Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
PLoS One ; 19(4): e0301622, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38630695

RESUMEN

This paper proposes a reinforced concrete (RC) boundary beam-wall system that requires less construction material and a smaller floor height compared to the conventional RC transfer girder system. The structural performance of this system subjected to axial compression was evaluated by performing a structural test on four specimens of 1/2 scale. In addition, three-dimensional nonlinear finite element analysis was also performed to verify the effectiveness of the boundary beam-wall system. Three test parameters such as the lower wall length-to-upper wall length ratio, lower wall thickness, and stirrup details of the lower wall were considered. The load-displacement curve was plotted for each specimen and its failure mode was identified. The test results showed that decrease in the lower wall length-to-upper wall length ratio significantly reduced the peak strength of the boundary beam-wall system and difference in upper and lower wall thicknesses resulted in lateral bending caused by eccentricity in the out-of-plane direction. Additionally, incorporating cross-ties and reducing stirrup spacing in the lower wall significantly improved initial stiffness and peak strength, effectively minimizing stress concentration.


Asunto(s)
Materiales de Construcción , Compresión de Datos , Análisis de Elementos Finitos , Fenómenos Físicos
2.
Mol Cell ; 84(6): 1062-1077.e9, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38309276

RESUMEN

Inverted Alu repeats (IRAlus) are abundantly found in the transcriptome, especially in introns and 3' untranslated regions (UTRs). Yet, the biological significance of IRAlus embedded in 3' UTRs remains largely unknown. Here, we find that 3' UTR IRAlus silences genes involved in essential signaling pathways. We utilize J2 antibody to directly capture and map the double-stranded RNA structure of 3' UTR IRAlus in the transcriptome. Bioinformatic analysis reveals alternative polyadenylation as a major axis of IRAlus-mediated gene regulation. Notably, the expression of mouse double minute 2 (MDM2), an inhibitor of p53, is upregulated by the exclusion of IRAlus during UTR shortening, which is exploited to silence p53 during tumorigenesis. Moreover, the transcriptome-wide UTR lengthening in neural progenitor cells results in the global downregulation of genes associated with neurodegenerative diseases, including amyotrophic lateral sclerosis, via IRAlus inclusion. Our study establishes the functional landscape of 3' UTR IRAlus and its role in human pathophysiology.


Asunto(s)
Poliadenilación , Proteína p53 Supresora de Tumor , Humanos , Ratones , Animales , Proteína p53 Supresora de Tumor/genética , Regiones no Traducidas 3'/genética , Regulación de la Expresión Génica , Intrones
3.
Adv Sci (Weinh) ; 11(4): e2307182, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37949680

RESUMEN

Intracellular C-terminal cleavage of the amyloid precursor protein (APP) is elevated in the brains of Alzheimer's disease (AD) patients and produces a peptide labeled APP-C31 that is suspected to be involved in the pathology of AD. But details about the role of APP-C31 in the development of the disease are not known. Here, this work reports that APP-C31 directly interacts with the N-terminal and self-recognition regions of amyloid-ß40 (Aß40 ) to form transient adducts, which facilitates the aggregation of both metal-free and metal-bound Aß40 peptides and aggravates their toxicity. Specifically, APP-C31 increases the perinuclear and intranuclear generation of large Aß40 deposits and, consequently, damages the nucleus leading to apoptosis. The Aß40 -induced degeneration of neurites and inflammation are also intensified by APP-C31 in human neurons and murine brains. This study demonstrates a new function of APP-C31 as an intracellular promoter of Aß40 amyloidogenesis in both metal-free and metal-present environments, and may offer an interesting alternative target for developing treatments for AD that have not been considered thus far.


Asunto(s)
Enfermedad de Alzheimer , Precursor de Proteína beta-Amiloide , Humanos , Ratones , Animales , Precursor de Proteína beta-Amiloide/genética , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Apoptosis , Regiones Promotoras Genéticas/genética , Metales/toxicidad
4.
Exp Mol Med ; 55(7): 1283-1292, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37430086

RESUMEN

RNA interference mediated by small interfering RNAs (siRNAs) has been exploited for the development of therapeutics. siRNAs can be a powerful therapeutic tool because the working mechanisms of siRNAs are straightforward. siRNAs determine targets based on their sequence and specifically regulate the gene expression of the target gene. However, efficient delivery of siRNAs to the target organ has long been an issue that needs to be solved. Tremendous efforts regarding siRNA delivery have led to significant progress in siRNA drug development, and from 2018 to 2022, a total of five siRNA drugs were approved for the treatment of patients. Although all FDA-approved siRNA drugs target the hepatocytes of the liver, siRNA-based drugs targeting different organs are in clinical trials. In this review, we introduce siRNA drugs in the market and siRNA drug candidates in clinical trials that target cells in multiple organs. The liver, eye, and skin are the preferred organs targeted by siRNAs. Three or more siRNA drug candidates are in phase 2 or 3 clinical trials to suppress gene expression in these preferred organs. On the other hand, the lungs, kidneys, and brain are challenging organs with relatively few clinical trials. We discuss the characteristics of each organ related to the advantages and disadvantages of siRNA drug targeting and strategies to overcome the barriers in delivering siRNAs based on organ-specific siRNA drugs that have progressed to clinical trials.


Asunto(s)
Hígado , Pulmón , Humanos , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Preparaciones Farmacéuticas/metabolismo , Interferencia de ARN , Pulmón/metabolismo , Hígado/metabolismo
5.
Nature ; 617(7961): 540-547, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37165195

RESUMEN

Throughout an individual's lifetime, genomic alterations accumulate in somatic cells1-11. However, the mutational landscape induced by retrotransposition of long interspersed nuclear element-1 (L1), a widespread mobile element in the human genome12-14, is poorly understood in normal cells. Here we explored the whole-genome sequences of 899 single-cell clones established from three different cell types collected from 28 individuals. We identified 1,708 somatic L1 retrotransposition events that were enriched in colorectal epithelium and showed a positive relationship with age. Fingerprinting of source elements showed 34 retrotransposition-competent L1s. Multidimensional analysis demonstrated that (1) somatic L1 retrotranspositions occur from early embryogenesis at a substantial rate, (2) epigenetic on/off of a source element is preferentially determined in the early organogenesis stage, (3) retrotransposition-competent L1s with a lower population allele frequency have higher retrotransposition activity and (4) only a small fraction of L1 transcripts in the cytoplasm are finally retrotransposed in somatic cells. Analysis of matched cancers further suggested that somatic L1 retrotransposition rate is substantially increased during colorectal tumourigenesis. In summary, this study illustrates L1 retrotransposition-induced somatic mosaicism in normal cells and provides insights into the genomic and epigenomic regulation of transposable elements over the human lifetime.


Asunto(s)
Colon , Elementos Transponibles de ADN , Mucosa Intestinal , Retroelementos , Humanos , Carcinogénesis/genética , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Elementos Transponibles de ADN/genética , Genómica , Elementos de Nucleótido Esparcido Largo/genética , Retroelementos/genética , Envejecimiento/genética , Frecuencia de los Genes , Mosaicismo , Epigenómica , Genoma Humano/genética , Colon/metabolismo , Mucosa Intestinal/metabolismo , Desarrollo Embrionario/genética
6.
Mol Cells ; 46(1): 33-40, 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36697235

RESUMEN

RNAs are versatile molecules that are primarily involved in gene regulation and can thus be widely used to advance the fields of therapeutics and diagnostics. In particular, circular RNAs which are highly stable, have emerged as strong candidates for use on next-generation therapeutic platforms. Endogenous circular RNAs control gene regulatory networks by interacting with other biomolecules or through translation into polypeptides. Circular RNAs exhibit cell-type specific expression patterns, which can be altered in tissues and body fluids depending on pathophysiological conditions. Circular RNAs that are aberrantly expressed in diseases can function as biomarkers or therapeutic targets. Moreover, exogenous circular RNAs synthesized in vitro can be introduced into cells as therapeutic molecules to modulate gene expression networks in vivo. Depending on the purpose, synthetic circular RNA sequences can either be identical to endogenous circular RNA sequences or artificially designed. In this review, we introduce the life cycle and known functions of intracellular circular RNAs. The current stage of endogenous circular RNAs as biomarkers and therapeutic targets is also described. Finally, approaches and considerations that are important for applying the available knowledge on endogenous circular RNAs to design exogenous circular RNAs for therapeutic purposes are presented.


Asunto(s)
ARN Circular , ARN , ARN Circular/genética , ARN/genética , ARN/uso terapéutico , ARN/metabolismo , Biomarcadores , Regulación de la Expresión Génica , Redes Reguladoras de Genes
8.
Int J Mol Sci ; 23(22)2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-36430334

RESUMEN

Noonan syndrome (NS) is a genetic disorder mainly caused by gain-of-function mutations in Src homology region 2-containing protein tyrosine phosphatase 2 (SHP2). Although diverse neurological manifestations are commonly diagnosed in NS patients, the mechanisms as to how SHP2 mutations induce the neurodevelopmental defects associated with NS remain elusive. Here, we report that cortical organoids (NS-COs) derived from NS-induced pluripotent stem cells (iPSCs) exhibit developmental abnormalities, especially in excitatory neurons (ENs). Although NS-COs develop normally in their appearance, single-cell transcriptomic analysis revealed an increase in the EN population and overexpression of cortical layer markers in NS-COs. Surprisingly, the EN subpopulation co-expressing the upper layer marker SATB2 and the deep layer maker CTIP2 was enriched in NS-COs during cortical development. In parallel with the developmental disruptions, NS-COs also exhibited reduced synaptic connectivity. Collectively, our findings suggest that perturbed cortical layer identity and impeded neuronal connectivity contribute to the neurological manifestations of NS.


Asunto(s)
Células Madre Pluripotentes Inducidas , Síndrome de Noonan , Humanos , Organoides , Síndrome de Noonan/genética , Encéfalo , Neuronas
9.
Circ Res ; 131(10): 792-806, 2022 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-36205124

RESUMEN

BACKGROUND: In large-scale genomic studies, Sox17, an endothelial-specific transcription factor, has been suggested as a putative causal gene of pulmonary arterial hypertension (PAH); however, its role and molecular mechanisms remain to be elucidated. We investigated the functional impacts and acting mechanisms of impaired Sox17 (SRY-related HMG-box17) pathway in PAH and explored its potential as a therapeutic target. METHODS: In adult mice, Sox17 deletion in pulmonary endothelial cells (ECs) induced PAH under hypoxia with high penetrance and severity, but not under normoxia. RESULTS: Key features of PAH, such as hypermuscularization, EC hyperplasia, and inflammation in lung arterioles, right ventricular hypertrophy, and elevated pulmonary arterial pressure, persisted even after long rest in normoxia. Mechanistically, transcriptomic profiling predicted that the combination of Sox17 deficiency and hypoxia activated c-Met signaling in lung ECs. HGF (hepatocyte grow factor), a ligand of c-Met, was upregulated in Sox17-deficient lung ECs. Pharmacologic inhibition of HGF/c-Met signaling attenuated and reversed the features of PAH in both preventive and therapeutic settings. Similar to findings in animal models, Sox17 levels in lung ECs were repressed in 26.7% of PAH patients (4 of 15), while those were robust in all 14 non-PAH controls. HGF levels in pulmonary arterioles were increased in 86.7% of patients with PAH (13 of 15), but none of the controls showed that pattern. CONCLUSIONS: The downregulation of Sox17 levels in pulmonary arterioles increases the susceptibility to PAH, particularly when exposed to hypoxia. Our findings suggest the reactive upregulation of HGF/c-Met signaling as a novel druggable target for PAH treatment.


Asunto(s)
Hipertensión Pulmonar , Hipertensión Arterial Pulmonar , Animales , Ratones , Células Endoteliales/metabolismo , Proteínas HMGB/metabolismo , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/metabolismo , Hipoxia/complicaciones , Hipoxia/metabolismo , Hipertensión Arterial Pulmonar/genética , Arteria Pulmonar/metabolismo , Transducción de Señal , Factores de Transcripción SOXF/genética , Factores de Transcripción SOXF/metabolismo , Proteínas Proto-Oncogénicas c-met/metabolismo
10.
Life (Basel) ; 12(9)2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36143463

RESUMEN

Long interspersed nuclear element 1 (LINE1, L1) is a retrotransposon comprising ~17% of the human genome. A subset of L1s maintains the potential to mobilize and alter the genomic landscape, consequently contributing to the change in genome integrity and gene expression. L1 retrotransposition occurs in the human brain regardless of disease status. However, in the brain of patients with various brain diseases, the expression level and copy number of L1 are significantly increased. In this review, we briefly introduce the methodologies applied to measure L1 mobility and identify genomic loci where new insertion of L1 occurs in the brain. Then, we present a list of genes disrupted by L1 transposition in the genome of patients with brain disorders. Finally, we discuss the association between genes disrupted by L1 and relative brain disorders.

11.
Nat Commun ; 12(1): 2695, 2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33976205

RESUMEN

mTOR signaling, involving mTORC1 and mTORC2 complexes, critically regulates neural development and is implicated in various brain disorders. However, we do not fully understand all of the upstream signaling components that can regulate mTOR signaling, especially in neurons. Here, we show a direct, regulated inhibition of mTOR by Tanc2, an adaptor/scaffolding protein with strong neurodevelopmental and psychiatric implications. While Tanc2-null mice show embryonic lethality, Tanc2-haploinsufficient mice survive but display mTORC1/2 hyperactivity accompanying synaptic and behavioral deficits reversed by mTOR-inhibiting rapamycin. Tanc2 interacts with and inhibits mTOR, which is suppressed by mTOR-activating serum or ketamine, a fast-acting antidepressant. Tanc2 and Deptor, also known to inhibit mTORC1/2 minimally affecting neurodevelopment, distinctly inhibit mTOR in early- and late-stage neurons. Lastly, Tanc2 inhibits mTORC1/2 in human neural progenitor cells and neurons. In summary, our findings show that Tanc2 is a mTORC1/2 inhibitor affecting neurodevelopment.


Asunto(s)
Encéfalo/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Neuronas/metabolismo , Proteínas/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Animales , Encéfalo/embriología , Encéfalo/crecimiento & desarrollo , Células Cultivadas , Células HEK293 , Humanos , Inmunosupresores/farmacología , Discapacidades para el Aprendizaje/genética , Discapacidades para el Aprendizaje/fisiopatología , Aprendizaje por Laberinto/efectos de los fármacos , Aprendizaje por Laberinto/fisiología , Trastornos de la Memoria/genética , Trastornos de la Memoria/fisiopatología , Ratones Endogámicos C57BL , Ratones Noqueados , Plasticidad Neuronal/efectos de los fármacos , Plasticidad Neuronal/genética , Plasticidad Neuronal/fisiología , Proteínas/genética , Transducción de Señal/efectos de los fármacos , Sirolimus/farmacología
12.
EMBO Mol Med ; 13(2): e12632, 2021 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-33428810

RESUMEN

Glycine transporters (GlyT1 and GlyT2) that regulate levels of brain glycine, an inhibitory neurotransmitter with co-agonist activity for NMDA receptors (NMDARs), have been considered to be important targets for the treatment of brain disorders with suppressed NMDAR function such as schizophrenia. However, it remains unclear whether other amino acid transporters expressed in the brain can also regulate brain glycine levels and NMDAR function. Here, we report that SLC6A20A, an amino acid transporter known to transport proline based on in vitro data but is understudied in the brain, regulates proline and glycine levels and NMDAR function in the mouse brain. SLC6A20A transcript and protein levels were abnormally increased in mice carrying a mutant PTEN protein lacking the C terminus through enhanced ß-catenin binding to the Slc6a20a gene. These mice displayed reduced extracellular levels of brain proline and glycine and decreased NMDAR currents. Elevating glycine levels back to normal ranges by antisense oligonucleotide-induced SLC6A20 knockdown, or the competitive GlyT1 antagonist sarcosine, normalized NMDAR currents and repetitive climbing behavior observed in these mice. Conversely, mice lacking SLC6A20A displayed increased extracellular glycine levels and NMDAR currents. Lastly, both mouse and human SLC6A20 proteins mediated proline and glycine transports, and SLC6A20 proteins could be detected in human neurons. These results suggest that SLC6A20 regulates proline and glycine homeostasis in the brain and that SLC6A20 inhibition has therapeutic potential for brain disorders involving NMDAR hypofunction.


Asunto(s)
Glicina , Receptores de N-Metil-D-Aspartato , Animales , Encéfalo/metabolismo , Proteínas de Transporte de Glicina en la Membrana Plasmática/genética , Proteínas de Transporte de Glicina en la Membrana Plasmática/metabolismo , Homeostasis , Proteínas de Transporte de Membrana , Ratones , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo
13.
Sci Adv ; 6(6): eaav7416, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32083171

RESUMEN

Secondary drug resistance stems from dynamic clonal evolution during the development of a prior primary resistance. This collateral type of resistance is often a characteristic of cancer recurrence. Yet, mechanisms that drive this collateral resistance and their drug-specific trajectories are still poorly understood. Using resistance selection and small-scale pharmacological screens, we find that cancer cells with primary acquired resistance to the microtubule-stabilizing drug paclitaxel often develop tolerance to epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs), leading to formation of more stable resistant cell populations. We show that paclitaxel-resistant cancer cells follow distinct selection paths under EGFR-TKIs by enriching the stemness program, developing a highly glycolytic adaptive stress response, and rewiring an apoptosis control pathway. Collectively, our work demonstrates the alterations in cellular state stemming from paclitaxel failure that result in collateral resistance to EGFR-TKIs and points to new exploitable vulnerabilities during resistance evolution in the second-line treatment setting.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Resistencia a Antineoplásicos , Terapia Molecular Dirigida , Paclitaxel/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Antineoplásicos Fitogénicos/uso terapéutico , Apoptosis , Línea Celular Tumoral , Senescencia Celular , Resistencia a Antineoplásicos/genética , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/genética , Genómica/métodos , Glucólisis , Humanos , Quimioterapia de Inducción , Modelos Biológicos , Mutación , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Paclitaxel/uso terapéutico , Inhibidores de Proteínas Quinasas/uso terapéutico , Insuficiencia del Tratamiento , Resultado del Tratamiento
14.
BMB Rep ; 51(11): 549-556, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30269744

RESUMEN

Mitochondria are ubiquitous and multi-functional organelles involved in diverse metabolic processes, namely energy production and biomolecule synthesis. The intracellular mitochondrial morphology and distribution change dynamically, which reflect the metabolic state of a given cell type. A dramatic change of the mitochondrial dynamics has been observed in early development that led to further investigations on the relationship between mitochondria and the process of development. A significant developmental process to focus on, in this review, is a differentiation of neural progenitor cells into neurons. Information on how mitochondria- regulated cellular energetics is linked to neuronal development will be discussed, followed by functions of mitochondria and associated diseases in neuronal development. Lastly, the potential use of mitochondrial features in analyzing various neurodevelopmental diseases will be addressed. [BMB Reports 2018; 51(11): 549-556].


Asunto(s)
Mitocondrias/fisiología , Neurogénesis/fisiología , Neuronas/fisiología , Animales , Diferenciación Celular/fisiología , Regulación del Desarrollo de la Expresión Génica , Genes del Desarrollo/fisiología , Humanos , Dinámicas Mitocondriales/genética , Células-Madre Neurales/fisiología , Células-Madre Neurales/ultraestructura , Neuronas/ultraestructura
15.
Nat Med ; 24(11): 1662-1668, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30224756

RESUMEN

Pediatric brain tumors are highly associated with epileptic seizures1. However, their epileptogenic mechanisms remain unclear. Here, we show that the oncogenic BRAF somatic mutation p.Val600Glu (V600E) in developing neurons underlies intrinsic epileptogenicity in ganglioglioma, one of the leading causes of intractable epilepsy2. To do so, we developed a mouse model harboring the BRAFV600E somatic mutation during early brain development to reflect the most frequent mutation, as well as the origin and timing thereof. Therein, the BRAFV600E mutation arising in progenitor cells during brain development led to the acquisition of intrinsic epileptogenic properties in neuronal lineage cells, whereas tumorigenic properties were attributed to high proliferation of glial lineage cells. RNA sequencing analysis of patient brain tissues with the mutation revealed that BRAFV600E-induced epileptogenesis is mediated by RE1-silencing transcription factor (REST), which is a regulator of ion channels and neurotransmitter receptors associated with epilepsy. Moreover, we found that seizures in mice were significantly alleviated by an FDA-approved BRAFV600E inhibitor, vemurafenib, as well as various genetic inhibitions of Rest. Accordingly, this study provides direct evidence of a BRAF somatic mutation contributing to the intrinsic epileptogenicity in pediatric brain tumors and suggests that BRAF and REST could be treatment targets for intractable epilepsy.


Asunto(s)
Neoplasias Encefálicas/genética , Ganglioglioma/genética , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Represoras/genética , Convulsiones/genética , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Neoplasias Encefálicas/complicaciones , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/fisiopatología , Niño , Modelos Animales de Enfermedad , Ganglioglioma/complicaciones , Ganglioglioma/diagnóstico por imagen , Ganglioglioma/fisiopatología , Humanos , Ratones , Mutación , Pediatría , Convulsiones/complicaciones , Convulsiones/diagnóstico por imagen , Convulsiones/fisiopatología
16.
Neuron ; 91(1): 79-89, 2016 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-27387650

RESUMEN

Altered microRNA profiles have been implicated in human brain disorders. However, the functional contribution of individual microRNAs to neuronal development and function is largely unknown. Here, we report biological functions for miR-19 in adult neurogenesis. We determined that miR-19 is enriched in neural progenitor cells (NPCs) and downregulated during neuronal development in the adult hippocampus. By manipulating miR-19 in NPCs for gain- and loss-of-function studies, we discovered that miR-19 regulates cell migration by directly targeting Rapgef2. Concordantly, dysregulation of miR-19 in NPCs alters the positioning of newborn neurons in the adult brain. Furthermore, we found abnormal expression of miR-19 in human NPCs generated from schizophrenic patient-derived induced pluripotent stem cells (iPSCs) that have been described as displaying aberrant migration. Our study demonstrates the significance of posttranscriptional gene regulation by miR-19 in preventing the irregular migration of adult-born neurons that may contribute to the etiology of schizophrenia.


Asunto(s)
Diferenciación Celular/genética , Movimiento Celular/genética , MicroARNs/genética , Células-Madre Neurales/citología , Neuronas/metabolismo , Adulto , Envejecimiento , Animales , Encéfalo/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/citología , Recién Nacido , Ratones , Neurogénesis/genética , Neurogénesis/fisiología , Esquizofrenia/genética , Esquizofrenia/patología
17.
Neurogenesis (Austin) ; 3(1): e1251873, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28405585

RESUMEN

The latest miRNA database (Release 21) annotated 2588 and 1915 miRNAs in the human and mouse genomes, respectively.1 However, the biological roles of miRNAs in vivo remain largely unknown. In particular, the physiological and pathological roles of individual microRNAs in the brain have not been investigated extensively although expression profiles of microRNAs have been reported in many given conditions. In a recent study,2 we identified miR-19, which is enriched in adult hippocampal neural progenitor cells (NPCs), as a key regulator for adult hippocampal neurogenesis. miR-19 is an intrinsic factor regulating the migration of newborn neurons by modulating expression level of RAPGEF2. After observing the abnormal expression patterns of miR-19 and RAPGEF2 in NPCs derived from induced pluripotent stem cells of schizophrenic patients, which display aberrant cell migration, we proposed miR-19 as a molecule associated with schizophrenia. The results illustrate that a single microRNA has the potential to impact the functions of the brain. Identifying miRNA-mediated posttranscriptional gene regulation in the brain will expand our understanding of brain development and functions and the etiologies of several brain disorders.

19.
J Neurosci ; 35(12): 4983-98, 2015 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-25810528

RESUMEN

In the mammalian hippocampus, canonical Wnt signals provided by the microenvironment regulate the differentiation of adult neural stem cells (NSCs) toward the neuronal lineage. Wnts are part of a complex and diverse set of signaling pathways and the role of Wnt/Planar cell polarity (PCP) signaling in adult neurogenesis remains unknown. Using in vitro assays on differentiating adult NSCs, we identified a transition of Wnt signaling responsiveness from Wnt/ß-catenin to Wnt/PCP signaling. In mice, retroviral knockdown strategies against ATP6AP2, a recently discovered core protein involved in both signaling pathways, revealed that its dual role is critical for granule cell fate and morphogenesis. We were able to confirm its dual role in neurogenic Wnt signaling in vitro for both canonical Wnt signaling in proliferating adult NSCs and non-canonical Wnt signaling in differentiating neuroblasts. Although LRP6 appeared to be critical for granule cell fate determination, in vivo knockdown of PCP core proteins FZD3 and CELSR1-3 revealed severe maturational defects without changing the identity of newborn granule cells. Furthermore, we found that CELSR1-3 control distinctive aspects of PCP-mediated granule cell morphogenesis with CELSR1 regulating the direction of dendrite initiation sites and CELSR2/3 controlling radial migration and dendritic patterning. The data presented here characterize distinctive roles for Wnt/ß-catenin signaling in granule cell fate determination and for Wnt/PCP signaling in controlling the morphological maturation of differentiating neuroblasts.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/fisiología , Hipocampo/citología , Neurogénesis/fisiología , ATPasas de Translocación de Protón/fisiología , Receptores de Superficie Celular/fisiología , Animales , Cadherinas/genética , Cadherinas/fisiología , Diferenciación Celular/fisiología , Polaridad Celular/fisiología , Células Cultivadas , Femenino , Receptores Frizzled/genética , Receptores Frizzled/fisiología , Regulación del Desarrollo de la Expresión Génica/genética , Técnicas de Silenciamiento del Gen , Hipocampo/crecimiento & desarrollo , Ratones , Células-Madre Neurales/fisiología , Neurogénesis/genética , ATPasas de Translocación de Protón/genética , Receptores de Superficie Celular/genética , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/fisiología , Transducción de Señal/fisiología , Regulación hacia Arriba , Vía de Señalización Wnt/genética , Vía de Señalización Wnt/fisiología , beta Catenina/fisiología
20.
Genes Dev ; 26(1): 6-10, 2012 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-22215805

RESUMEN

Differentiation of multipotent stem cells occurs through the highly coordinated control of gene expression. Repressor element 1 (RE1) silencing transcription factor (REST), a master transcriptional regulator in neuronal stem cells, restricts neuronal gene expression. REST activity is context-dependent and is modified by its cofactors, such as Ctdsp2. In this issue of Genes & Development, Dill and colleagues (pp. 25-30) report on the microRNA-mediated regulation of neural differentiation. Interestingly, this microRNA is post-transcriptionally regulated and modulates expression of its host gene, ctdsp2.


Asunto(s)
Diferenciación Celular , Regulación del Desarrollo de la Expresión Génica , MicroARNs/genética , MicroARNs/metabolismo , Neuronas/citología , Neuronas/metabolismo , Fosfoproteínas Fosfatasas/genética , Proteínas de Pez Cebra/genética , Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA