Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
Ophthalmic Surg Lasers Imaging Retina ; 55(5): 263-269, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38408222

RESUMEN

BACKGROUND AND OBJECTIVE: Color fundus photography is an important imaging modality that is currently limited by a narrow dynamic range. We describe a post-image processing technique to generate high dynamic range (HDR) retinal images with enhanced detail. PATIENTS AND METHODS: This was a retrospective, observational case series evaluating fundus photographs of patients with macular pathology. Photographs were acquired with three or more exposure values using a commercially available camera (Topcon 50-DX). Images were aligned and imported into HDR processing software (Photomatix Pro). Fundus detail was compared between HDR and raw photographs. RESULTS: Sixteen eyes from 10 patients (5 male, 5 female; mean age 59.4 years) were analyzed. Clinician graders preferred the HDR image 91.7% of the time (44/48 image comparisons), with good grader agreement (81.3%, 13/16 eyes). CONCLUSIONS: HDR fundus imaging is feasible using images from existing fundus cameras and may be useful for enhanced visualization of retinal detail in a variety of pathologic states. [Ophthalmic Surg Lasers Imaging Retina 2024;55:263-269.].


Asunto(s)
Fondo de Ojo , Fotograbar , Humanos , Femenino , Estudios Retrospectivos , Masculino , Persona de Mediana Edad , Fotograbar/métodos , Anciano , Enfermedades de la Retina/diagnóstico , Procesamiento de Imagen Asistido por Computador/métodos , Adulto , Retina/diagnóstico por imagen , Retina/patología , Técnicas de Diagnóstico Oftalmológico
2.
Ophthalmology ; 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38309476

RESUMEN

PURPOSE: To investigate the distribution of genotypes and natural history of ABCA4-associated retinal disease in a large cohort of patients seen at a single institution. DESIGN: Retrospective, single-institution cohort review. PARTICIPANTS: Patients seen at the University of Iowa between November 1986 and August 2022 clinically suspected to have disease caused by sequence variations in ABCA4. METHODS: DNA samples from participants were subjected to a tiered testing strategy progressing from allele-specific screening to whole genome sequencing. Charts were reviewed, and clinical data were tabulated. The pathogenic severity of the most common alleles was estimated by studying groups of patients who shared 1 allele. Groups of patients with shared genotypes were reviewed for evidence of modifying factor effects. MAIN OUTCOME MEASURES: Age at first uncorrectable vision loss, best-corrected visual acuity, and the area of the I2e isopter of the Goldmann visual field. RESULTS: A total of 460 patients from 390 families demonstrated convincing clinical features of ABCA4-associated retinal disease. Complete genotypes were identified in 399 patients, and partial genotypes were identified in 61. The median age at first vision loss was 16 years (range, 4-76 years). Two hundred sixty-five families (68%) harbored a unique genotype, and no more than 10 patients shared any single genotype. Review of the patients with shared genotypes revealed evidence of modifying factors that in several cases resulted in a > 15-year difference in age at first vision loss. Two hundred forty-one different alleles were identified among the members of this cohort, and 161 of these (67%) were found in only a single individual. CONCLUSIONS: ABCA4-associated retinal disease ranges from a very severe photoreceptor disease with an onset before 5 years of age to a late-onset retinal pigment epithelium-based condition resembling pattern dystrophy. Modifying factors frequently impact the ABCA4 disease phenotype to a degree that is similar in magnitude to the detectable ABCA4 alleles themselves. It is likely that most patients in any cohort will harbor a unique genotype. The latter observations taken together suggest that patients' clinical findings in most cases will be more useful for predicting their clinical course than their genotype. FINANCIAL DISCLOSURE(S): Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.

4.
CRISPR J ; 6(6): 502-513, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38108516

RESUMEN

Rhodopsin (RHO) mutations such as Pro23His are the leading cause of dominantly inherited retinitis pigmentosa in North America. As with other dominant retinal dystrophies, these mutations lead to production of a toxic protein product, and treatment will require knockdown of the mutant allele. The purpose of this study was to develop a CRISPR-Cas9-mediated transcriptional repression strategy using catalytically inactive Staphylococcus aureus Cas9 (dCas9) fused to the Krüppel-associated box (KRAB) transcriptional repressor domain. Using a reporter construct carrying green fluorescent protein (GFP) cloned downstream of the RHO promoter fragment (nucleotides -1403 to +73), we demonstrate a ∼74-84% reduction in RHO promoter activity in RHOpCRISPRi-treated versus plasmid-only controls. After subretinal transduction of human retinal explants and transgenic Pro23His mutant pigs, significant knockdown of rhodopsin protein was achieved. Suppression of mutant transgene in vivo was associated with a reduction in endoplasmic reticulum (ER) stress and apoptosis markers and preservation of photoreceptor cell layer thickness.


Asunto(s)
Retinitis Pigmentosa , Rodopsina , Humanos , Animales , Porcinos , Rodopsina/genética , Sistemas CRISPR-Cas/genética , Edición Génica , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/terapia , Alelos
5.
Hum Mol Genet ; 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37930186

RESUMEN

Mutations in ABCA4 are the most common cause of Mendelian retinal disease. Clinical evaluation of this gene is challenging because of its extreme allelic diversity, the large fraction of non-exomic mutations, and the wide range of associated disease. We used patient-derived retinal organoids as well as DNA samples and clinical data from a large cohort of patients with ABCA4-associated retinal disease to investigate the pathogenicity of a variant in ABCA4 (IVS30 + 1321 A > G) that occurs heterozygously in 2% of Europeans. We found that this variant causes mis-splicing of the gene in photoreceptor cells such that the resulting protein contains 36 incorrect amino acids followed by a premature stop. We also investigated the phenotype of 10 patients with compound genotypes that included this mutation. Their median age of first vision loss was 39 years, which is in the mildest quintile of a large cohort of patients with ABCA4 disease. We conclude that the IVS30 + 1321 A > G variant can cause disease when paired with a sufficiently deleterious opposing allele in a sufficiently permissive genetic background.

6.
Invest Ophthalmol Vis Sci ; 64(13): 40, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37878301

RESUMEN

Purpose: Macular neovascularization is a relatively common and potentially visually devastating complication of age-related macular degeneration. In macular neovascularization, pathologic angiogenesis can originate from either the choroid or the retina, but we have limited understanding of how different cell types become dysregulated in this dynamic process. Methods: To study how gene expression is altered in focal areas of pathology, we performed spatial RNA sequencing on a human donor eye with macular neovascularization as well as a healthy control donor. We performed differential expression to identify genes enriched within the area of macular neovascularization and used deconvolution algorithms to predict the originating cell type of these dysregulated genes. Results: Within the area of neovascularization, endothelial cells demonstrated increased expression of genes related to Rho family GTPase signaling and integrin signaling. Likewise, VEGF and TGFB1 were identified as potential upstream regulators that could drive the observed gene expression changes produced by endothelial and retinal pigment epithelium cells in the macular neovascularization donor. These spatial gene expression profiles were compared to previous single-cell gene expression experiments in human age-related macular degeneration as well as a model of laser-induced neovascularization in mice. As a secondary aim, we investigated regional gene expression patterns within the macular neural retina and between the macular and peripheral choroid. Conclusions: Overall, this study spatially analyzes gene expression across the retina, retinal pigment epithelium, and choroid in health and describes a set of candidate molecules that become dysregulated in macular neovascularization.


Asunto(s)
Neovascularización Coroidal , Degeneración Macular , Humanos , Animales , Ratones , Transcriptoma , Células Endoteliales , Neovascularización Coroidal/genética , Retina , Degeneración Macular/genética
7.
Front Med (Lausanne) ; 10: 1204095, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37396901

RESUMEN

Introduction: X-linked retinoschisis (XLRS) is an inherited retinal disease (IRD) caused by pathogenic mutations in the retinoschisin gene, RS1. Affected individuals develop retinal layer separation, leading to loss of visual acuity (VA). Several XLRS gene therapy trials have been attempted but none have met their primary endpoints. An improved understanding of XLRS natural history and clinical outcomes may better inform future trials. Here, we report the long-term functional and structural outcomes of XLRS and the relevance of RS1 genotypes to the visual prognosis of affected individuals. Methods: A retrospective chart review of patients with molecularly confirmed X-linked retinoschisis was performed. Functional and structural outcomes, and RS1 genotype data, were included for analysis. Results: Fifty-two patients with XLRS from 33 families were included in the study. Median age at symptom onset was 5 years (range 0-49) and median follow-up was 5.7 years (range 0.1-56.8). Macular retinoschisis occurred in 103 of 104 eyes (99.0%), while peripheral retinoschisis occurred in 48 of 104 eyes (46.2%), most often in the inferotemporal quadrant (40.4%). Initial and final VA were similar (logMAR 0.498 vs. 0.521; p = 0.203). Fifty of 54 eyes (92.6%) developed detectable outer retinal loss by age 20, and 29 of 66 eyes (43.9%) had focal or diffuse outer retinal atrophy (ORA) by age 40. ORA but not central subfield thickness (CST) was associated with reduced VA. Inter-eye correlation was modest for VA (r-squared = 0.03; p = 0.08) and CST (r-squared = 0.15; p = 0.001). Carbonic anhydrase inhibitors (CAIs) improved CST (p = 0.026), but not VA (p = 0.380). Eight of 104 eyes (7.7%) had XLRS-related retinal detachment (RD), which was associated with poorer outcomes compared to eyes without RD (median final VA 0.875 vs. 0.487; p <0.0001). RS1 null genotypes had greater odds of at least moderate visual impairment at final follow-up (OR 7.81; 95% CI 2.17, 28.10; p = 0.002) which was independent of age at onset, initial CST, initial ORA, or previous RD. Discussion: Overall, long-term follow-up of XLRS patients demonstrated relatively stable VA, with presenting CST, development of ORA, and null RS1 mutations associated with poorer long-term visual outcomes, indicating a clinically relevant genotype-phenotype correlation in XLRS.

8.
bioRxiv ; 2023 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-37398429

RESUMEN

Macular neovascularization is a relatively common and potentially visually devastating complication of age-related macular degeneration. In macular neovascularization, pathologic angiogenesis can originate from either the choroid or the retina, but we have limited understanding of how different cell types become dysregulated in this dynamic process. In this study, we performed spatial RNA sequencing on a human donor eye with macular neovascularization as well as a healthy control donor. We identified genes enriched within the area of macular neovascularization and used deconvolution algorithms to predict the originating cell type of these dysregulated genes. Within the area of neovascularization, endothelial cells were predicted to increase expression of genes related to Rho family GTPase signaling and integrin signaling. Likewise, VEGF and TGFB1 were identified as potential upstream regulators that could drive the observed gene expression changes produced by endothelial and retinal pigment epithelium cells in the macular neovascularization donor. These spatial gene expression profiles were compared to previous single-cell gene expression experiments in human age-related macular degeneration as well as a model of laser-induced neovascularization in mice. As a secondary aim, we also investigated spatial gene expression patterns within the macular neural retina and between the macular and peripheral choroid. We recapitulated previously described regional-specific gene expression patterns across both tissues. Overall, this study spatially analyzes gene expression across the retina, retinal pigment epithelium, and choroid in health and describes a set of candidate molecules that become dysregulated in macular neovascularization.

10.
Sci Rep ; 13(1): 6896, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-37106000

RESUMEN

Many retinal diseases involve the loss of light-sensing photoreceptor cells (rods and cones) over time. The severity and distribution of photoreceptor loss varies widely across diseases and affected individuals, so characterizing the degree and pattern of photoreceptor loss can clarify pathophysiology and prognosis. Currently, in vivo visualization of individual photoreceptors requires technology such as adaptive optics, which has numerous limitations and is not widely used. By contrast, optical coherence tomography (OCT) is nearly ubiquitous in daily clinical practice given its ease of image acquisition and detailed visualization of retinal structure. However, OCT cannot resolve individual photoreceptors, and no OCT-based method exists to distinguish between the loss of rods versus cones. Here, we present a computational model that quantitatively estimates rod versus cone photoreceptor loss from OCT. Using histologic data of human photoreceptor topography, we constructed an OCT-based reference model to simulate outer nuclear layer thinning caused by differential loss of rods and cones. The model was able to estimate rod and cone loss using in vivo OCT data from patients with Stargardt disease and healthy controls. Our model provides a powerful new tool to quantify photoreceptor loss using OCT data alone, with potentially broad applications for research and clinical care.


Asunto(s)
Células Fotorreceptoras Retinianas Conos , Enfermedades de la Retina , Humanos , Células Fotorreceptoras Retinianas Conos/patología , Tomografía de Coherencia Óptica , Retina , Enfermedades de la Retina/patología , Enfermedad de Stargardt/patología
11.
Ocul Immunol Inflamm ; : 1-8, 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37084288

RESUMEN

PURPOSE: Autoimmune retinopathy (AIR) is a poorly characterized disease with a wide phenotypic spectrum, complicating investigations of its underlying pathophysiology. We sought to analyze optical coherence tomography (OCT) retinal thickness changes in AIR patients. METHODS: A retrospective chart review from 2007 to 2017 was performed evaluating AIR patients at a single academic, tertiary referral center. OCT retinal sublayer analysis was performed, and paradoxical thickening phenotypes were reviewed. RESULTS: Twenty-nine AIR patients with positive anti-retinal antibodies and OCT imaging were identified. Overall, AIR patients had thinner retinal sublayers compared to controls; however, 12 patients (41.4%) had paradoxical thickening of the outer plexiform layer (OPL). This revealed two distinct OCT phenotypes. No association was found between retinal sublayer thickness and specific antiretinal antibodies. CONCLUSIONS: While the pathogenicity of antiretinal antibodies remains unclear, the OCT phenotypes observed underscore the potential for identifying clues in the underlying disease processes and clinical diagnosis.

12.
Retina ; 43(7): 1165-1173, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-36930890

RESUMEN

PURPOSE: To describe the phenotypic variability and rates of progression of atrophy in patients with PROM1 -associated macular dystrophy. METHODS: Patients in this retrospective, longitudinal case series from a tertiary center had clinical examination and multimodal imaging performed. Areas of retinal pigment epithelium and ellipsoid zone loss over time by optical coherence tomography were calculated by two independent graders. RESULTS: Fifteen patients from five kindreds with an Arg373Cys mutation in PROM1 were studied. The average age was 39 years, and 80% were women. The visual acuity was 20/40 at presentation and 20/57 at last follow-up (average 4.8 years). Three distinct macular phenotypes were observed: 1) central geographic atrophy (13%), 2) multifocal geographic atrophy (20%), and 3) bull's eye maculopathy (67%). The overall rate of atrophy progression was 0.36 mm 2 /year, but the average rate of atrophy progression varied by macular phenotype: 1.08 mm 2 /year for central geographic atrophy, 0.53 mm 2 /year for multifocal geographic atrophy, and 0.23 mm 2 /year for bull's eye maculopathy. CONCLUSION: Patients with PROM1 -associated macular dystrophy demonstrate distinct phenotypes, with bull's eye maculopathy being the most common. The average rate of atrophy progression may be similar to reported rates for ABCA4 -related Stargardt disease and less than age-related macular degeneration. These results provide important measures for following treatment response in future gene and stem cell-based therapies.


Asunto(s)
Atrofia Geográfica , Degeneración Macular , Femenino , Masculino , Humanos , Estudios Retrospectivos , Degeneración Macular/diagnóstico , Degeneración Macular/genética , Mutación , Atrofia , Variación Biológica Poblacional , Tomografía de Coherencia Óptica , Angiografía con Fluoresceína , Transportadoras de Casetes de Unión a ATP/genética , Antígeno AC133/genética
13.
Ophthalmol Retina ; 7(7): 612-619, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36746350

RESUMEN

PURPOSE: To compare visual outcomes after open-globe injury (OGI) with those predicted by the Ocular Trauma Score (OTS), and to investigate the effect of treatment with pars plana vitrectomy (PPV). DESIGN: Retrospective cohort study. SUBJECTS: Patients presenting with OGI to an academic United States ophthalmology department from 2017 to 2020. METHODS: Best-corrected visual acuity (VA) measurements at the most recent follow-up were compared with final VA predicted by the OTS, based on preoperative injury characteristics. The most recently measured VA of patients treated with PPV during initial OGI repair (primary PPV group) was compared with patients treated with PPV after initial OGI repair (secondary PPV group) and patients never treated with PPV (No PPV group). MAIN OUTCOME MEASURES: Best-corrected VA in the injured eye at last follow-up; secondary outcome measures included the occurrence of vitreous hemorrhage at any time, occurrence of retinal detachment at any time, rates of additional surgery, and rates of enucleation. RESULTS: One-hundred and thirty-three subjects with OGI were identified and analyzed. The overall rate of PPV was 32%. Predictors of worse VA at last follow-up included older age (P = 0.047) and worse presenting VA (P < 0.001). Visual acuity outcomes for eyes in OTS categories 2 to 5 did not significantly differ from OTS predictions. However, eyes in OTS category 1 had a higher likelihood of last follow-up VA of light perception (LP) to hand motion (46% in the study cohort vs. 15% predicted by the OTS, P = 0.004) and a lower likelihood of no LP (33% vs. 74%, P < 0.001). The secondary PPV group had the worst VA at presentation among the 3 groups (P = 0.016), but VA at last follow-up did not significantly differ between the study groups (P = 0.338). CONCLUSIONS: The most severe OGIs (i.e., OTS category 1) had better visual outcomes than predicted by the published OTS expectations, and secondary PPV was associated with significant visual improvement despite poor prognostic predictions. Evaluation by a vitreoretinal surgeon should be considered for all patients with severe OGI, especially those in OTS category 1. FINANCIAL DISCLOSURE(S): Proprietary or commercial disclosure may be found after the references.


Asunto(s)
Lesiones Oculares , Humanos , Estados Unidos , Estudios Retrospectivos , Índices de Gravedad del Trauma , Lesiones Oculares/diagnóstico , Lesiones Oculares/cirugía , Lesiones Oculares/epidemiología , Pronóstico , Agudeza Visual
14.
Hum Gene Ther ; 34(11-12): 530-539, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36793189

RESUMEN

Adeno-associated virus (AAV)-mediated gene therapy has great potential for treating a wide range of retinal degenerative diseases. However, some initial enthusiasm for gene therapy has been tempered by emerging evidence of AAV-associated inflammation, which in several instances has contributed to clinical trial discontinuation. Currently, there is a paucity of data describing the variable immune responses to different AAV serotypes, and similarly, little is known regarding how these responses differ depending on route of ocular delivery, including in animal models of disease. In this study, we characterize the severity and retinal distribution of AAV-associated inflammation in rats triggered by delivery of five different AAV vectors (AAV1, AAV2, AAV6, AAV8, and AAV9), each of which contained enhanced green fluorescent protein (eGFP) driven under control of the constitutively active cytomegalovirus promoter. We further compare the inflammation across three different potential routes (intravitreal, subretinal, and suprachoroidal) of ocular delivery. Compared to buffer-injected controls for each route of delivery, AAV2 and AAV6 induced the most inflammation across all routes of delivery of vectors tested, with AAV6 inducing the highest levels of inflammation when delivered suprachoroidally. AAV1-induced inflammation was highest when delivered suprachoroidally, whereas minimal inflammation was seen with intravitreal delivery. In addition, AAV1, AAV2, and AAV6 each induce infiltration of adaptive immune cells like T cells and B cells into the neural retina, suggesting an innate adaptive response to a single dose of virus. AAV8 and AAV9 induced minimal inflammation across all routes of delivery. Importantly, the degree of inflammation was not correlated with vector-mediated transduction and expression of eGFP. These data emphasize the importance of considering ocular inflammation when selecting AAV serotypes and ocular delivery routes for the development of gene therapy strategies.


Asunto(s)
Dependovirus , Degeneración Retiniana , Animales , Ratas , Serogrupo , Vectores Genéticos/genética , Retina/metabolismo , Degeneración Retiniana/metabolismo , Inflamación/metabolismo , Transducción Genética
15.
Ophthalmol Retina ; 7(5): 441-449, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36528270

RESUMEN

OBJECTIVE: Choroidal neovascularization (CNV) is usually considered to be a late-stage complication in Best vitelliform macular dystrophy (BVMD) and can be difficult to diagnose with fluorescein angiography. This study used swept-source (SS) OCT angiography (OCTA) to evaluate the prevalence of CNV in BVMD, identify structural features associated with CNV, and provide insight into the role of CNV in vitelliform lesion evolution. DESIGN: Institutional review board-approved, retrospective, cross-sectional, and longitudinal study. PARTICIPANTS: Patients with molecularly confirmed BVMD. METHODS: Charts from consecutive patients with BVMD imaged with SS-OCTA (PLEX Elite 9000, Carl-Zeiss Meditec Inc) at the University of Iowa from September 2017 to October 2021 were reviewed. Clinical data, including age, gender, best-corrected visual acuity (BCVA), and treatment with intravitreal anti-VEGF injections were recorded. The presence of CNV on SS-OCTA was determined by expert graders and correlated with structural features, such as interstitial fluid, subretinal fluid, nodular subretinal pillar, focal choroidal excavation (FCE), and subfoveal choroidal thickness, with a P value of < 0.05 considered statistically significant. MAIN OUTCOME MEASURES: Presence of CNV on SS-OCTA and correlation with structural features on SS-OCT. RESULTS: A total of 53 eyes from 27 patients (13 women; 48.1%) were included. The mean age was 45 years (range, 8-79 years), and the mean logarithm of the minimum angle of resolution BCVA was 0.38 (range, 0-1). Choroidal neovascularization was identified on SS-OCTA in 27 eyes (50.9%), of which 63.0% had a vitelliform (Gass stage 2) lesion. In 40.7% (11 of 27) of eyes, there was no prior clinical diagnosis of CNV. Other structural features associated with CNV included FCEs (15.1%, 8 of 53 eyes) and nodular pillars (15.1%, 8 of 53 eyes) (P < 0.01). Seven patients had available longitudinal imaging, and most of these patients had CNV visible on SS-OCTA (71.4%; 10 of 14 eyes). CONCLUSION: Choroidal neovascularization is common in BVMD, including in the early stages of the disease. The presence of FCEs or nodular pillars should heighten the clinical suspicion of CNV, which may accelerate vitelliform lesion evolution. FINANCIAL DISCLOSURE(S): Proprietary or commercial disclosure may be found after the references.


Asunto(s)
Neovascularización Coroidal , Distrofia Macular Viteliforme , Humanos , Femenino , Persona de Mediana Edad , Distrofia Macular Viteliforme/complicaciones , Distrofia Macular Viteliforme/diagnóstico , Distrofia Macular Viteliforme/patología , Estudios Retrospectivos , Estudios Longitudinales , Estudios Transversales , Tomografía de Coherencia Óptica/métodos , Neovascularización Coroidal/diagnóstico , Neovascularización Coroidal/tratamiento farmacológico , Neovascularización Coroidal/etiología
16.
Gene Ther ; 30(3-4): 362-368, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36175490

RESUMEN

In humans, mutations in the beta subunit of cGMP-phosphodiesterase type 6 (PDE6B) cause autosomal recessive retinitis pigmentosa (RP), which typically has an aggressive clinical course of early-onset severe vision loss due to rapid photoreceptor degeneration. In this study, we describe the generation of a novel Pde6b-deficient rat model using CRISPR-Cas9 genome editing. We characterize the model at multiple time points using clinical imaging modalities as well as histology with immunohistochemistry to show rapid photoreceptor degeneration compared to wild-type and heterozygous animals. We describe the manufacture of two different adeno-associated viral (AAV) vectors (AAV2/1, AAV2/5) under current Good Manufacturing Practices (cGMP) and demonstrate their ability to drive human PDE6B expression in vivo. We further demonstrate the ability of AAV-mediated subretinal gene therapy to delay photoreceptor loss in Pde6b-deficient rats compared to untreated controls. However, severe progressive photoreceptor loss was noted even in treated eyes, likely due to the aggressive nature of the disease. These data provide useful preclinical data to guide the development of potential human gene therapy for PDE6B-associated RP. In addition, the rapid photoreceptor degeneration of the Pde6b-deficient rat with intact inner retina may provide a useful model for the study of cell replacement strategies.


Asunto(s)
Degeneración Retiniana , Retinitis Pigmentosa , Ratas , Animales , Humanos , Degeneración Retiniana/genética , Degeneración Retiniana/terapia , Dependovirus/genética , Retina/metabolismo , Retinitis Pigmentosa/genética , Terapia Genética/métodos , Modelos Animales de Enfermedad , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6/genética , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6/metabolismo
18.
Sci Rep ; 12(1): 15198, 2022 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-36071082

RESUMEN

To describe a novel optical coherence tomography (OCT) signature resembling sub-retinal pigment epithelium (RPE) tubules (SRT) in non-neovascular age-related macular degeneration (AMD). Patients suffering from non-neovascular AMD with complete medical records and multimodal imaging were retrospectively revised in three different tertiary care centers. Multimodal imaging included color fundus photograph, spectral-domain OCT (Spectralis, Heidelberg Engineering, Germany), fundus autofluorescence, OCT angiography (RTVue XR Avanti, Optovue, Inc., Fremont, CA). A total of 7 eyes of 7 patients with drusenoid pigment epithelium detachment (PED) were consecutively analyzed. The sub-RPE tubules appeared as ovoidal structures with a hyperreflective contour and hyporeflective interior appreciable in the sub-RPE-basal lamina (BL) space on OCT B-scan. The anatomical location of the sub-RPE formations was lying above the Bruch's membrane in 5/7 cases (71.4%) or floating in the sub-RPE-BL space in 2/7 cases (28.6%). En-face OCTA revealed a curvilinear tubulation-like structure corresponding to SRT without flow signal. Sub-RPE tubules represent a newly identified OCT signature observed in eyes with drusenoid PED. The presumed origin may include a variant of calcified structure or alternatively activated RPE cells with some residual BL or basal laminar deposits attracted to BrM for craving oxygen.


Asunto(s)
Degeneración Macular , Desprendimiento de Retina , Angiografía con Fluoresceína , Humanos , Degeneración Macular/diagnóstico por imagen , Desprendimiento de Retina/diagnóstico por imagen , Epitelio Pigmentado de la Retina/diagnóstico por imagen , Estudios Retrospectivos , Tomografía de Coherencia Óptica/métodos
19.
Cell Transplant ; 31: 9636897221104451, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35758274

RESUMEN

Loss of photoreceptor cells is a primary feature of inherited retinal degenerative disorders including age-related macular degeneration and retinitis pigmentosa. To restore vision in affected patients, photoreceptor cell replacement will be required. The ideal donor cells for this application are induced pluripotent stem cells (iPSCs) because they can be derived from and transplanted into the same patient obviating the need for long-term immunosuppression. A major limitation for retinal cell replacement therapy is donor cell loss associated with simple methods of cell delivery such as subretinal injections of bolus cell suspensions. Transplantation with supportive biomaterials can help maintain cellular integrity, increase cell survival, and encourage proper cellular alignment and improve integration with the host retina. Using a pig model of retinal degeneration, we recently demonstrated that polycaprolactone (PCL) scaffolds fabricated with two photon lithography have excellent local and systemic tolerability. In this study, we describe rapid photopolymerization-mediated production of PCL-based bioabsorbable scaffolds, a technique for loading iPSC-derived retinal progenitor cells onto the scaffold, methods of surgical transplantation in an immunocompromised rat model and tolerability of the subretinal grafts at 1, 3, and 6 months of follow-up (n = 150). We observed no local or systemic toxicity, nor did we observe any tumor formation despite extensive clinical evaluation, clinical chemistry, hematology, gross tissue examination and detailed histopathology. Demonstrating the local and systemic compatibility of biodegradable scaffolds carrying human iPSC-derived retinal progenitor cells is an important step toward clinical safety trials of this approach in humans.


Asunto(s)
Células Madre Pluripotentes Inducidas , Degeneración Retiniana , Retinitis Pigmentosa , Animales , Materiales Biocompatibles/farmacología , Humanos , Células Madre Pluripotentes Inducidas/trasplante , Ratas , Retina/patología , Degeneración Retiniana/patología , Degeneración Retiniana/terapia , Retinitis Pigmentosa/terapia , Trasplante de Células Madre/métodos , Porcinos
20.
Nat Med ; 28(5): 1014-1021, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35379979

RESUMEN

CEP290-associated Leber congenital amaurosis type 10 (LCA10) is a retinal disease resulting in childhood blindness. Sepofarsen is an RNA antisense oligonucleotide targeting the c.2991+1655A>G variant in the CEP290 gene to treat LCA10. In this open-label, phase 1b/2 ( NCT03140969 ), 12-month, multicenter, multiple-dose, dose-escalation trial, six adult patients and five pediatric patients received ≤4 doses of intravitreal sepofarsen into the worse-seeing eye. The primary objective was to evaluate sepofarsen safety and tolerability via the frequency and severity of ocular adverse events (AEs); secondary objectives were to evaluate pharmacokinetics and efficacy via changes in functional outcomes. Six patients received sepofarsen 160 µg/80 µg, and five patients received sepofarsen 320 µg/160 µg. Ten of 11 (90.9%) patients developed ocular AEs in the treated eye (5/6 with 160 µg/80 µg; 5/5 with 320 µg/160 µg) versus one of 11 (9.1%) in the untreated eye; most were mild in severity and dose dependent. Eight patients developed cataracts, of which six (75.0%) were categorized as serious (2/3 with 160 µg/80 µg; 4/5 with 320 µg/160 µg), as lens replacement was required. As the 160-µg/80-µg group showed a better benefit-risk profile, higher doses were discontinued or not initiated. Statistically significant improvements in visual acuity and retinal sensitivity were reported (post hoc analysis). The manageable safety profile and improvements reported in this trial support the continuation of sepofarsen development.


Asunto(s)
Amaurosis Congénita de Leber , Adulto , Antígenos de Neoplasias/genética , Ceguera/genética , Proteínas de Ciclo Celular/genética , Niño , Proteínas del Citoesqueleto/metabolismo , Humanos , Amaurosis Congénita de Leber/tratamiento farmacológico , Amaurosis Congénita de Leber/genética , Oligonucleótidos Antisentido/efectos adversos , Visión Ocular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA