Mensajero/química , Zea mays/enzimología , Zea mays/genética , Zea mays/metabolismo
13.
Plant Signal Behav ; 6(5): 748-50, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21455023

RESUMEN

The novel pentatricopeptide repeat protein PNM1 has recently been shown to be dual localized to the nucleus and mitochondria. In the nucleus it binds proteins involved in regulating gene expression, especially a TCP transcription factor. This class of proteins was recently shown to control the expression of nuclear genes encoding mitochondrial proteins that contain cis-acting "site II" regulatory elements in their promoter regions. The analysis of mutant plants showed that some genes with site II elements have increased expression levels when PNM1 is not present in the nucleus. This suggests that PNM1 might act as a negative regulator for the expression of an unknown number of genes with site II elements. Altogether, PNM1 might act as a nuclear regulator and / or could be a retrograde messenger molecule from mitochondria to the nucleus for the fine-tuning of nuclear gene expression required for mitochondrial biogenesis.


Asunto(s)
Núcleo Celular/genética , Genes de Plantas/genética , Proteínas Mitocondriales/genética , Proteínas de Plantas/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Modelos Biológicos , Transporte de Proteínas
14.
J Biol Chem ; 286(24): 21361-71, 2011 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-21504904

RESUMEN

In plant organelles, RNA editing is a post-transcriptional mechanism that converts specific cytidines to uridines in RNA of both mitochondria and plastids, altering the information encoded by the gene. The cytidine to be edited is determined by a cis-element surrounding the editing site that is specifically recognized and bound by a trans-acting factor. All the trans-acting editing factors identified so far in plant organelles are members of a large protein family, the pentatricopeptide repeat (PPR) proteins. We have identified the Organelle Transcript Processing 87 (OTP87) gene, which is required for RNA editing of the nad7-C24 and atp1-C1178 sites in Arabidopsis mitochondria. OTP87 encodes an E-subclass PPR protein with an unusually short E-domain. The recombinant protein expressed in Escherichia coli specifically binds to RNAs comprising 30 nucleotides upstream and 10 nucleotides downstream of the nad7-C24 and atp1-C1178 editing sites. The loss-of-function of OTP87 results in small plants with growth and developmental delays. In the otp87 mutant, the amount of assembled respiratory complex V (ATP synthase) is highly reduced compared with the wild type suggesting that the amino acid alteration in ATP1 caused by loss of editing at the atp1-C1178 site affects complex V assembly in mitochondria.


Asunto(s)
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/fisiología , Arabidopsis/metabolismo , Mitocondrias/metabolismo , NADH Deshidrogenasa/química , Péptidos/química , Proteínas de Plantas/metabolismo , ATPasas de Translocación de Protón/química , Edición de ARN , Proteínas de Unión al ARN/fisiología , Sitios de Unión , Clorofila/metabolismo , Escherichia coli/metabolismo , Regulación de la Expresión Génica de las Plantas , Prueba de Complementación Genética , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Modelos Genéticos , Mutación , Fenotipo , Estructura Terciaria de Proteína
15.
Plant Cell ; 23(2): 730-40, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21297037

RESUMEN

Following the endosymbiotic acquisition of mitochondria by eukaryotic cells, most of the genes in this organelle were transferred to the nucleus. To maintain mitochondrial biogenesis and function, nuclear and mitochondrial genomes require regulated and coordinated expression. In plant organelles, nuclear-encoded proteins targeted to the organelles control posttranscriptional and posttranslational mechanisms. Pentatricopeptide repeat (PPR) proteins are good candidates to play such regulatory roles. Here, we identify PNM1 (for PPR protein localized to the nucleus and mitochondria 1), a novel PPR protein that is dual localized to mitochondria and nuclei in Arabidopsis thaliana, as observed by green fluorescent protein fusions and immunodetection on subcellular fractions and on histological sections. Genetic complementation showed that loss of PNM1 function in mitochondria, but not in nuclei, is lethal for the embryo. In mitochondria, it is associated with polysomes and may play a role in translation. A genetic screen in yeast identified protein partners of PNM1. These partners, the nucleosome assembly protein NAP1, and the transcription factor TCP8 interact with PNM1 in the nucleus in planta. Furthermore, TCP8 can bind the promoter of PNM1. This suggests that PNM1 might be involved in the regulation of its own gene expression in the nucleus and could thus play a role in gene expression adjustments between mitochondria and the nucleus.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Adenosina Trifosfatasas/metabolismo , Arabidopsis/embriología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes Letales , Prueba de Complementación Genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Mutación , Polirribosomas/metabolismo , Regiones Promotoras Genéticas , Mapeo de Interacción de Proteínas , ARN de Planta/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Factores de Transcripción/genética
16.
Plant J ; 61(2): 339-49, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19845878

RESUMEN

Several hundred nucleus-encoded factors are required for regulating gene expression in plant organelles. Among them, the most numerous are the members of the pentatricopeptide repeat (PPR) protein family. We found that PPR protein OTP82 is essential for RNA editing of the ndhB-9 and ndhG-1 sites within transcripts encoding subunits of chloroplast NAD(P)H dehydrogenase. Despite the defects in RNA editing, otp82 did not show any phenotypes in NDH activity, stability or interaction with photosystem I, suggesting that the RNA editing events mediated by OTP82 are functionally silent even though they induce amino acid alterations. In agreement with this result, both sites are partially edited even in the wild type, implying the possibility that a single gene produces heterogeneous proteins that are functionally equivalent. Although only five nucleotides separate the ndhB-8 and ndhB-9 sites, the ndhB-8 site is normally edited in otp82 mutants, suggesting that both sites are recognized by different PPR proteins. OTP82 falls into the DYW subclass containing conserved C-terminal E and DYW motifs. As in CRR22 and CRR28, the DYW motif present in OTP82 is not essential for RNA editing in vivo.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , NADH Deshidrogenasa/genética , Edición de ARN , ARN del Cloroplasto/genética , Proteínas de Unión al ARN/metabolismo , Secuencia de Aminoácidos , Proteínas de Arabidopsis/genética , Secuencia de Bases , Cloroplastos/genética , Cloroplastos/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Immunoblotting , Datos de Secuencia Molecular , Mutación , NADH Deshidrogenasa/metabolismo , Hibridación de Ácido Nucleico , Complejo de Proteína del Fotosistema I/genética , Complejo de Proteína del Fotosistema I/metabolismo , Plantas Modificadas Genéticamente , Unión Proteica , Proteínas de Unión al ARN/genética , Homología de Secuencia de Aminoácido
17.
Plant Cell ; 21(11): 3686-99, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19934379

RESUMEN

RNA editing in higher plant organelles results in the conversion of specific cytidine residues to uridine residues in RNA. The recognition of a specific target C site by the editing machinery involves trans-acting factors that bind to the RNA upstream of the C to be edited. In the last few years, analysis of mutants affected in chloroplast biogenesis has identified several pentatricopeptide repeat (PPR) proteins from the PLS subfamily that are essential for the editing of particular RNA transcripts. We selected other genes from the same subfamily and used a reverse genetics approach to identify six new chloroplast editing factors in Arabidopsis thaliana (OTP80, OTP81, OTP82, OTP84, OTP85, and OTP86). These six factors account for nine editing sites not previously assigned to an editing factor and, together with the nine PPR editing proteins previously described, explain more than half of the 34 editing events in Arabidopsis chloroplasts. OTP80, OTP81, OTP85, and OTP86 target only one editing site each, OTP82 two sites, and OTP84 three sites in different transcripts. An analysis of the target sites requiring the five editing factors involved in editing of multiple sites (CRR22, CRR28, CLB19, OTP82, and OTP84) suggests that editing factors can generally distinguish pyrimidines from purines and, at some positions, must be able to recognize specific bases.


Asunto(s)
Arabidopsis/genética , Cloroplastos/genética , Mutación/genética , Edición de ARN/genética , ARN de Planta/genética , Factores de Transcripción/genética , Arabidopsis/metabolismo , Sitios de Unión/genética , Cloroplastos/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Biología Molecular/métodos , Proteínas de Plantas/biosíntesis , Proteínas de Plantas/genética , Biosíntesis de Proteínas/genética , Factores de Transcripción/aislamiento & purificación , Factores de Transcripción/metabolismo
18.
Plant J ; 58(1): 82-96, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19054358

RESUMEN

Virescence, a phenotype in which leaves green more slowly than usual, is recognized to play a role in protection from photo-oxidative damage before healthy chloroplasts are developed. The elucidation of the molecular mechanisms underlying virescence will provide insights into how the development of chloroplasts is controlled. In this study, we find that knockout alleles of Yellow Seedlings 1 (YS1) in Arabidopsis lead to a virescent phenotype, which disappears by 3 weeks after germination. The ys1 mutation resulted in marked decreases in photosynthetic capacity and photosynthetic pigment complexes, and disturbed ultrastructure of thylakoid membranes in 8-day-old seedlings. However, cotyledons of ys1 seedlings pre-treated in the dark for 5 days turn green almost as fast as the wild type in light, revealing that the developmental defects in ys1 are limited to the first few days after germination. Inspection of all known plastid RNA editing and splicing events revealed that YS1 is absolutely required for editing of site 25992 in rpoB transcripts encoding the beta subunit of the plastid-encoded RNA polymerase (PEP). YS1 is a nuclear-encoded chloroplast-localized pentatricopeptide repeat protein differing from previously described editing factors in that it has a C-terminal DYW motif. A defect in PEP activity is consistent with the changes in plastid transcript patterns observed in ys1 seedlings. We conclude that the activity of PEP containing RpoB translated from unedited transcripts is insufficient to support rapid chloroplast differentiation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Cloroplastos/metabolismo , Edición de ARN , Alelos , Secuencias de Aminoácidos , Ácido Aminolevulínico/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Clorofila/metabolismo , Proteínas de Cloroplastos/genética , Proteínas de Cloroplastos/metabolismo , Cloroplastos/ultraestructura , Oscuridad , Activación Enzimática , Fluorescencia , Técnicas de Inactivación de Genes , Prueba de Complementación Genética , Germinación , Microscopía Electrónica de Transmisión , Mutación , Oxidación-Reducción , Fotosíntesis , Proteínas del Complejo del Centro de Reacción Fotosintética/genética , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/metabolismo , Plásmidos/genética , Plásmidos/metabolismo , ARN del Cloroplasto/genética , ARN de Planta/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Tilacoides/metabolismo , Tilacoides/ultraestructura , Factores de Tiempo
19.
J Mol Biol ; 375(3): 626-36, 2008 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-18054044

RESUMEN

The function of pentatricopeptide repeat (PPR) proteins has been associated with various post-transcriptional steps of organelle gene expression. Among them, translation and its regulation are essential processes. However, in plant mitochondria, they are also the steps of gene expression that are the least understood. In this study, PPR336 was identified as part of a high-molecular-weight complex in Arabidopsis mitochondria. PPR336 is an unusual representative of the large PPR family because it is relatively short and is characterised by a high expression level compared with other PPR proteins. PPR336 defines a small subgroup of eight class P PPR proteins that are similar in terms of motif organization. Among them, PPR336-like is the closest homolog of PPR336. Biochemical analysis has indicated that PPR336 is a strictly mitochondrial protein, extrinsically attached to the inner mitochondrial membrane and part of an RNase-sensitive complex. Sucrose gradients and polysome destabilisation experiments show that PPR336 is associated with ribosomes in plant mitochondria. Moreover, in Ppr336/336-like mutants, mitochondrial polysomes of lower molecular weight accumulate compared with wild-type plants. Polysome association and these unusual features suggest that PPR336 could be involved in a distinctive process, possibly translation in plant mitochondria.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas de Plantas/metabolismo , Polirribosomas/metabolismo , Secuencias de Aminoácidos , Sustitución de Aminoácidos , Arabidopsis/citología , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Sitios de Unión , Escherichia coli/genética , Homocigoto , Membranas Mitocondriales/química , Proteínas Mitocondriales/química , Proteínas Mitocondriales/genética , Peso Molecular , Filogenia , Unión Proteica , Secuencias Repetitivas de Aminoácido/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA