Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Dent Mater ; 40(2): 160-172, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37951748

RESUMEN

OBJECTIVE: This study aims to synthesize novel chitosan nanoparticles loaded with an amelogenin-derived peptide QP5 (TMC-QP5/NPs), investigate their remineralization capability and inhibitory effects on endogenous matrix metalloproteinases (MMPs), and evaluate the dentin bonding properties of remineralized dentin regulated by TMC-QP5/NPs. METHODS: TMC-QP5/NPs were prepared by ionic crosslinking method and characterized by dynamic light scattering method, scanning electron microscopy, transmission electron microscope, atomic force microscope, Fourier transform infrared spectroscopy, and differential scanning calorimetry. The encapsulation and loading efficiency of TMC-QP5/NPs and the release of QP5 were examined. To evaluate the remineralization capability of TMC-QP5/NPs, the mechanical properties, and the changes in structure and composition of differently conditioned dentin were characterized. The MMPs inhibitory effects of TMC-QP5/NPs were explored by MMP Activity Assay and in-situ zymography. The dentin bonding performance was detected by interfacial microleakage and microshear bond strength (µSBS). RESULTS: TMC-QP5/NPs were successfully synthesized, with uniform size, good stability and biosafety. The encapsulation and loading efficiency of TMC-QP5/NPs was respectively 69.63 ± 2.22% and 13.21 ± 0.73%, with a sustained release of QP5. TMC-QP5/NPs could induce mineral deposits on demineralized collagen fibers and partial occlusion of dentin tubules, and recover the surface microhardness of dentin, showing better remineralization effects than QP5. Besides, TMC-QP5/NPs significantly inhibited the endogenous MMPs activity. The remineralized dentin induced by TMC-QP5/NPs exhibited less interfacial microleakage and higher µSBS, greatly improved dentin bonding. SIGNIFICANCE: This novel peptide-loaded chitosan nanoparticles improved resin-dentin bonding by promoting dentin remineralization and inactivating MMPs, suggesting a promising strategy for optimizing dentin adhesive restorations.


Asunto(s)
Quitosano , Nanopartículas , Quitosano/farmacología , Biomimética , Nanopartículas/química , Péptidos/farmacología , Dentina/química , Metaloproteinasas de la Matriz
2.
Int J Biol Macromol ; 253(Pt 7): 127322, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37848117

RESUMEN

Amelogenin and its derived peptides have exhibited excellent efficacy in promoting enamel biomimetic remineralization. However, little is known about their specific action mechanisms. Herein, by combining experiments and computer simulation, the mechanism of an amelogenin-derived peptide QP5 in regulating enamel biomimetic remineralization is unveiled for the first time. In experiments, peptide QP5 was separated into (QPX)5 and C-tail domains, the interactions of peptide-minerals in nucleation solution and the regulation of peptide on enamel biomimetic remineralization were explored. QP5 exhibited an unordered conformation when mineral ions existed, and it could adsorb on minerals through its two domains, thereby inhibiting spontaneous nucleation. The remineralized enamel regulated by C-tail showed better mechanical properties and formed more biomimetic crystals than that of (QPX)5, indicating the C-tail domain of QP5 played an important role in forming enamel-like crystals. The simulation results showed that the conformation of QP5 changed greatly, mainly exhibiting ß-bend, ß-turn, and coil structures, and it eventually adsorbed on enamel through negatively charged residues of the C-tail domain, then captured Ca2+ from solution to promote enamel remineralization. This study improved the evaluation methods of the mechanism of biomimetic peptides, and laid a theoretical basis for the amelioration and clinical transformation of peptide QP5.


Asunto(s)
Biomimética , Minerales , Amelogenina/farmacología , Simulación por Computador , Péptidos/farmacología
3.
Caries Res ; 57(3): 255-264, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37699359

RESUMEN

Green tea-derived catechins, which can be divided into galloylated (epicatechin gallate: ECG, epigallocatechin gallate: EGCG) and non-galloylated (catechin: C, epicatechin: EC, epigallocatechin: EGC) catechins, are considered to be the main contributors to the caries control potential of green tea. In this study, we intended to compare the antimicrobial effects of these representative green tea-derived catechins and their combined effects with fluoride on the acid production and aggregation of Streptococcus mutans. The effects of different catechins on the growth, aggregation and acid production of S. mutans, and the combined effect of catechins and potassium fluoride (2 mm at pH 7.0, 0.3 mm at pH 5.5) on S. mutans acid production were measured by anaerobic culture, turbidity changes due to aggregation, and pH-stat methods. Molecular docking simulations were also performed to investigate the interactions between catechins and membrane-embedded enzyme II complex (EIIC), a component of the phosphoenolpyruvate-dependent phosphotransferase system (sugar uptake-related enzyme). ECG or EGCG at 1 mg/mL significantly inhibited the growth of S. mutans, induced bacterial aggregation, and decreased glucose-induced acid production (p < 0.05). All catechins were able to bind to EIIC in silico, in the following order of affinity: EGCG, ECG, EGC, EC, and C. Furthermore, they enhanced the inhibitory effects of fluoride at pH 5.5 and significantly inhibited S. mutans acid production by 47.5-86.6% (p < 0.05). These results suggest that both galloylated and non-galloylated catechins exhibit antimicrobial activity, although the former type demonstrates stronger activity, and that the caries control effects of green tea may be due to the combined effects of multiple components, such as catechins and fluoride. The detailed mechanisms underlying these phenomena and the in vivo effect need to be explored further.


Asunto(s)
Antiinfecciosos , Catequina , Humanos , Té/química , Catequina/farmacología , Catequina/análisis , Catequina/metabolismo , Streptococcus mutans/metabolismo , Fluoruros/farmacología , Simulación del Acoplamiento Molecular
4.
Folia Microbiol (Praha) ; 68(6): 977-989, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37289416

RESUMEN

Dental caries is a biofilm-related disease, widely perceived to be caused by oral ecological imbalance when cariogenic/aciduric bacteria obtain an ecological advantage. Compared with planktonic bacteria, dental plaques are difficult to remove under extracellular polymeric substance protection. In this study, the effect of caffeic acid phenethyl ester (CAPE) on a preformed cariogenic multi-species biofilm was evaluated, which was comprised of cariogenic bacteria (Streptococcus mutans), commensal bacteria (Streptococcus gordonii), and a pioneer colonizer (Actinomyces naeslundii). Our result revealed that treatment with 0.08 mg/mL CAPE reduced live S. mutans in the preformed multi-species biofilm while not significantly changing the quantification of live S. gordonii. CAPE significantly reduced the production of lactic acid, extracellular polysaccharide, and extracellular DNA and made the biofilm looser. Moreover, CAPE could promote the H2O2 production of S. gordonii and inhibit the expression of SMU.150 encoding mutacin to modulate the interaction among species in biofilms. Overall, our results suggested that CAPE could inhibit the cariogenic properties and change the microbial composition of the multi-species biofilms, indicating its application potential in dental caries prevention and management.


Asunto(s)
Caries Dental , Peróxido de Hidrógeno , Humanos , Peróxido de Hidrógeno/metabolismo , Matriz Extracelular de Sustancias Poliméricas/metabolismo , Caries Dental/prevención & control , Streptococcus mutans/metabolismo , Biopelículas
5.
Int J Biol Macromol ; 234: 123720, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36805508

RESUMEN

Biomimetic mineralization emphasizes reversing the process of dental caries through bio-inspired strategies, in which mineralization promotion and collagen protection are equally important. In this study, carboxymethyl chitosan (CMC) was deemed as an analog of glycosaminoglycan for biomimetic modification of collagen, both of the mineralization facilitation and collagen protection effect were evaluated. Experiments were carried out simultaneously on two-dimensional monolayer reconstituted collagen model, three-dimensional reconstituted collagen model and demineralized dentin model. In three models, CMC was successfully cross-linked onto collagen utilizing biocompatible 1-Ethyl-3(3-dimethylaminopropyl) carbodiimide hydrochloride and N-hydroxy sulfosuccinimide sodium salt to achieve biomodification. Results showed that CMC biomodification increased collagen's hydrophilicity, calcium absorption capacity and thermal degradation resistance. In demineralized dentin model, the activity of endogenous matrix metalloproteinases was significantly inhibited by CMC biomodification. Furthermore, CMC biomodification significantly improved cross-linking and intrafibrillar mineralization of collagen, especially in the two-dimensional monolayer reconstituted collagen model. This study provided a biomimetic mineralization strategy with comprehensive consideration of collagen protection, and enriched the application of chitosan-based materials in dentistry.


Asunto(s)
Quitosano , Caries Dental , Humanos , Quitosano/farmacología , Dentina/metabolismo , Biomimética/métodos , Colágeno/metabolismo
6.
Caries Res ; 56(5-6): 524-534, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36380626

RESUMEN

Combining fluoride and antimicrobial agents enhances regulation of acid and exopolysaccharide production by biofilms. The combination also weakens the acidogenic and aciduric bacteria that contribute to caries, achieving stronger caries-controlling effects with lower concentrations of fluoride. In previous studies, antimicrobial peptide GH12 has been shown to inhibit lactic acid and exopolysaccharide synthesis in various cariogenic biofilm models, and reduce the proportion of acidogenic bacteria and Keyes caries scores in a rat caries model. The current study aimed to elucidate the effect of a combination of low concentrations of sodium fluoride (NaF) and GH12 and to determine the mechanism by which GH12/NaF combination controls caries. The GH12/NaF combination contained 8 mg/L GH12 and 250 ppm NaF. A rat caries model was built, and rat dental plaque was sampled and cultivated on bovine enamel slabs in vitro and subjected to short-term treatment (5 min, 3 times/day). The caries-controlling effects were evaluated using Keyes scoring and transverse microradiography. The results showed that the GH12/NaF combination significantly decreased the onset and development of dental caries, as well as mineral content loss and lesion depth in vitro (p < 0.05). For the caries-controlling mechanisms, 16S rRNA sequencing of in vivo dental plaque revealed that populations of commensal bacteria Rothia spp. and Streptococcus parasanguinis increased in the GH12/NaF group. In contrast, Veillonella, Lactobacillus, and Streptococcus mutans decreased. Furthermore, the GH12/NaF combination significantly reduced biomass, lactic acid, and exopolysaccharides production of in vitro biofilm (p < 0.05). Overall, fluoride and GH12 efficiently arrested caries development and demineralization by regulating the microbiota and suppressing acid and exopolysaccharide production in biofilms.


Asunto(s)
Péptidos Antimicrobianos , Caries Dental , Placa Dental , Animales , Bovinos , Ratas , Péptidos Antimicrobianos/farmacología , Péptidos Antimicrobianos/uso terapéutico , Biopelículas , Caries Dental/tratamiento farmacológico , Caries Dental/prevención & control , Caries Dental/microbiología , Susceptibilidad a Caries Dentarias , Placa Dental/tratamiento farmacológico , Placa Dental/microbiología , Fluoruros/farmacología , Ácido Láctico , ARN Ribosómico 16S , Fluoruro de Sodio/farmacología , Streptococcus mutans
7.
Regen Biomater ; 9: rbac059, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36176712

RESUMEN

Recently, a de novo synthetic calcium-responsive self-assembly ß-sheet peptide ID8 (Ile-Asp-Ile-Asp-Ile-Asp-Ile-Asp) has been developed to serve as the template inducing hydroxyapatite nucleation. The aim of this study was to evaluate the effect of ID8 on intrafibrillar mineralization of collagen making full use of its self-assembly ability. The mineralization experiments were carried out in vitro on both bare Type I collagen and fully demineralized dentin samples. The calcium-responsive self-assembly of ID8 was revealed by circular dichroism spectrum, 8-anilino-1-naphthalenesulfonic acid ammonium salt hydrate assay, attenuated total reflection Fourier transform infrared spectrum (ATR-FTIR) and transmission electron microscope (TEM). Polyacrylic acid (450 kDa) with a concentration of 100 µg ml-1 was selected as the nucleation inhibitor based on the determination of turbidimetry and TEM with selected area electron diffraction (TEM-SAED). The results showed that collagen intrafibrillar mineralization was significantly promoted with the pretreatment of self-assembly ID8 detected by TEM-SAED, SEM, X-ray diffraction and ATR-FTIR. The pretreatment of collagen utilizing self-assembly ID8 not only enhanced intermolecular hydrogen bonding but also contributed to calcium retention inside collagen and significantly increased the hydrophilicity of collagen. These results indicated that peptides with self-assembly properties like ID8 are expected to be potential tools for biomimetic mineralization of collagen.

8.
Eur J Oral Sci ; 130(5): e12887, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35917355

RESUMEN

The purpose of this study was to develop a chewing gum containing a novel antimicrobial peptide GH12 and evaluate its biocompatibility, antimicrobial activity, and caries-preventive effects in vivo and in vitro. GH12 chewing gum was developed using a conventional method and its extracts were prepared in artificial saliva. GH12 concentration in the extracts was determined by high-performance liquid chromatography; extracts were used for growth curve assay, time-kill assay, crystal violet staining assay, scanning electron microscopy, and Cell Counting Kit-8 assay. A rat caries model was established, and molars were treated topically with extracts for 5 weeks. Weight gain monitoring, hematoxylin-eosin staining, micro-computed tomography, and Keyes scoring were conducted. Significant inhibition of Streptococcus mutans growth and biofilm formation was observed. Extracts displayed low cytotoxicity against human gingival epithelial cells. No significant differences in weight gain or signs of harm to the mucosal tissues in any of the rats were observed. Keyes scores of caries lesions in the GH12 chewing gum group were lower than those of the negative control group. It was concluded that GH12 chewing gum showed good biocompatibility, antimicrobial activity, and caries-preventive effects, exhibiting great potential to prevent dental caries as an adjuvant to regular oral hygiene.


Asunto(s)
Antiinfecciosos , Caries Dental , Animales , Antiinfecciosos/farmacología , Péptidos Antimicrobianos , Goma de Mascar/análisis , Caries Dental/prevención & control , Susceptibilidad a Caries Dentarias , Eosina Amarillenta-(YS)/farmacología , Violeta de Genciana/farmacología , Hematoxilina/farmacología , Humanos , Ratas , Saliva Artificial/farmacología , Streptococcus mutans , Aumento de Peso , Microtomografía por Rayos X
9.
Polymers (Basel) ; 13(15)2021 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-34372076

RESUMEN

In this study, the amelogenin-derived peptide, TVH-19, which has been confirmed to promote mineralization, was evaluated to derive its potential to induce dentinal tubule occlusion. The binding capability of fluorescein isothiocyanate (FITC)-labeled TVH-19 to the demineralized dentin surface was analyzed by confocal laser scanning microscopy (CLSM). Additionally, the sealing function of the peptide was studied through the remineralization of demineralized dentin in vitro. The adsorption results showed that TVH-19 could bind to the hydroxyapatite and demineralized dentin surfaces, especially to periodontal dentin. Scanning electron microscopy analysis further revealed that TVH-19 created mineral precipitates. The plugging rate in the TVH-19 group was higher than that in the PBS group. Moreover, energy-dispersive X-ray spectroscopy (EDX) results indicated that the calcium/phosphorus (Ca/P) ratio of the new minerals induced by TVH-19 was close to that of the hydroxyapatite. Attenuated total internal reflection-Fourier transform infrared (ATR-FTIR) spectrometry and X-ray diffraction (XRD) results indicated that the hydroxyapatite crystals formed via remineralization elongated the axial growth and closely resembled the natural dentin components. These findings indicate that TVH-19 can effectively promote dentin sealing by binding to the periodontal dentin, promoting mineral deposition, and reducing the space between the dentin tubules.

10.
Caries Res ; 55(3): 205-214, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34010838

RESUMEN

It has been suggested that green tea-derived epigallocatechin gallate (EGCG), which has antimicrobial properties, might help prevent dental caries. However, the detailed properties of EGCG remain unclear. In this study, the antimicrobial properties of EGCG were evaluated by examining its bactericidal activity, its inhibitory effects against bacterial growth, acid production, acidic end-product formation, and sugar uptake (phosphoenolpyruvate-dependent phosphotransferase system, PEP-PTS activity), and its effects on bacterial aggregation, using monocultured planktonic cells of Streptococcus mutans and non-mutans streptococci. Coincubating S. mutans with EGCG (1 mg/mL) for 4 h had no bactericidal effects, while it decreased the growth and acid production of S. mutans by inhibiting the activity of the PEP-PTS. EGCG (2 mg/mL) caused rapid bacterial cell aggregation and had reduced the optical density of S. mutans cell suspension by 86.7% at pH 7.0 and 90.7% at pH 5.5 after 2 h. EGCG also reduced the acid production of non-mutans streptococci, including S. sanguinis, S. gordonii, and S. salivarius, and promoted the aggregation of these non-mutans streptococci. Furthermore, these antimicrobial effects of short-term EGCG treatment persisted in the presence of saliva. These results suggest that EGCG might have short-term antibacterial effects on caries-associated streptococci in the oral cavity.


Asunto(s)
Catequina , Caries Dental , Biopelículas , Catequina/análogos & derivados , Catequina/farmacología , Caries Dental/prevención & control , Humanos , Streptococcus mutans ,
11.
Regen Biomater ; 8(2): rbab004, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33738118

RESUMEN

Several novel biomaterials have been developed for dental pulp capping by inducing tertiary dentin formation. The aim of this study was to evaluate the effect of QP5, an amelogenin-based peptide, on the mineralization of dental pulp cells (DPCs) in vitro and in vivo. The cell viability of human DPCs (hDPCs) after treatment with QP5 was determined using the Cell Counting Kit-8 (CCK-8). Migration of hDPCs was assessed using scratch assays, and the pro-mineralization effect was determined using alkaline phosphatase (ALP) staining, alizarin red staining and the expression of mineralization-related genes and proteins. The results showed that QP5 had little effect on the cell viability, and significantly enhanced the migration capability of hDPCs. QP5 promoted the formation of mineralized nodules, and upregulated the activity of ALP, the expression of mRNA and proteins of mineralization-related genes. A pulp capping model in rats was generated to investigate the biological effect of QP5. The results of micro-computed tomography and haematoxylin and eosin staining indicated that the formation of tertiary dentin in QP5-capping groups was more prominent than that in the negative control group. These results indicated the potential of QP5 as a pulp therapy agent.

12.
Biochem Biophys Res Commun ; 534: 837-842, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33168184

RESUMEN

Functional peptides derived from the active domains of odontogenesis-related proteins have been reported to promote dental hard tissue regeneration. The purpose of this study was to evaluate the effects of an artificially synthesized peptide, TVH-19, on odontoblast differentiation and tertiary dentin formation in indirect pulp capping (IPC) using in vitro and in vivo experiments. TVH-19 did not exhibit any effect on the proliferation of human dental pulp cells (hDPCs) but significantly promoted cell migration, compared with the control (p < 0.05). TVH-19-treated hDPCs showed significantly higher alkaline phosphatase (ALP) activity and stronger alizarin red staining (ARS) reactivity than the control group (p < 0.05). TVH-19 also upregulated the mRNA and protein expression levels of odontogenic genes. After generating IPC in rats, the samples of teeth were studied using micro-computed tomography (Micro-CT), hematoxylin & eosin (HE) staining, and immunohistochemical staining to investigate the functions of TVH-19. The in vivo results showed that TVH-19 induced the formation of tertiary dentin, and reduced inflammation and apoptosis, as evident from the downregulated expression of interleukin 6 (IL-6) and cleaved-Caspase-3 (CL-CASP3). Overall, the results of our study suggest that TVH-19 induces differentiation of hDPCs, promotes tertiary dentin formation, relieves inflammation, and reduces apoptosis, indicating the potential applications of TVH-19 in IPC.


Asunto(s)
Pulpa Dental/citología , Pulpa Dental/efectos de los fármacos , Dentina/metabolismo , Péptidos/farmacología , Diferenciación Celular/efectos de los fármacos , Línea Celular , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Pulpa Dental/metabolismo , Humanos , Odontoblastos/citología , Odontoblastos/efectos de los fármacos , Odontoblastos/metabolismo , Péptidos/química , Calcificación de Dientes/efectos de los fármacos
13.
Regen Biomater ; 7(3): 283-292, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32523730

RESUMEN

Dental caries is one of the most common oral diseases in the world. This study was tantamount to investigate the combinatory effects of an amelogenin-derived peptide (called QP5) and fluoride on the remineralization of artificial enamel caries. The peptide QP5 was synthesized and characterized, and the binding capability of the peptide on hydroxyapatite (HA) and demineralized tooth enamel surface was analysed. Then, the mineralization function of the peptide and fluoride was studied through the spontaneous mineralization testing and remineralization on enamel caries in vitro. First, the novel peptide QP5 could bind on the hydroxyapatite and demineralized tooth enamel surfaces. Second, QP5 can transitorily stabilize the formation of amorphous calcium phosphate and direct the transformation into hydroxyapatite crystals alone and in combination with fluoride. In addition, compared to blocks treated by peptide QP5 alone or fluoride, the sample blocks showed significantly higher surface microhardness, lower mineral loss and shallower lesion depth after treatment with a combination of QP5 and fluoride at high or low concentrations. The peptide QP5 could control the crystallization of hydroxyapatite, and combinatory application of peptide QP5 and fluoride had a potential synergistic effect on the remineralization of enamel caries.

14.
J Biomed Mater Res B Appl Biomater ; 108(8): 3261-3269, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32524721

RESUMEN

With the gradual discovery of functional domains in natural proteins, several biologically inspired peptides have been designed for use as biomaterials for hard tissue regeneration and repair. In this study, we designed a tuftelin-derived peptide (TDP) and tested its effects on hydroxyapatite crystallization and remineralization of initial enamel carious lesions in vitro. Using circular dichroism spectroscopy, we found that TDP contained 36.1% ß-sheets and ß-turns, which could be influenced by calcium ions. We verified the ability of TDP to crystallize hydroxyapatite using transmission electron microscopy and its ability to bind to the enamel surface and hydroxyapatite using confocal laser scanning microscopy and Langmuir adsorption isotherms (K = 881.56, N = 1.41 × 10-5 ). Artificial enamel lesions were generated on human enamel blocks and subjected to a 12-day pH cycling model and were treated with 25 µM TDP, 1 g/L sodium fluoride (NaF), or deionized water. We analyzed the results of remineralization by surface microhardness testing, polarized light microscopy, and transverse microradiography. The TDP group showed significantly higher surface microhardness recovery (49.21 ± 1.66%), shallower lesions (34.89 ± 4.05 µm), and less mineral loss (871.33 ± 81.49 vol%·µm) after pH cycling than the deionized water group (p < .05). There were no significant differences between the TDP and NaF groups. Our experiment indicated that TDP could regulate hydroxyapatite crystallization and promote remineralization of enamel caries in vitro.


Asunto(s)
Caries Dental/tratamiento farmacológico , Proteínas del Esmalte Dental/farmacología , Esmalte Dental/efectos de los fármacos , Remineralización Dental , Dicroismo Circular , Cristalización , Caries Dental/patología , Esmalte Dental/patología , Proteínas del Esmalte Dental/química , Durapatita/química , Pruebas de Dureza , Humanos , Concentración de Iones de Hidrógeno , Queratinocitos/efectos de los fármacos , Péptidos/química , Péptidos/farmacología , Fluoruro de Sodio/farmacología , Termodinámica
15.
J Appl Biomater Funct Mater ; 17(1): 2280800019827798, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30808229

RESUMEN

Nowadays, dental caries is one of the most common oral health problems, affecting most individuals. It has been found that, by remineralizing enamel at an early stage in the formation of enamel caries, teeth can be effectively protected from dental caries. In this work, a peptide with eight repetitive sequences of aspartate-serine-serine (8DSS) is applied as the bio-mineralizer in an in-vivo rat enamel caries model. Nondestructive quantitative light-induced fluorescence-digital (QLF-D) imaging and micro-computed tomography (micro-CT) are used to evaluate the remineralization of enamel carious lesions by measuring the total fluorescence radiance loss of the molar area (Δ QTotal), acquired using QLF-D imaging, and the mineral density and residual molar enamel volume, acquired using micro-CT. Correlations are explored between Δ QTotal and mineral density (strong correlation, r = 0.8000, p < 0.001) and Δ QTotal and residual molar enamel volume (moderate correlation, r = 0.6375, p < 0.001). Our results demonstrate that 8DSS is a promising in-vivo remineralization agent that exhibits comparable effects to NaF ( p < 0.05), which has been verified using the classical Keyes method. Moreover, the nondestructive QLF-D and micro-CT methods can be combined to quantify the remineralization of enamel carious lesions three-dimensionally in vivo, making them broadly applicable in quantifying hard tissues.


Asunto(s)
Diente Molar/efectos de los fármacos , Péptidos/farmacocinética , Remineralización Dental/métodos , Secuencia de Aminoácidos , Animales , Caries Dental/tratamiento farmacológico , Caries Dental/patología , Modelos Animales de Enfermedad , Diente Molar/diagnóstico por imagen , Diente Molar/patología , Péptidos/química , Péptidos/farmacología , Péptidos/uso terapéutico , Fluorescencia Cuantitativa Inducida por la Luz , Ratas , Índice de Severidad de la Enfermedad , Microtomografía por Rayos X
16.
Arch Oral Biol ; 100: 42-48, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30782523

RESUMEN

OBJECTIVE: Nowadays, caries prevention focuses on controlling pathogenic bacteria, inhibiting demineralization and promoting re-mineralization. The aim of this study is to design a more clinically powerful anti-caries treatment by combining amelogenin-derived peptide QP5 with antibacterial chitosan in a hydrogel (CS-QP5 hydrogel), and characterize its effects on inhibition of cariogenic bacteria and promotion of remineralization of initial caries lesions. DESIGN: CS-QP5 interactions at different pH and chitosan concentrations were studied using UV-vis spectroscopy, fluorescence spectroscopy and circular dichroism. Antibacterial activity was measured using broth microdilution and biofilm assays. Remineralizing activity was measured using tests of surface micro-hardness(SMH), polarized light microscopy(PLM) and transverse microradiography(TMR) in a pH cycling model that simulates intra-oral pH conditions. RESULTS: The results of UV-vis spectroscopy, fluorescence spectroscopy and circular dichroism analyses suggest that the micro-environment of QP5 changes upon addition of chitosan and the interaction between QP5 and chitosan is reversible and dependent on pH. CS-QP5 hydrogel showed good antibacterial potency towards Streptococcus mutans with MIC/MBC of 5 mg/mL, reducing adhesion and biofilm formation up to 95.43% and nearly 100% respectively. According to the results of remineralizing studies, CS-QP5 hydrogel demonstrated 50.06% surface micro-hardness recovery, shallower lesion depth, significantly less mineral loss and more mineral content at different depth in the lesion body after pH cycling. CONCLUSIONS: The hydrogel showed promise as a dual-action caries control agent in vitro, whether it could present good effects in vivo still needs to be determined, which requires further study. Nonetheless, the new design of bioactive hydrogel with antibacterial and remineralizing properties has the potential to substantially benefit oral health.


Asunto(s)
Amelogenina/farmacología , Antibacterianos/farmacología , Caries Dental/terapia , Portadores de Fármacos , Remineralización Dental , Adhesión Bacteriana , Biopelículas/efectos de los fármacos , Quitosano , Humanos , Hidrogeles , Péptidos/farmacología , Streptococcus mutans/efectos de los fármacos
17.
J Transl Med ; 16(1): 11, 2018 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-29351798

RESUMEN

BACKGROUND: Dental caries is a major worldwide oral disease afflicting a large proportion of children. As an important host factor of caries susceptibility, saliva plays a significant role in the occurrence and development of caries. The aim of the present study was to characterize the healthy and cariogenic salivary proteome and determine the changes in salivary protein expression of children with varying degrees of active caries, also to establish salivary proteome profiles with a potential therapeutic use against dental caries. METHODS: In this study, unstimulated saliva samples were collected from 30 children (age 10-12 years) with no dental caries (NDC, n = 10), low dental caries (LDC, n = 10), and high dental caries (HDC, n = 10). Salivary proteins were extracted, reduced, alkylated, trypsin digested and labeled with isobaric tags for relative and absolute quantitation, and then they were analyzed with GO annotation, biological pathway analysis, hierarchical clustering analysis, and protein-protein interaction analysis. Targeted verifications were then performed using multiple reaction monitoring mass spectrometry. RESULTS: A total of 244 differentially expressed proteins annotated with GO annotation in biological processes, cellular component and molecular function were identified in comparisons among children with varying degrees of active caries. A number of caries-related proteins as well as pathways were identified in this study. As compared with caries-free children, the most significantly enriched pathways involved by the up-regulated proteins in LDC and HDC were the ubiquitin mediated proteolysis pathway and African trypanosomiasis pathway, respectively. Subsequently, we selected 53 target proteins with differential expression in different comparisons, including mucin 7, mucin 5B, histatin 1, cystatin S and cystatin SN, basic salivary proline rich protein 2, for further verification using MRM assays. Protein-protein interaction analysis of these proteins revealed complex protein interaction networks, indicating synergistic action of salivary proteins in caries resistance or cariogenicity. CONCLUSIONS: Overall, our results afford new insight into the salivary proteome of children with dental caries. These findings might have bright prospect in future in developing novel biomimetic peptides with preventive and therapeutic benefits for childhood caries.


Asunto(s)
Caries Dental/metabolismo , Marcaje Isotópico/métodos , Espectrometría de Masas/métodos , Proteómica/métodos , Saliva/metabolismo , Proteínas y Péptidos Salivales/metabolismo , Niño , Femenino , Humanos , Masculino , Regulación hacia Arriba
18.
Arch Oral Biol ; 73: 66-71, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27694019

RESUMEN

OBJECTIVE: An amelogenin-derived peptide has been shown to promote remineralization of demineralized enamel in an in vitro model of initial caries induced by pH cycling. The present study examines whether the peptide exerts similar effects within the complex oral environment in vivo. DESIGN: Specific pathogen-free Sprague-Dawley rats (n=36) were infected with Streptococcus mutans, given ad libitum access to Diet 2000 and drinking water supplemented with sucrose (10%, w/v), and then randomly divided into three groups treated with 25µM peptide solution, 1g/L NaF or deionized water. Molar teeth were swabbed twice daily with the respective solutions for 24days. Then animals were killed, their jaws were removed and caries lesions were analyzed using the quantitative light-induced fluorescence-digital (QLF-D) technique to measure changes in mineral content. To verify QLF-D results, caries were scored for lesion depth and size using the Keyes method, and analyzed using polarized light microscopy (PLM). RESULTS: Mineral gain was significantly higher in teeth treated with peptide or NaF than in teeth treated with water (p<0.05), based on the QLF-D results (ΔF and ΔQ). Incidence of smooth-surface and sulcal caries based on Keyes scores was similar in rats treated with peptide or NaF, and significantly lower in these groups than in rats treated with water (p<0.05). Lesions on teeth treated with peptide or NaF were shallower, based on PLM. No significant differences were observed between molar enamel caries treated with peptide or NaF. CONCLUSIONS: This amelogenin-derived peptide can promote remineralization in a rat caries model, indicating strong potential for clinical use.


Asunto(s)
Amelogenina/farmacología , Cariostáticos/farmacología , Caries Dental/patología , Remineralización Dental/métodos , Animales , Modelos Animales de Enfermedad , Concentración de Iones de Hidrógeno , Técnicas In Vitro , Microscopía de Polarización , Minerales/metabolismo , Péptidos/farmacología , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley , Fluoruro de Sodio/farmacología , Streptococcus mutans
19.
Caries Res ; 50(1): 48-61, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26859135

RESUMEN

Controlling the growth of cariogenic microorganisms such as oral streptococci is an adjunct therapy for caries-active individuals to prevent and treat caries. Here we investigated the antimicrobial activity of the synthetic amphipathic α- helical antimicrobial peptide GH12 (GLLWHLLHHLLH-NH2) against oral streptococci in vitro. Circular dichroism studies showed that GH12 takes on an α-helical conformation in the presence of membrane-mimicking solvents, and reversed-phase high-performance liquid chromatography studies showed that GH12 remains stable in saliva. The peptide showed bactericidal activity against oral streptococci, with minimum inhibitory concentrations ranging from 6.7 to 32.0 µg/ml. GH12 concentrations 4-fold higher than the minimum bactericidal concentration completely killed oral streptococci within 20 min. Treating oral streptococci with GH12 caused noticeable changes in bacterial viability and morphology based on confocal laser scanning microscopy and scanning electron microscopy. Effects of GH12 on biofilm formation and on viability of mature biofilm were quantified by crystal violet staining and the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. GH12 effectively inhibited biofilm formation and metabolic activity in biofilms of oral streptococci, especially S. mutans, S. sobrinus and S. salivarius. These results suggest that GH12 shows rapid and strong antimicrobial activity against oral streptococci in vitro, opening the door to preclinical and clinical studies to explore its potential for caries prevention and treatment.


Asunto(s)
Antiinfecciosos/farmacología , Streptococcus/efectos de los fármacos , Biopelículas , Péptidos
20.
Arch Oral Biol ; 60(10): 1482-7, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26263536

RESUMEN

OBJECTIVE: In this study we give a preliminary study of a rationally designed small peptide, which is based on the enamel matrix protein amelogenin, to investigate its effect on remineralization of initial enamel caries lesions. DESIGN: A novel peptide was designed and synthesized to investigate its effects on the remineralization of initial enamel carious lesions during pH cycling that simulates intra-oral conditions. Initial lesions were created in bovine enamel blocks, which were then pH-cycled for 12 days in the presence of 25µM peptide, 1g/L NaF (positive control), 50mM HEPES buffer(negative control). Before and after pH cycling, enamel blocks were analyzed by surface microhardness testing, polarized light microscopy and transverse microradiography. RESULTS: Percentage of surface microhardness recovery (SMHR%) after pH cycling was significantly higher in peptide group than HEPES group. Lower lesion depth and less mineral mineral loss were found in peptide or NaF treatment groups after the cycling, and were significantly different to HEPES group. No significant differences were observed between the blocks treated with peptide and those treated with NaF. CONCLUSSION: This study provides in vitro evidence that this amelogenin based peptide promotes enamel caries remineralization, offering a promising remineralizing biomaterial in initial enamel carious treatment.


Asunto(s)
Amelogenina/química , Amelogenina/farmacología , Materiales Biomiméticos/farmacología , Caries Dental/tratamiento farmacológico , Esmalte Dental/efectos de los fármacos , Péptidos/farmacología , Remineralización Dental/métodos , Animales , Materiales Biomiméticos/química , Bovinos , Caries Dental/metabolismo , Esmalte Dental/química , Esmalte Dental/metabolismo , Pruebas de Dureza , Concentración de Iones de Hidrógeno , Microrradiografía/métodos , Microscopía de Polarización/métodos , Minerales/análisis , Minerales/metabolismo , Péptidos/síntesis química , Péptidos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA