Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.040
Filtrar
1.
Acad Radiol ; 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38772798

RESUMEN

RATIONALE AND OBJECTIVES: The mutations in the 23S ribosomal RNA (rRNA) gene are associated with an increase in resistance to macrolides in children with Mycoplasma pneumoniae pneumonia (MPP). This study aimed to develop and validate a chest computed tomography (CT) radiomics model for determining macrolide resistance-associated gene mutation status in MPP. MATERIALS AND METHODS: A total of 258 MPP patients were retrospectively included from two institutions (training set: 194 patients from the first institution; external test set: 64 patients from the second). The 23S rRNA gene mutation status was tested by nasopharyngeal swab polymerase chain reaction. Radiomics features were extracted from chest CT images of pulmonary lesions segmented with semi-automatic delineation. Subsequently, radiomics feature reduction was applied to identify the most relevant features. Logistic regression and random forest algorithms were employed to establish the radiomics models, which were five-fold cross-validated in the training set and validated in the external test set. RESULTS: The radiomics feature selection resulted in eight features. After five-fold cross-validation in the training set, the mean areas under the receiver operating characteristic curve (AUCs) of the logistic regression and random forest models were 0.868 (95% confidence interval (CI): 0.813-0.923) and 0.941 (95% CI: 0.907-0.975), respectively. In the external test set, the corresponding AUCs were 0.855 (95% CI: 0.758-0.952) and 0.815 (95% CI: 0.705-0.925). CONCLUSION: Chest CT radiomics is a promising diagnostic tool for determining macrolide resistance gene mutation status in MPP. AVAILABILITY OF DATA AND MATERIAL: The datasets generated or analyzed during the study are available from the corresponding author on reasonable request.

2.
J Thorac Dis ; 16(4): 2341-2352, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38738257

RESUMEN

Background: Intracardiac echocardiography (ICE) is a novel technology with certain advantages in treatment of atrial fibrillation (AF), yet there is limited research on the use of ICE in radiofrequency ablation for AF treatment in China. The aim of this study was to investigate the total fluoroscopy time and dose, safety, and effectiveness of ICE guided vs. traditional fluoroscopy (non-ICE) guided radiofrequency ablation for AF in China. Methods: We conducted a single-center retrospective analysis of patients who underwent ICE or traditional fluoroscopy-guided radiofrequency ablation for AF. The primary endpoint of this study was total fluoroscopy time, and the secondary endpoints included total fluoroscopy dose, acute surgery failure, transseptal puncture time, ablation time, total procedure time, and 6-month surgery success (no AF recurrence or atrial flutter). As an exploratory analysis, outcomes of interest by different types of AF were examined. Results: A total of 97 patients were included in the analysis. Forty-eight were in the ICE group and 49 were in the non-ICE group with comparable demographic and clinical characteristics at the baseline. None of patients experienced acute surgery failure with no major procedure-related complications occurred. The fluoroscopic time and dose were significantly lower in the ICE group compared to the non-ICE group (0.00 vs. 9.67±4.88 min, P<0.001; 0.00 vs. 77.10±44.28 mGy/cm2, P<0.001, respectively). There were no statistically significant differences in transseptal puncture time, ablation time and total procedure time between the two groups. There were two AF recurrences observed during the 6-month follow-up in each group (P>0.99). Conclusions: ICE significantly reduced the fluoroscopic time and dose for radiofrequency catheter ablation in AF patients. There were no significant differences in safety or effectiveness outcomes between the ICE and non-ICE groups.

3.
Aging Dis ; 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38739929

RESUMEN

Cardiovascular aging is a progressive remodeling process constituting a variety of cellular and molecular alterations that are closely linked to mitochondrial dysfunction. Therefore, gaining a deeper understanding of the changes in mitochondrial function during cardiovascular aging is crucial for preventing cardiovascular diseases. Cardiac aging is accompanied by fibrosis, cardiomyocyte hypertrophy, metabolic changes, and infiltration of immune cells, collectively contributing to the overall remodeling of the heart. Similarly, during vascular aging, there is a profound remodeling of blood vessel structure. These remodeling present damage to endothelial cells, increased vascular stiffness, impaired formation of new blood vessels (angiogenesis), the development of arteriosclerosis, and chronic vascular inflammation. This review underscores the role of mitochondrial dysfunction in cardiac aging, exploring its impact on fibrosis and myocardial alterations, metabolic remodeling, immune response remodeling, as well as in vascular aging in the heart. Additionally, we emphasize the significance of mitochondria-targeted therapies in preventing cardiovascular diseases in the elderly.

4.
Nano Lett ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38742828

RESUMEN

The effect of strong metal-support interaction (SMSI) has never been systematically studied in the field of nanozyme-based catalysis before. Herein, by coupling two different Pd crystal facets with MnO2, i.e., (100) by Pd cube (Pdc) and (111) by Pd icosahedron (Pdi), we observed the reconstruction of Pd atomic structure within the Pd-MnO2 interface, with the reconstructed Pdc (100) facet more disordered than Pdi (111), verifying the existence of SMSI in such coupled system. The rearranged Pd atoms in the interface resulted in enhanced uricase-like catalytic activity, with Pdc@MnO2 demonstrating the best catalytic performance. Theoretical calculations suggested that a more disordered Pd interface led to stronger interactions with intermediates during the uricolytic process. In vitro cell experiments and in vivo therapy results demonstrated excellent biocompatibility, therapeutic effect, and biosafety for their potential hyperuricemia treatment. Our work provides a brand-new perspective for the design of highly efficient uricase-mimic catalysts.

5.
Nat Commun ; 15(1): 3721, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698059

RESUMEN

The enormous and widespread use of organoboronic acids has prompted the development of innovative synthetic methodologies to meet the demands on structural diversity and functional group tolerance. The existing photoinduced defunctionalization radical borylation, typically focused on the conversion of one C-X bond (X= Br, I, or other leaving group) into only one C-B bond. Herein, we disclose a divergent radical dechloroborylation reaction enabled by dinuclear gold catalysis with visible light irradiation. A wide range of structurally diverse alkyl boronic, α-chloroboronic, and gem-diboronic esters can be synthesized in moderate to good yields (up to 92%). Its synthetic robustness is further demonstrated on a preparative scale and applied to late-stage diversification of complex molecules. The process hinges on a C-Cl bond relay activation in readily available gem-dichloroalkanes through inner-sphere electron transfer, overcoming the redox potential limits of unreactive alkyl chlorides.

6.
Inorg Chem ; 63(21): 9975-9982, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38747890

RESUMEN

The ability to control the catalytic activity of enzymes in chemical transformations is essential for the design and development of artificial catalysts. Herein, we report the synthesis and characterization of functional ligands featuring two 1,4,7,10-tetraazacyclododecane units linked by an azobenzene group and their corresponding dinuclear Zn(II) complexes. We show that the configuration switching (E/Z) of the azobenzene spacer in the ligands and their dinuclear Zn(II) complexes is reversibly controlled by irradiation with UV and visible light. The Zn(II)-metal complexes are light-responsive catalysts for the hydrolytic cleavage of nerve agent simulants, i.e., p-nitrophenyl diphenyl phosphate and methyl paraoxon. The catalytic activity of the Z-isomers of the dinuclear Zn(II) complexes outperformed that of the E-counterparts. Moreover, combining the less active E-isomers with gold nanoparticles induced an enhancement in the hydrolysis rate of p-nitrophenyl diphenyl phosphate. Kinetic analysis has shown that the catalytic site appears to involve a single metal ion. We explain our results by considering the different desolvation effects occurring in the catalyst's configurations in the solution and the catalytic systems involving gold nanoparticles.

7.
J Colloid Interface Sci ; 669: 944-951, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38759593

RESUMEN

Understanding the structure-function relationships encoded on chiral catalysts is important for investigating the fundamental principles of catalytic enantioselectivity. Herein, the synthesis and self-assembly of naphthalene substituted bis-l/d-histidine amphiphiles (bis-l/d-NapHis) in DMF/water solution mixture is reported. The resulting supramolecular assemblies featuring well-defined P/M nanoribbons (NRs). With combination of the (P/M)-NR and metal ion catalytic centers (Mn+ = Co2+, Cu2+, Fe3+), the (P)-NR-Mn+ as chiral supramolecular catalysts show catalytic preference to 3,4-dihydroxy-S-phenylalanine (S-DOPA) oxidation while the (M)-NR-Mn+ show enantioselective bias to R-DOPA oxidation. In contrast, their monomeric counterparts bis-l/d-NapHis-Mn+ display an inverse and dramatically lower catalytic selectivity in the R/S-DOPA oxidation. Among them, the Co2+-coordinated supramolecular nanostructures show the highest catalytic efficiency and enantioselectivity (select factor up to 2.70), while the Fe3+-coordinated monomeric ones show nearly racemic products. Analysis of the kinetic results suggests that the synergistic effect between metal ions and the chiral supramolecular NRs can significantly regulate the enantioselective catalytic activity, while the metal ion-mediated monomeric bis-l/d-NapHis were less active. The studies on association constants and activation energies reveal the difference in catalytic efficiency and enantioselectivity resulting from the different energy barriers and binding affinities existed between the chiral molecular/supramolecular structures and R/S-DOPA enantiomers. This work clarifies the correlation between chiral molecular/supramolecular structures and enantioselective catalytic activity, shedding new light on the rational design of chiral catalysts with outstanding enantioselectivity.

8.
Bioresour Technol ; 402: 130767, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38692373

RESUMEN

The study assessed the effect of salinity and lead (Pb(II)) on the anammox sludge for nitrogen removal from saline wastewater. Results showed decreased nitrogen removal and specific anammox activity (SAA) with elevated salinity and Pb(II). SAA reduced from 541.3 ± 4.3 mg N g-1 VSS d-1 at 0.5 mg/L Pb(II) to 436.0 ± 0.2 mg N g-1 VSS d-1 at 30 g/L NaCl, further to 303.6 ± 7.1 mg N g-1 VSS d-1 under 30 g/L NaCl + 0.5 mg/L Pb(II). Notably, the combined inhibition at salinity (15-20 g/L NaCl) and Pb(II) (0.3-0.4 mg/L) exhibited synergistic effect, while higher salinity and Pb(II) aligned with independent inhibition models. Combined inhibition decreased protein/polysaccharides ratio, indicating more severe negative effect on anammox aggregation capacity. Metagenomics confirmed decreased Candidatus Kuenenia, and enhanced denitrification under elevated salinity and Pb(II) conditions. This study offers insights into anammox operation for treating saline wastewater with heavy metals.


Asunto(s)
Plomo , Nitrógeno , Salinidad , Aguas Residuales , Aguas Residuales/química , Plomo/metabolismo , Nitrógeno/metabolismo , Purificación del Agua/métodos , Oxidación-Reducción , Aguas del Alcantarillado/microbiología , Anaerobiosis/efectos de los fármacos , Bacterias/metabolismo , Bacterias/efectos de los fármacos , Reactores Biológicos , Microbiota/efectos de los fármacos , Desnitrificación/efectos de los fármacos
9.
Chemosphere ; 358: 142192, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38701862

RESUMEN

Current human health risk assessments of soil arsenic (As) contamination rarely consider bioaccessibility (IVBA), which may overestimate the health risks of soil As. The IVBA of As (As-IVBA) may differ among various soil types. This investigation of As-IVBA focused As from geological origin in a typical subtropical soil, lateritic red soil, and its risk control values. The study used the SBRC gastric phase in vitro digestion method and As speciation sequential extraction based upon phosphorus speciation extraction method. Two construction land sites (CH and HD sites) in the Pearl River Delta region were surveyed. The results revealed a high content of residual As (including scorodite, mansfieldite, orpiment, realgar, and aluminum arsenite) in the lateritic red soils at both sites (CH: 84.9%, HD: 91.7%). The content of adsorbed aluminum arsenate (CH: 3.24%, HD: 0.228%), adsorbed ferrum arsenate (CH: 8.55%, HD: 5.01%), and calcium arsenate (CH: 7.33%, HD: 3.01%) were found to be low. The bioaccessible As content was significantly positively correlated with the As content in adsorbed aluminum arsenate, adsorbed ferrum arsenate, and calcium arsenate. A small portion of these sequential extractable As speciation could be absorbed by the human body (CH: 14.9%, HD: 3.16%), posing a certain health risk. Adsorbed aluminum arsenate had the highest IVBA, followed by calcium arsenate, and adsorbed ferrum arsenate had the lowest IVBA. The aforementioned speciation characteristics of As from geological origin in lateritic red soil contributed to its lower IVBA compared to other soils. The oxidation state of As did not significantly affect As-IVBA. Based on As-IVBA, the carcinogenic and non-carcinogenic risks of soil As in the CH and HD sites decreased greatly in human health risk assessment. The results suggest that As-IVBA in lateritic red soil should be considered when assessing human health risks on construction land.


Asunto(s)
Arsénico , Contaminantes del Suelo , Suelo , Arsénico/análisis , Arsénico/química , Humanos , Contaminantes del Suelo/análisis , Contaminantes del Suelo/química , Medición de Riesgo , Suelo/química , Monitoreo del Ambiente , Disponibilidad Biológica , China
10.
Biomaterials ; 309: 122616, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38776592

RESUMEN

The gel microsphere culture system (GMCS) showed various advantages for mesenchymal stem cell (MSC) expansion and delivery, such as high specific surface area, small and regular shape, extensive adjustability, and biomimetic properties. Although various technologies and materials have been developed to promote the development of gel microspheres, the differences in the biological status of MSCs between the GMCS and the traditional Petri dish culture system (PDCS) are still unknown, hindering gel microspheres from becoming a culture system as widely used as petri dishes. In the previous study, an excellent "all-in-one" GMCS has been established for the expansion of human adipose-derived MSCs (hADSCs), which showed convenient cell culture operation. Here, we performed transcriptome and proteome sequencing on hADSCs cultured on the "all-in-one" GMCS and the PDCS. We found that hADSCs cultured in the GMCS kept in an undifferentiation status with a high stemness index, whose transcriptome profile is closer to the adipose progenitor cells (APCs) in vivo than those cultured in the PDCS. Further, the high stemness status of hADSCs in the GMCS was maintained through regulating cell-ECM interaction. For application, bilayer scaffolds were constructed by osteo- and chondro-differentiation of hADSCs cultured in the GMCS and the PDCS. The effect of osteochondral regeneration of the bilayer scaffolds in the GMCS group was better than that in the PDCS group. This study revealed the high stemness and excellent functionality of MSCs cultured in the GMCS, which promoted the application of gel microspheres in cell culture and tissue regeneration.


Asunto(s)
Tejido Adiposo , Diferenciación Celular , Células Madre Mesenquimatosas , Microesferas , Humanos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Tejido Adiposo/citología , Animales , Matriz Extracelular/metabolismo , Células Cultivadas , Andamios del Tejido/química , Geles/química , Condrogénesis , Osteogénesis , Técnicas de Cultivo de Célula/métodos
11.
J Inorg Biochem ; 257: 112585, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38718498

RESUMEN

Ruthenium complexes are one of the most promising anticancer drugs and ferroptosis is a novel form of regulated cell death, the study on the effect of Ru complexes on ferroptosis is helpful to find more effective antitumor drugs. Here, the synthesis and characterization of two Ru complexes containing 8-hydroxylquinoline and triphenylphosphine as ligands, [Ru(L1) (PPh3)2Cl2] (Ru-1), [Ru(L2) (PPh3)2Cl2] (Ru-2), were reported. Complexes Ru-1 âˆ¼ Ru-2 showed good anticancer activity in Hep-G2 cells. Researches indicated that complexes Ru-1 âˆ¼ Ru-2 could be enriched and appear as red fluorescence in the mitochondria, arouse dysfunction of mitochondria, induce the accumulation of reactive oxygen species (ROS) and lipid peroxidation (LPO), while the morphology of nuclei and cell apoptosis had no significant change. Further experiments proved that GPX4 and Ferritin were down-regulated, which eventually triggered ferroptosis in Hep-G2 cells. Remarkably, Ru-1 showed high inhibitory activity against xenograft tumor growth in vivo (TGIR = 49%). This study shows that the complex Ru-1 could act as a novel drug candidate by triggering cell ferroptosis.

12.
Heliyon ; 10(10): e31192, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38813236

RESUMEN

Background: This study aimed to explore the expression level and transcriptional regulation mechanism of Extra Spindle Pole Bodies Like 1 (ESPL1) in bladder cancer (BC). Methods: A multicentre database of samples (n = 1391) was assayed for ESPL1 mRNA expression in BC and validated at the protein level by immunohistochemical (IHC) staining of in-house samples (n = 202). Single-cell sequencing (scRNA-seq) analysis and enrichment analysis explored ESPL1 distribution and their accompanying molecular mechanisms. ATAC-seq, ChIP-seq and Hi-C data from multiple platforms were used to investigate ESPL1 upstream transcription factors (TFs) and potential epigenetic regulatory mechanisms. Immune-related analysis, drug sensitivity and molecular docking of ESPL1 were also calculated. Furthermore, upstream microRNAs and the binding sites of ESPL1 were predicted. The expression level and early screening efficacy of miR-299-5p in blood (n = 6625) and tissues (n = 537) were examined. Results: ESPL1 was significantly overexpressed at the mRNA level (p < 0.05, SMD = 0.75; 95 % CI = 0.09, 1.40), and IHC staining of in-house samples verified this finding (p < 0.0001). ESPL1 was predominantly distributed in BC epithelial cells. Coexpressed genes of ESPL1 were enriched in cell cycle-related signalling pathways, and ESPL1 might be involved in the communication between epithelial and residual cells in the Hippo, ErbB, PI3K-Akt and Ras signalling pathways. Three TFs (H2AZ, IRF5 and HIF1A) were detected upstream of ESPL1 and presence of promoter-super enhancer and promoter-typical enhancer loops. ESPL1 expression was correlated with various immune cell infiltration levels. ESPL1 expression might promote BC growth and affect the sensitivity and therapeutic efficacy of paclitaxel and gemcitabine in BC patients. As an upstream regulator of ESPL1, miR-299-5p expression was downregulated in both the blood and tissues, possessing great potential for early screening. Conclusions: ESPL1 expression was upregulated in BC and was mainly distributed in epithelial cells. Elevated ESPL1 expression was associated with TFs at the upstream transcription start site (TSS) and distant chromatin loops of regulatory elements. ESPL1 might be an immune-related predictive and diagnostic marker for BC, and the overexpression of ESPL1 played a cancer-promoting role and affected BC patients' sensitivity to drug therapy. miR-299-5p was downregulated in BC blood and tissues and was also expected to be a novel marker for early screening.

13.
Front Surg ; 11: 1279194, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38601877

RESUMEN

Purpose: We prospectively evaluate the short-term clinical and radiographic outcomes of the only Chinese domestically produced trabecular titanium acetabular cup(3D ACT™ cup) in primary total hip arthroplasty (THA), aiming to provide evidence-based support for its clinical application. Methods: A total of 236 patients, who underwent primary THA using 3D ACT™ cup in the Department of Joint Surgery at our hospital between January 2017 and June 2019, were included in this study. General patient data, imaging information, functional scores, and complications were collected to evaluate the early clinical efficacy. Results: All patients were followed up for 33-52 months, with an average of (42.2 ± 9.2) months. At the last follow-up, the preoperative HHS score increased significantly from 43.7 ± 6.8 to 85.6 ± 9.3 points (P < 0.01). Similarly, the preoperative WOMAC scores showed significant improvement from 59.2 ± 5.8 to 13.1 ± 3.5 points (P < 0.01). 92.3% of the patients expressed satisfaction or high satisfaction with the clinical outcome. Furthermore, 87.7% of the acetabular cups were positioned within the Lewinnek safe zone, achieving successful reconstruction of the acetabular rotation center. The cup survival rate at the last follow-up was 100%. Conclusions: The utilization of the only Chinese domestically manufactured 3D printing trabecular titanium acetabular cup in primary THA demonstrated favorable short-term clinical and radiographic outcomes. The acetabular cup exhibits excellent initial stability, high survival rate, and favorable osseointegration, leading to a significant enhancement in pain relief and functional improvement. In the future, larger sample sizes and multicenter prospective randomized controlled trials will be required to validate the long-term safety and effectiveness of this 3D ACT™ cup.

14.
Chem Commun (Camb) ; 60(34): 4569-4572, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38572692

RESUMEN

L/D-Phenylglycine amphiphiles and metal ions with peroxidase-like activity self-assembled into chiral nanoribbons, which act as efficient chiral supramolecular nanozymes for catalyzing the 3,4-dihydroxy-L/D-phenylalanine (L/D-DOPA) oxidation reactions. The catalytic efficiency and enantioselectivity are dominated by the chirality transfer and the synergistic effect between the metal ions and chiral nanoribbons.

15.
J Transl Med ; 22(1): 373, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637810

RESUMEN

BACKGROUND: Numerous studies highlight the genetic underpinnings of mental disorders comorbidity, particularly in anxiety, depression, and schizophrenia. However, their shared genetic loci are not well understood. Our study employs Mendelian randomization (MR) and colocalization analyses, alongside multi-omics data, to uncover potential genetic targets for these conditions, thereby informing therapeutic and drug development strategies. METHODS: We utilized the Consortium for Linkage Disequilibrium Score Regression (LDSC) and Mendelian Randomization (MR) analysis to investigate genetic correlations among anxiety, depression, and schizophrenia. Utilizing GTEx V8 eQTL and deCODE Genetics pQTL data, we performed a three-step summary-data-based Mendelian randomization (SMR) and protein-protein interaction analysis. This helped assess causal and comorbid loci for these disorders and determine if identified loci share coincidental variations with psychiatric diseases. Additionally, phenome-wide association studies, drug prediction, and molecular docking validated potential drug targets. RESULTS: We found genetic correlations between anxiety, depression, and schizophrenia, and under a meta-analysis of MR from multiple databases, the causal relationships among these disorders are supported. Based on this, three-step SMR and colocalization analyses identified ITIH3 and CCS as being related to the risk of developing depression, while CTSS and DNPH1 are related to the onset of schizophrenia. BTN3A1, PSMB4, and TIMP4 were identified as comorbidity loci for both disorders. Molecules that could not be determined through colocalization analysis were also presented. Drug prediction and molecular docking showed that some drugs and proteins have good binding affinity and available structural data. CONCLUSIONS: Our study indicates genetic correlations and shared risk loci between anxiety, depression, and schizophrenia. These findings offer insights into the underlying mechanisms of their comorbidities and aid in drug development.


Asunto(s)
Esquizofrenia , Humanos , Esquizofrenia/genética , Depresión/genética , Simulación del Acoplamiento Molecular , Ansiedad/genética , Trastornos de Ansiedad/genética , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple/genética , Complejo de la Endopetidasa Proteasomal , Butirofilinas , Antígenos CD
16.
Platelets ; 35(1): 2337255, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38630028

RESUMEN

Exosomes carry large cargo of proteins, lipids, and nucleic acids, serving as versatile biomarkers for disease diagnosis and vehicles for drug delivery. However, up to date, no well recognized standard procedures for exosome storage were available for clinical application. This study aimed to determine the optimal storage conditions and the anticoagulants for plasma-derived exosome isolation. Fresh whole blood samples were collected from healthy participants and preserved in four different anticoagulants including sodium citrate (SC1/4), sodium citrate (SC1/9), lithium heparin (LH), or Ethylenediamine tetraacetic acid (EDTA), respectively. Exosomes were extracted from the plasma by differential ultracentrifugation and stored at three different temperatures, 4°C, -20°C or - 80°C for a duration ranging from one week to six months. All plasma samples for storage conditions comparison were pretreated with LH anticoagulant. Exosome features including morphological characteristics, pariticles size diameter, and surface protein profiles (TSG101, CD63, CD81, CD9, CALNEXIN) were assessed by transmission electron microscopy, Nanoparticle Tracking Analysis, and Western Blotting, respectively. Exosomes preserved in LH and SC1/4 group tended to remain intact microstructure with highly abundant protein biomarkers. Exosomes stored at 4°C for short time were prone to be more stable compared to thos at -80°C. Exosomes stored in plasma were superior in terms of ultrastructure, size diameter and surface protein expression to those stored in PBS. In conclusion, plasma-dervied exosome characteristics strictly depend on the anticoagulants and storage temperature and duration.


What is the context? Effective isolation of exosomes is a prerequisite for subsequent investigation into its involvemnt in disease development as well as potentialtherapeutic applications.Anticoagulants, storage temperature and durations might change the microscopical structure, integrity and also the stability of plasma-derived exosomes. However, no internationally recognized standard of exosome storage procedure was available for clinical use.What is new? Our finding evaluated the effect of anticoagulants and storage on plasma exosome characteristics.Exosomes isolated from plasma preserved with Li-heparin and sodium citrate (1/4) showed better physical properties and surface marker protein expression.Isolated exosomes appeared more stable in a short time for 4°C compared to −80°C. Storage of exosomes in plasma showed better physical properties and surface marker protein expression than in PBS.What is the impact? Our findings inform the significance of standardizing procedure of exosome isolation and preservation.


Asunto(s)
Exosomas , Humanos , Citrato de Sodio , Temperatura , Anticoagulantes/farmacología , Anticoagulantes/uso terapéutico , Heparina , Proteínas de la Membrana , Biomarcadores
17.
PeerJ ; 12: e16988, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38560459

RESUMEN

Background: Myeloid-derived suppressor cells (MDSCs) have crucial immunosuppressive role in T cell dysfunction in various disease processes. However, the role of MDSCs and their impact on Tregs in COPD have not been fully understood. The aim of the present study is to investigate the immunomodulatory role of MDSCs and their potential impact on the expansion and function of Tregs in COPD patients. Methods: Peripheral blood samples were collected to analyze circulating MDSCs, Tregs, PD-1/PD-L1 expression to assess the immunomodulatory role of MDSC and their potential impact on the expansion and function of Treg in COPD. A total of 54 COPD patients and 24 healthy individuals were enrolled in our study. Flow cytometric analyses were performed to identify granulocytic MDSCs (G-MDSCs), monocytic MDSCs (M-MDSCs), Tregs, and the expression of PD-1/PD-L1(L2) on MDSCs and Tregs in peripheral blood. Results: Our results revealed a significantly higher percentage of G-MDSCs and M-MDSCs (p < 0.001) in COPD patients compared to the healthy controls. Additionally, a significantly higher proportion of peripheral blood Tregs was observed in COPD patients. Furthermore, an increased expression of cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) on Tregs (p < 0.01) was detected in COPD patients. The expression of PD-1 on CD4+ Tcells and Tregs, but not CD8+Tcells, was found to be increased in patients with COPD compared to controls. Furthermore, an elevated expression of PD-L1 on M-MDSCs (p < 0.01) was also observed in COPD patients. A positive correlation was observed between the accumulation of M-MDSCs and Tregs in COPD patients. Additionally, the percentage of circulating M-MDSCs is positively associated with the level of PD-1 (r = 0.51, p < 0.0001) and CTLA-4 (r = 0.42, p = 0.0014) on Tregs in COPD. Conclusion: The recruitment of MDSCs, accumulation of Tregs, and up-regulation of CTLA-4 on Treg in COPD, accompanied by an increased level of PD-1/PD-L1, suggest PD-1/PD-L1 axis may be potentially involved in MDSCs-induced the expansion and activation of Treg at least partially in COPD.


Asunto(s)
Células Supresoras de Origen Mieloide , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Antígeno B7-H1/metabolismo , Antígeno CTLA-4 , Células Supresoras de Origen Mieloide/metabolismo , Receptor de Muerte Celular Programada 1 , Linfocitos T Reguladores/metabolismo
18.
World J Clin Cases ; 12(11): 1947-1953, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38660545

RESUMEN

BACKGROUND: Schwannomas are rare peripheral neural myelin sheath tumors that originate from Schwann cells. Of the different types of schwannomas, pelvic sciatic nerve schwannoma is extremely rare. Definite preoperative diagnosis of pelvic schwannomas is difficult, and surgical resection is the gold standard for its definite diagnosis and treatment. CASE SUMMARY: We present a case of pelvic schwannoma arising from the sciatic nerve that was detected in a 40-year-old man who underwent computed tomography for intermittent right lower back pain caused exclusively by a right ureteral calculus. Subsequently, successful transperitoneal laparoscopic surgery was performed for the intact removal of the stone and en bloc resection of the schwannoma. The total operative time was 125 min, and the estimated blood loss was inconspicuous. The surgical procedure was uneventful. The patient was discharged on postoperative day 5 with the simultaneous removal of the urinary catheter. However, the patient presented with motor and sensory disorders of the right lower limb, caused by partial damage to the right sciatic nerve. No tumor recurrence was observed at the postoperative appointment. CONCLUSION: Histopathological examination of the specimen confirmed the diagnosis of a schwannoma. Thus, laparoscopic surgery is safe and feasible for concomitant extirpation of pelvic schwannomas and other pelvic and abdominal diseases that require surgical treatment.

19.
Heliyon ; 10(8): e29483, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38644842

RESUMEN

Methylene blue (MB) was found to exert neuroprotective effect on different brain diseases, such as ischemic stroke. This study assessed the MB effects on ischemia induced brain edema and its role in the inhibition of aquaporin 4 (AQP4) and metabotropic glutamate receptor 5 (mGluR5) expression. Rats were exposed 1 h transient middle cerebral artery occlusion (tMCAO), and MB was injected intravenously following reperfusion (3 mg/kg). Magnetic resonance imaging (MRI) and 2,3,5-triphenyltetrazolium chloride (TTC) staining was performed 48 h after the onset of tMCAO to evaluate the brain infarction and edema. Brain tissues injuries as well as the glial fibrillary acidic protein (GFAP), AQP4 and mGluR5 expressions were detected. Oxygen and glucose deprivation/reoxygenation (OGD/R) was performed on primary astrocytes (ASTs) to induce cell swelling. MB was administered at the beginning of reoxygenation, and the perimeter of ASTs was measured by GFAP immunofluorescent staining. 3,5-dihydroxyphenylglycine (DHPG) and fenobam were given at 24 h before OGD to examine their effects on MB functions on AST swelling and AQP4 expression. MB remarkably decreased the volumes of T2WI and ADC lesions, as well as the cerebral swelling. Consistently, MB treatment significantly decreased GFAP, mGluR5 and AQP4 expression at 48 h after stroke. In the cultivated primary ASTs, OGD/R and DHPG significantly increased ASTs volume as well as AQP4 expression, which was reversed by MB and fenobam treatment. The obtained results highlight that MB decreases the post-ischemic brain swelling by regulating the activation of AQP4 and mGluR5, suggesting potential applications of MB on clinical ischemic stroke treatment.

20.
Front Microbiol ; 15: 1378273, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38666257

RESUMEN

The endophytic microbial community reassembles to participate in plant immune balance when the host plants are stressed by pathogens. However, it remains unclear whether this assembly is pathogen-specific and how regulatory pathways are coordinated in multi-pathogens. In order to investigate the effects of infection with Colletotrichum gloeosporioides (Cg treatment) and Fusarium proliferatum (Fp treatment) on walnut leaf endophytic microbiome in their assembly, co-occurrence pattern, and on comprehensive chemical function of the internal environment of leaf, an interaction system of the walnut-pathogenic fungi was constructed using seed embryo tissue culture technology. The study showed differences in the assembly of endophytic microbial communities in walnut trees across three groups (control group, Ck; Cg; Fp) after Cg and Fp treatments. Despite changes in relative abundances, the dominant communities in phyla and genera remained comparable during the infection of the two pathogens. Endophyte fungi were more sensitive to the pathogen challenge than endophyte bacteria. Both promoted the enrichment of beneficial bacteria such as Bacillus and Pseudomonas, changed the modularity of the community, and reduced the stability and complexity of the endophyte community. Pathogenic fungi infection mainly affects the metabolism of porphyrin and chlorophyll, purine metabolism, phenylpropane metabolism, and amino acid metabolism. However, there was no significant difference in the secondary metabolites for the different susceptible plants. By screening endogenous antagonistic bacteria, we further verified that Pseudomonas psychrotolerans and Bacillus subtilis had inhibitory effects on the two pathogenic fungi and participated in the interaction between the leaves and pathogenic fungi. The antibacterial substances may be 1-methylnaphthalene, 1,3-butadiene, 2,3-butanediol, and toluene aldehyde.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA