Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Science ; 373(6562): 1494-1499, 2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-34554780

RESUMEN

The development of silicon anodes for lithium-ion batteries has been largely impeded by poor interfacial stability against liquid electrolytes. Here, we enabled the stable operation of a 99.9 weight % microsilicon anode by using the interface passivating properties of sulfide solid electrolytes. Bulk and surface characterization, and quantification of interfacial components, showed that such an approach eliminates continuous interfacial growth and irreversible lithium losses. Microsilicon full cells were assembled and found to achieve high areal current density, wide operating temperature range, and high areal loadings for the different cells. The promising performance can be attributed to both the desirable interfacial property between microsilicon and sulfide electrolytes and the distinctive chemomechanical behavior of the lithium-silicon alloy.

2.
J Chem Phys ; 152(3): 031101, 2020 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-31968966

RESUMEN

We previously reported comprehensive density functional theory-molecular dynamics (DFT-MD) at 400 K to determine the composition and structure of the solid electrolyte interface (SEI) between a Li anode and [Pyr14][TFSI] ionic liquid. In this paper, we examined diffusion rates in both the Li-electrode region and SEI compact layer in smaller 83Li/2[TFSI] and larger 164Li/4[TFSI] systems. At 400 K, the Li-diffusion constant in the Li-region is 1.35 × 10-10 m2/s for 83Li/2[TFSI] and 5.64 × 10-10 m2/s for 164Li/4[TFSI], while for the SEI it is 0.33 × 10-10 m2/s and 0.22 × 10-10 m2/s, thus about one order slower in the SEI compared to the Li-region. This Li-diffusion is dominated by hopping from the neighbor shell of one F or O to the neighbor shell of another. Comparing the Li-diffusion at different temperatures, we find that the activation energy is 0.03 and 0.11 eV for the Li-region in the smaller and larger systems, respectively, while for the SEI it is 0.09 and 0.06 eV.

3.
J Phys Chem Lett ; 10(16): 4577-4586, 2019 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-31344329

RESUMEN

Ionic liquids (ILs) are promising materials for application in a new generation of Li batteries. They can be used as electrolyte or interlayer or incorporated into other materials. ILs have the ability to form a stable solid electrochemical interface (SEI), which plays an important role in protecting the Li-based electrode from oxidation and the electrolyte from extensive decomposition. Experimentally, it is hardly possible to elicit fine details of the SEI structure. To remedy this situation, we have performed a comprehensive computational study (density functional theory-based molecular dynamics) to determine the composition and structure of the SEI compact layer formed between the Li anode and [Pyr14][TFSI] IL. We found that the [TFSI] anions quickly reacted with Li and decomposed, unlike the [Pyr14] cations which remained stable. The obtained SEI compact layer structure is nonhomogeneous and consists of the atomized S, N, O, F, and C anions oxidized by Li atoms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA