Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Environ Sci Technol ; 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38848335

RESUMEN

Dissolved organic matter (DOM) exists widely in natural water, which inevitably influences microplastic (MP) photoaging. Nevertheless, the impacts of DOM fractions with diverse molecular structures on MP photoaging remain to be elucidated. This study explored the photoaging mechanisms of polylactic acid (PLA)-MPs and polystyrene (PS)-MPs in the presence of DOM and its subfractions (hydrophobic acid (HPOA), hydrophobic neutral (HPON), and hydrophilic (HPI)). Across DOM fractions, HPI exhibited the highest electron accepting capacity (23 µmol e- (mg C)-1) due to its abundant tannin-like species (36.8%) with carboxylic groups, which facilitated more reactive oxygen species generation (particularly hydroxyl radical), leading to the strongest photoaging rate of two MPs by HPI. However, the sequences of bond cleavage during photoaging of each MPs were not clearly shifted as revealed by two-dimensional infrared correlation spectra. Inconspicuous effects on the extent of PS- and PLA-MPs photoaging were observed for HPOA and HPON, respectively. This was mainly ascribed to the occurrence of inhibitory mechanisms (e.g., light-shielding and quenching effect) counteracting the reactive oxygen species-promoting effects. The findings identified the HPI fraction of DOM for promoting PS- and PLA-MPs photoaging rate and first constructed a link among DOM molecular structures, redox properties, and effects on MP photoaging.

2.
Environ Microbiol ; 26(5): e16622, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38757466

RESUMEN

Microbial communities that reduce nitrous oxide (N2O) are divided into two clades, nosZI and nosZII. These clades significantly differ in their ecological niches and their implications for N2O emissions in terrestrial environments. However, our understanding of N2O reducers in aquatic systems is currently limited. This study investigated the relative abundance and diversity of nosZI- and nosZII-type N2O reducers in rivers and their impact on N2O emissions. Our findings revealed that stream sediments possess a high capacity for N2O reduction, surpassing N2O production under high N2O/NO3- ratio conditions. This study, along with others in freshwater systems, demonstrated that nosZI marginally dominates more often in rivers. While microbes containing either nosZI and nosZII were crucial in reducing N2O emissions, the net contribution of nosZII-containing microbes was more significant. This can be attributed to the nir gene co-occurring more frequently with the nosZI gene than with the nosZII gene. The diversity within each clade also played a role, with nosZII species being more likely to function as N2O sinks in streams with higher N2O concentrations. Overall, our findings provide a foundation for a better understanding of the biogeography of stream N2O reducers and their effects on N2O emissions.


Asunto(s)
Bacterias , Óxido Nitroso , Ríos , Óxido Nitroso/metabolismo , Ríos/microbiología , Ríos/química , Bacterias/genética , Bacterias/clasificación , Bacterias/metabolismo , Sedimentos Geológicos/microbiología , Oxidación-Reducción , Filogeografía , Filogenia , Microbiota
3.
Environ Int ; 185: 108508, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38377723

RESUMEN

Microplastics (MPs), including conventional hard-to-biodegrade petroleum-based and faster biodegradable plant-based ones, impact soil structure and microbiota in turn affecting the biodiversity and functions of terrestrial ecosystems. Herein, we investigated the effects of conventional and biodegradable MPs on aggregate distribution and microbial community composition in microhabitats at the aggregate scale. Two MP types (polyethylene (PE) and polylactic acid (PLA) with increasing size (50, 150, and 300 µm)) were mixed with a silty loam soil (0-20 cm) at a ratio of 0.5 % (w/w) in a rice-wheat rotation system in a greenhouse under 25 °C for one year. The effects on aggregation, bacterial communities and their co-occurrence networks were investigated as a function of MP aggregate size. Conventional and biodegradable MPs generally had similar effects on soil aggregation and bacterial communities. They increased the proportion of microaggregates from 17 % to 32 %, while reducing the macroaggregates from 84 % to 68 %. The aggregate stability decreased from 1.4 mm to 1.0-1.1 mm independently of MP size due to the decline in the binding agents gluing soil particles (e.g., microbial byproducts and proteinaceous substances). MP type and amount strongly affected the bacterial community structure, accounting for 54 % of the variance. Due to less bioavailable organics, bacterial community composition within microaggregates was more sensitive to MPs addition compared to macroaggregates. Co-occurrence network analysis revealed that MPs exacerbated competition among bacteria and increased the complexity of bacterial networks. Such effects were stronger for PE than PLA MPs due to the higher persistence of PE in soils. Proteobacteria, Bacteroidetes, Chloroflexi, Actinobacteria, and Gemmatimonadetes were the keystone taxa in macroaggregates, while Actinobacteria and Chloroflexi were the keystone taxa in microaggregates. Proteobacteria, Actinobacteria, and Chloroflexi were the most sensitive bacteria to MPs addition. Overall, both conventional and biodegradable MPs reduced the portion of large and stable aggregates, altering bacterial community structures and keystone taxa, and consequently, the functions.


Asunto(s)
Chloroflexi , Microbiota , Microplásticos , Plásticos , Suelo/química , Microbiología del Suelo , Poliésteres , Bacterias , Polietileno
4.
ACS Nano ; 17(20): 19938-19951, 2023 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-37782568

RESUMEN

With the widespread use of nanoenabled agrochemicals, it is essential to evaluate the food safety of nanomaterials (NMs)-treated vegetable crops in full life cycle studies as well as their potential impacts on human health. Tomato seedlings were foliarly sprayed with 50 mg/L ZnO NMs, including ZnO quantum dots (QDs) and ZnO nanoparticles once per week over 11 weeks. The foliar sprayed ZnO QDs increased fruit dry weight and yield per plant by 39.1% and 24.9, respectively. It also significantly increased the lycopene, amino acids, Zn, B, and Fe in tomato fruits by 40.5%, 15.1%, 44.5%, 76.2%, and 12.8%, respectively. The tomato fruit metabolome of tomatoes showed that ZnO NMs upregulated the biosynthesis of unsaturated fatty acids and sphingolipid metabolism and elevated the levels of linoleic and arachidonic acids. The ZnO NMs-treated tomato fruits were then digested in a human gastrointestinal tract model. The results of essential mineral release suggested that the ZnO QDs treatment increased the bioaccessibility of K, Zn, and Cu by 14.8-35.1% relative to the control. Additionally, both types of ZnO NMs had no negative impact on the α-amylase, pepsin, and trypsin activities. The digested fruit metabolome in the intestinal fluid demonstrated that ZnO NMs did not interfere with the normal process of human digestion. Importantly, ZnO NMs treatments increased the glycerophospholipids, carbohydrates, amino acids, and peptides in the intestinal fluids of tomato fruits. This study suggests that nanoscale Zn can be potentially used to increase the nutritional value of vegetable crops and can be an important tool to sustainably increase food quality and security.


Asunto(s)
Solanum lycopersicum , Óxido de Zinc , Humanos , Frutas/química , Aminoácidos/análisis , Tracto Gastrointestinal , Lípidos/análisis
5.
ACS Nano ; 17(20): 19724-19739, 2023 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-37812587

RESUMEN

To investigate the mechanisms by which g-C3N4 alleviates metal(loid)-induced phytotoxicity, rice seedlings were exposed to 100 and 250 mg/kg graphitic carbon nitride (g-C3N4) with or without coexposure to 10 mg/kg Cd and 50 mg/kg As for 30 days. Treatment with 250 mg/kg g-C3N4 significantly increased shoot and root fresh weight by 22.4-29.9%, reduced Cd and As accumulations in rice tissues by 20.6-26.6%, and elevated the content of essential nutrients (e.g., K, S, Mg, Cu, and Zn) compared to untreated controls. High-throughput sequencing showed that g-C3N4 treatment increased the proportion of plant-growth-promoting endophytic bacteria, including Streptomyces, Saccharimonadales, and Thermosporothrix, by 0.5-3.30-fold; these groups are known to be important to plant nutrient assimilation, as well as metal(loid) resistance and bioremediation. In addition, the population of Deinococcus was decreased by 72.3%; this genus is known to induce biotransformation As(V) to As(III). Metabolomics analyses highlighted differentially expressed metabolites (DEMs) involved in the metabolism of tyrosine metabolism, pyrimidines, and purines, as well as phenylpropanoid biosynthesis related to Cd/As-induced phytotoxicity. In the phenylpropanoid biosynthesis pathway, the increased expression of 4-coumarate (1.13-fold) and sinapyl alcohol (1.26-fold) triggered by g-C3N4 coexposure with Cd or As played a critical role in promoting plant growth and enhancing rice resistance against metal(loid) stresses. Our findings demonstrate the potential of g-C3N4 to enhance plant growth and minimize the Cd/As-induced toxicity in rice and provide a promising nanoenabled strategy for remediating heavy metal(loid)-contaminated soil.


Asunto(s)
Oryza , Contaminantes del Suelo , Cadmio/toxicidad , Oryza/metabolismo , Arseniatos/metabolismo , Bacterias/metabolismo , Contaminantes del Suelo/análisis , Raíces de Plantas/metabolismo , Suelo
6.
ACS Nano ; 17(14): 13672-13684, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37440420

RESUMEN

The use of nanotechnology to suppress crop diseases has attracted significant attention in agriculture. The present study investigated the antifungal mechanism by which aloe vera extract gel-biosynthesized (AVGE) selenium nanoparticles (Se NPs) suppressed Fusarium-induced wilt disease in lettuce (Lactuca sativa). AVGE Se NPs were synthesized by utilizing sodium selenite as a Se source and AVGE as a biocompatible capping and reducing agent. Over 21 d, 2.75% of total AVGE Se NPs was dissolved into Se ions, which was more than 8-fold greater than that of bare Se NPs (0.34%). Upon exposure to soil applied AVGE Se NPs at 50 mg/kg, fresh shoot biomass was significantly increased by 61.6 and 27.8% over the infected control and bare Se NPs, respectively. As compared to the infected control, the shoot levels of citrate, isocitrate, succinate, malate, and 2-oxo-glutarate were significantly upregulated by 0.5-3-fold as affected by both Se NPs. In addition, AVGE Se NPs significantly increased the shoot level of khelmarin D, a type of coumarin, by 4.40- and 0.71-fold over infected controls and bare Se NPs, respectively. Additionally, AVGE Se NPs showed greater upregulation of jasmonic acid and downregulation of abscisic acid content relative to bare Se NPs in diseased shoots. Moreover, the diversity of bacterial endophytes was significantly increased by AVGE Se NPs, with the values of Shannon index 40.2 and 9.16% greater over the infected control and bare Se NPs. Collectively, these findings highlight the significant potential of AVGE Se NPs as an effective and biocompatible strategy for nanoenabled sustainable crop protection.


Asunto(s)
Aloe , Nanopartículas , Selenio , Selenio/farmacología , Lactuca/metabolismo , Aloe/metabolismo , Endófitos/metabolismo , Resistencia a la Enfermedad
7.
Water Res X ; 19: 100185, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37292178

RESUMEN

Hematite, as an extensive natural mineral with multiple crystal facets, profoundly affects the migration and transformation of pollutants in the natural environment. However, little is known about the photochemical behavior of microplastics on different facets of hematite in the aquatic environment. In this work, the photoaging of polystyrene microplastics (PS-MPs) on different crystal planes ({001}, {100}, and {012} facets) and related mechanisms were studied. Two-dimensional correlation spectroscopy analysis illustrated that the reaction pathways of PS-MPs photoaging on hematite tended to preferential chemical oxidization. The stronger performance of PS-MPs photoaging, expressed by particle size reduction and surface oxidation, was observed on the {012} crystal facet. Under irradiation, {012} facet-dominated hematite with a narrower bandgap (1.93 eV) reinforced the photogenerated charge carrier separation, and the lower activation energy barrier (1.41 eV calculated from density functional theory) led to effective •OH formation from water oxidation. These findings elucidate the underlying photoaging mechanism of MPs on hematite with different mineralogical phases.

8.
iScience ; 26(6): 106833, 2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37250789

RESUMEN

Photocatalytic microplastics (MPs) conversion into valuable products is a promising approach to alleviate MPs pollution in aquatic environments. Herein, we developed an amorphous alloy/photocatalyst composite (FeB/TiO2) that can successfully convert polystyrene (PS) MPs to clean H2 fuel and valuable organic compounds (92.3% particle size reduction of PS-MPs and 103.5 µmol H2 production in 12 h). FeB effectively enhanced the light-absorption and carrier separation of TiO2, thereby promoting more reactive oxygen species generation (especially ‧OH) and combination of photoelectrons with protons. The main products (e.g., benzaldehyde, benzoic acid, etc.) were identified. Additionally, the dominant PS-MPs photoconversion pathway was elucidated based on density functional theory calculations, by which the significant role of ‧OH was demonstrated in combination with radical quenching data. This study provides a prospective approach to mitigate MPs pollution in aquatic environments and reveals the synergistic mechanism governing the photocatalytic conversion of MPs and generation of H2 fuel.

9.
Bioresour Technol ; 381: 129130, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37149268

RESUMEN

Due to the high biological toxicity, the concurrent elimination of lead (Pb (II)) and methylene blue (MB) has become a challenging problem. Therefore, a newly ß-cyclodextrin (ß-CD) modified magnetic alginate/biochar (ß-CD@MBCP) material was developed. Comprehensive characterizations proved the successful coating of ß-CD onto MBCP surface by microwave-aided fabrication. The ß-CD@MBCP achieved high-efficiency uptake for contaminants under a wide pH scope. In the dual system, Pb (II) elimination was facilitated with the presence of MB, due to the active sites provided by MB. In the presence of Pb (II), MB uptake was inhibited due to the electrostatic repulsion between positively charged MB and Pb (II). Electrostatic attraction and complexation contributed to capturing Pb (II), while π-π interactions, host-guest effect, and H-bonding were important in MB elimination. After four cycles, ß-CD@MBCP maintained comparatively good renewability. Findings demonstrated that ß-CD@MBCP could be an effective remediation material for Pb (II)/MB adsorption from aqueous environments.


Asunto(s)
Contaminantes Químicos del Agua , beta-Ciclodextrinas , Adsorción , Azul de Metileno/química , Plomo , Carbón Orgánico/química , Fenómenos Magnéticos , Contaminantes Químicos del Agua/química , Cinética
10.
J Hazard Mater ; 454: 131491, 2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-37121038

RESUMEN

This present study investigated pork bone-derived biochar as a promising amendment to reduce Cd accumulation and alleviate Cd-induced oxidative stress in rice. Micro/nanoscale bone char (MNBC) pyrolyzed at 400 °C and 600 °C was synthesized and characterized before use. The application rates for MNBCs were set at 5 and 25 g·kg-1 and the Cd exposure concentration was 15 mg·kg-1. MNBCs increased rice biomass by 15.3-26.0% as compared to the Cd-alone treatment. Both types of MNBCs decreased the bioavailable Cd content by 27.4-54.8%; additionally, the acid-soluble Cd fraction decreased by 10.0-12.3% relative to the Cd alone treatment. MNBC significantly reduced the cell wall Cd content by 50.4-80.2% relative to the Cd-alone treatment. TEM images confirm the toxicity of Cd to rice cells and that MNBCs alleviated Cd-induced damage to the chloroplast ultrastructure. Importantly, the addition of MNBCs decreased the abundance of heavy metal tolerant bacteria, Acidobacteria and Chloroflexi, by 29.6-41.1% in the rhizosphere but had less impact on the endophytic microbial community. Overall, our findings demonstrate the significant potential of MNBC as both a soil amendment for heavy metal-contaminated soil remediation and for crop nutrition in sustainable agriculture.


Asunto(s)
Metales Pesados , Oryza , Contaminantes del Suelo , Cadmio/toxicidad , Cadmio/análisis , Oryza/química , Rizosfera , Metales Pesados/análisis , Suelo/química , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/análisis , Carbón Orgánico/química
11.
Sci Total Environ ; 865: 161304, 2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36592908

RESUMEN

The speciation of arsenic (As) determines its biogeochemistry and ecotoxicity in soils. However, the approach to in situ monitor labile As (III) and As (V) in soils still requires more exploration. In this study, we developed a method for simultaneously obtaining in-situ data on labile As (III) and As (V) in soils using diffusive gradients in thin films (DGT) and high performance liquid chromatography-inductively coupled plasma mass spectrometry. The Fe2O3∙xH2O DGT sampler exhibited rapid and simultaneous accumulation of As (III) and As (V) in solutions within 90 min. The high efficiency of simultaneous elution of As (III) (~84 %) and As (V) (~97 %) was achieved using 0.8 % H3PO4 as eluent at 90 °C for 80 min. The method detection limits for As (III) and As (V) were 0.01 and 0.005 µg/L, respectively. This method was applied to reveal the labile As (III) and As (V) in soils in the water level fluctuation zones of the Three Gorges Reservoir, which is the largest reservoir in China. The concentrations of As (III) and As (V) measured by DGT varied with different sampling sites, ranging from 0.01 µg/L to 1.20 µg/L and from 0.01 µg/L to 0.26 µg/L, respectively. The labile As (III) exhibited the higher resupply rate from soil solid phase to soil solution than labile As (V). This study helps to achieve simultaneous in-situ quantification of labile As (III) and As (V) in soils, and will improve the understanding of As mobilization and ecotoxicity in soils.

12.
Environ Pollut ; 318: 120823, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36481464

RESUMEN

Microplastics (MPs, <5 mm) are enriched in paddy ecosystems as emerging environmental pollutants. Biochar (BC) is a controversial recalcitrant carbon product that poses potential environmental risks. The presence of these two exogenous organic substances has been demonstrated to have impacts on soil nitrogen cycling and crop production. However, the after-effects of MPs and BC on soil ammonia (NH3) volatilization and rice yield after field aging remain unexplored. In this study, two common MPs, including polyethylene (PE) and polyacrylonitrile (PAN), and BC were selected for rice growing season observations to study the impacts on soil NH3 volatilization and rice yield after field aging. The results showed that the reduction of cumulative soil NH3 losses by MPs was around 45% after one-year field aging, which was within the range of 40-57% in the previous rice season. Abatement of NH3 volatilization by MPs mainly occurred in basal fertilization and was related to floodwater pH. Besides, the reduction rate of NH3 volatilization by BC and MPs + BC was enhanced after field aging (63% and 50-57%) compared to that in the previous rice season (5% and 11-19%), with the abatement process occurring in the first supplementary fertilization. There was a significant positive correlation between cumulative NH3 volatilization and soil urease activity. Notably, field aging removed the positive effect of MPs and MPs + BC in reducing yield-scale NH3 losses in the previous rice season (∼62%). Furthermore, despite BC affecting rice yield insignificantly after field aging, the presence of MPs led to a significant 17-19% reduction in rice yield. Our findings reveal that differences in the after-effects of BC and MPs in field aging emerge, where the negative impacts of MPs on soil NH3 abatement and crop yield are progressively becoming apparent and should be taken into serious consideration.


Asunto(s)
Oryza , Suelo , Suelo/química , Oryza/química , Amoníaco/análisis , Microplásticos , Plásticos , Volatilización , Ecosistema , Nitrógeno/análisis , Fertilizantes/análisis , Agricultura
13.
Sci Total Environ ; 857(Pt 1): 159330, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36228785

RESUMEN

Tomato (Solanum lycopersicum) seedlings were exposed by foliar or root applications to Zn in different nanoscale and non-nanoscale forms (40 mg Zn/L) under hydroponic conditions for 15 days. Under foliar exposure, ZnO QDs significantly promoted tomato growth, while ZnO NPs and BPs had lower impacts. ZnO QDs increased fresh weight and plant height by 42.02 % and 21.10 % relative to the untreated controls, respectively. The ionic control (ZnSO4·7H2O, 176.6 mg/L) decreased fresh weight by 39.31 %. ZnO QDs also significantly increased the Chla/Chlb ratio, as well as carotenoids and protein content by 7.70 %, 8.90 % and 26.33 %, respectively, over the untreated controls, suggesting improvement in seedling photosynthetic performance. Antioxidant enzyme (POD, PPO and PAL) activities in ZnO QDs treated shoots were significantly decreased by 31.1 %, 17.8 % and 48.3 %, respectively, indicating no overt oxidative damage from exposure. Importantly, the translocation factor of Zn (TFZn) in the foliar exposure of the ZnO QDs treatment was 73.2 %, 97.1 % and 276.9 % greater than the NPs, BPs, and ionic controls, respectively. Overall, these findings clearly demonstrate that foliar spray of nanoscale nutrients at the appropriate concentration and size can significantly increase crop growth and be a sustainable approach to nano-enabled agriculture.


Asunto(s)
Nanopartículas , Solanum lycopersicum , Óxido de Zinc , Óxido de Zinc/toxicidad , Óxido de Zinc/metabolismo , Solanum lycopersicum/metabolismo , Plantones/metabolismo , Hidroponía , Valor Nutritivo
14.
J Hazard Mater ; 438: 129555, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-35999728

RESUMEN

Microplastics (MPs) accumulation in soil ecosystems has become a worldwide issue. The influence of MPs on soil structures and contaminant transport has not been clearly unraveled. This study conducted soil column experiments covering four different treatments: soil without MPs (CK), soil with 0.5 wt% polyethylene (S+PE), soil with 0.5 wt% polyacrylonitrile (S+PAN), and soil with 0.5 wt% polyethylene terephthalate (S+PET). The interconnections between changes in soil structures and shifts in sorption efficiency for typical hydrophobic organic contaminants (e.g., phenanthrene (PHE)) and heavy metal (e.g., lead (Pb (II)) by soils induced by MPs were explored. MPs-added soils contained fewer macro-aggregates and lower aggregate stability compared to CK. Three MPs, particularly PE, promoted PHE sorption by soils but reduced Pb (II) sorption, which occurred in soils with or without dissolved organic carbon. The comparison between experimental and predicted sorption capacity, as well as the one-point sorption data of different aggregate sizes, showed that such variations in PHE and Pb (II) sorption were related to the shifts in soil aggregates besides from the physical mixture of soils with MPs. This finding is perspective to give an in-depth understanding of the effects of different MPs types on soil micro-environments and transport for contaminants.


Asunto(s)
Microplásticos , Contaminantes del Suelo , Ecosistema , Plomo , Plásticos , Suelo/química , Contaminantes del Suelo/química
15.
Artículo en Inglés | MEDLINE | ID: mdl-36011799

RESUMEN

Soil is the most important resource for plant growth and human survival, supporting agricultural production and human habitation [...].


Asunto(s)
Restauración y Remediación Ambiental , Contaminantes del Suelo , Agricultura , Contaminación Ambiental , Humanos , Desarrollo de la Planta , Suelo , Contaminantes del Suelo/análisis
16.
Sci Total Environ ; 847: 157635, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-35905962

RESUMEN

Microplastics (MPs) are verified to affect the fate of ammonia (NH3) in agricultural soils. However, the impacts and mechanisms of MPs coupled with biochar (BC), a widely used agricultural conditioner, on NH3 losses are mostly untapped. The aim of this study was to investigate the mechanisms of common MPs (i.e., polyethylene, polyester, and polyacrylonitrile) and straw-derived BC on NH3 volatilization in rice-wheat rotation soils. Results showed that BC alone and MPs with BC (MPs + BC) reduced 5.5 % and 11.2-26.6 % cumulative NH3 volatilization than the control (CK), respectively, in the rice season. The increased nitrate concentration and soil cation exchange capacity were dominant contributors to the reduced soil NH3 volatilization in the rice season. BC and MPs + BC persistently reduced 44.5 % and 60.0-62.6 % NH3 losses than CK in the wheat season as influenced by pH and nitrate concentration. Moreover, BC and MPs + BC increased humic acid-like substances in soil dissolved organic matter by an average of 159.1 % and 179.6 % than CK, respectively, in rice and wheat seasons. The increased adsorption of soil NH4+ and the promotion of crop root growth were the main mechanisms of NH3 reduction. Our findings partially revealed the mechanisms of the coexistence of MPs and BC on NH3 mitigation in rice-wheat rotational ecosystems.


Asunto(s)
Amoníaco , Oryza , Amoníaco/análisis , Carbón Orgánico/química , Ecosistema , Fertilizantes/análisis , Sustancias Húmicas , Microplásticos , Nitratos , Nitrógeno/análisis , Oryza/química , Plásticos , Poliésteres , Polietilenos , Suelo/química , Triticum , Volatilización
17.
Appl Environ Microbiol ; 88(12): e0059722, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35638840

RESUMEN

Bacterial biodiversity is tightly correlated with ecological functions of natural systems, and bacterial rare and abundant subcommunities make distinct contributions to ecosystem functioning. However, the biogeographic pattern and elevational differentiation of sedimentary bacterial diversity have rarely been studied in cross-river systems at a continental scale. This study analyzed the biogeographic patterns and elevational differentiations of the entire, abundant, and rare bacterial (sub)communities as well as the underlying mechanisms across nine rivers that span distinct geographic regions and large elevational gradients in China. We found that bacterial rare and abundant subcommunities shared similar biogeographic patterns and both demonstrated strong distance-decay relationships, despite their distinct community compositions. However, both null model and variation partitioning analysis results showed that while environmental selection governed rare subcommunity assemblies (contribution: 51.9%), dispersal limitation (62.7%) controlled the assembly of abundant subcommunities. The disparity was associated with the broader threshold width of abundant taxa to water temperature and pH variations than rare taxa. Elevation-induced bacterial composition variations were more evident than latitude-induced ones. Some specific operational taxonomic units (OTUs), representing 16.4% of the total sequences, much preferentially and even exclusively lived in high-elevation or low-elevation habitats and demonstrated some adaptations to local conditions. Greater positive: negative link ratios in bacterial co-occurrence networks of low elevations than high elevations (P < 0.05) partly resulted from their harboring higher organic carbon: nitrogen ratios. Together, this study draws a biogeographic picture of sedimentary bacterial communities in a continental-scale riverine system and highlights the importance of incorporating elevation-associated patterns of microbial diversity into riverine microbial ecology studies. IMPORTANCE Bacterial diversity is tightly correlated with the nutrient cycling of river systems. However, previous studies on bacterial diversity are mainly constrained to one single river system, although microbial biogeography and its drivers exhibit strong spatial scale dependence. Moreover, elevational differentiations of bacterial communities across river systems have also rarely been studied. Bacterial rare and abundant subcommunities make distinct contributions to ecosystem functioning, and they share similar biogeographic patterns in some environments but not in others. Therefore, we explored the biogeography of the entire, abundant, and rare (sub)communities in nine rivers that cover a wide space range and large elevational gradient in China. Our results revealed that bacterial rare and abundant subcommunities shared similar biogeographic patterns but their assembly mechanisms were much different in these rivers. Moreover, bacterial communities showed evident differentiations between high elevations and low elevations. These findings will facilitate a better understanding of bacterial diversity features in river systems.


Asunto(s)
Ecosistema , Ríos , Bacterias/genética , Biodiversidad , China , Ríos/microbiología
18.
Sci Total Environ ; 839: 156333, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-35640750

RESUMEN

Biochar has been regarded as an effective amendment for soil carbon sequestration and soil quality improvement. However, it remains unclear how pyrolysis temperature and biochar aging impact the responses of soil properties and CO2 emissions to biochar addition. Here, we investigated the effect of biochar on soil properties and CO2 emissions in a laboratory incubation using soils amended with/without fresh biochar produced at 300 (BC300), 450 (BC450), and 600 °C (BC600) and their corresponding naturally aged samples (aged in soil for 360 days). The results showed that biochar significantly increased soil total nitrogen (by 8-36%), available phosphorus (by 19-69%) and available potassium (by 1.5-4.2-fold) throughout the incubation. Both fresh and aged biochar promoted the formation of soil macroaggregate at the end of the incubation. Moreover, fresh and aged BC300 increased the soil dissolved organic matter (DOM) content, whereas for BC450 and BC600, at the beginning, the content of soil DOM was reduced, but the effects finally became insignificant. Generally, fresh biochar had no significant effect on soil enzyme activities and soil bacterial richness and diversity, but an inhibitory effect occurred in the aged samples. Both fresh and aged BC300 increased soil CO2 emissions, which was due to the biochar-induced increase in soil DOM content and enrichment of copiotrophic bacteria (Proteobacteria) as well as the decline of oligotrophic bacteria (Acidobacteriota). A significant decrease in soil CO2 emissions was observed after fresh BC450 and BC600 addition, owing to the biochar-induced decline in soil DOM content, while an opposite trend was found in aged samples, which could be attributed to the shift of the dominant soil phylum from Acidobacteriota to Proteobacteria. These findings enhance our understanding of biochar's potential to improve soil quality and sequester soil carbon.


Asunto(s)
Pirólisis , Suelo , Dióxido de Carbono/análisis , Carbón Orgánico/farmacología , Temperatura
19.
Chemosphere ; 288(Pt 3): 132644, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34688715

RESUMEN

Anaerobic digestion (AD) with hydrothermal (HT) pretreatment (sequential HT-AD treatment) is a novel technology for sludge management. HT-AD sludge is rich in functional groups and its applications as pollutant sorbents might be a win-win strategy. This study investigated the removal of uranium (VI) from water using HT-AD sludge as affected by solution pH, temperature, and ion strength. The reusability and heavy metal risk of HT-AD sludge were also assessed. The batch sorption experiments demonstrated that even at an acidic initial pH of 3.2, the maximum adsorption of HT-AD sludge for uranium (VI) reached 117.13 mg/g, higher than that of most carbon-based materials. The inner-sphere and out-sphere complexation between uranium (VI) and the HT-AD sludge dominated the adsorption when pH was in the range of 2-6 and 6-11, respectively. The FTIR and XPS analysis indicated that the primary mechanisms of uranium (VI) adsorption by the HT-AD sludge were the surface complexation and the electric attraction between uranium (VI) and the functional groups (e.g. -COO-) on HT-AD sludge. The removal rate of uranium (VI) by HT-AD sludge only decreased by ∼7% after 3 consecutive adsorption cycles. Leaching experiment showed that less than 5% of the total heavy metal were released from HT-AD sludge. Our research proved that HT-AD sludge can be used as an efficient uranium (VI) adsorbent with good reusability and environmental safety.


Asunto(s)
Uranio , Adsorción , Concentración de Iones de Hidrógeno , Aguas del Alcantarillado , Temperatura , Uranio/análisis , Agua
20.
Environ Pollut ; 292(Pt B): 118386, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34678391

RESUMEN

Microplastic (MP) contamination is ubiquitous in agricultural soils. As a cost-effective soil amendment, biochar (BC) often coincides with MP exposure. However, little research has been conducted regarding the independent and combined effects of MPs and BC on the soil microbiome and N2O/CH4 emissions. Therefore, in this study, polyethylene terephthalate (PET) and wheat straw-derived BC were used, respectively, as representative MP and BC during an entire rice growth period. The high-throughput sequencing results showed that PET alone lowered bacterial diversity by 26.7%, while PET and BC co-existence did not induce apparent change. The relative abundances of some microbes (e.g., Cyanobacteria, Verrucomicrobia, and Bacteroidetes) that are associated with C and N cycling were changed at the phylum and class levels by all the treatments. In comparison with the control, the treatment of BC, PET, and their co-existence reduced the cumulative CH4 emissions by 50%, 53%, and 61%, respectively. The higher mitigation by BC + PET may be the result of higher soil Eh and a consequently lower methanogenesis functional gene mcrA abundance in the treated soils. In addition, BC and PET alone, as well as their combined treatment, increased the abundance of nitrification genes, enhancing the soil nitrification process. However, the relative contribution of the nitrification process to N2O emission was possibly lower than that of denitrification, in which the N2O reductase gene nosZ was found to be the primary gene regulating N2O emissions. BC alone increased nosZ abundance by 42.3%, thereby showing the potential in suppressing N2O emission. In contrast, when BC was co-added with PET, the nosZ abundance lowered possibly because of increased soil aeration, and thus its cumulative N2O emission was 38% higher than the BC treatment. Overall, these results demonstrated that BC and PET function differently in soil ecosystems when they coexisted.


Asunto(s)
Gases de Efecto Invernadero , Microbiota , Oryza , Carbón Orgánico , Microplásticos , Óxido Nitroso/análisis , Plásticos , Tereftalatos Polietilenos , Suelo , Microbiología del Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA