Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Front Microbiol ; 15: 1378029, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38655089

RESUMEN

Campylobacter jejuni (C. jejuni) is a common pathogen that often causes diarrhea, loss of appetite, and even enteritis in domestic cats, affecting their growth and development, especially in kittens under 6 months of age. Oral passive immunization with chicken yolk antibody Y has been proved effective for the treatment of gastrointestinal pathogen infections due to its high specificity. In this study, C. jejuni was isolated from diarrheal cat feces, and the specific egg yolk antibody Y against C. jejuni was demonstrated to effectively inhibit its proliferation in vitro experiments. To evaluate the effect of anti-C. jejuni IgY, the mouse C. jejuni infection model was established and it was found that IgY could alleviate C. jejuni-induced clinical symptoms. Consistent with these results, the reduction of pro-inflammatory factors and intestinal colonization by C. jejuni in the IgY-treated groups, especially in the high dose group. We then evaluated the protective effect of IgY on young Ragdoll cats infected with C. jejuni. This specific antibody reduced the rate of feline diarrhea, protected the growth of young cats, inhibited systemic inflammatory hyperactivation, and increased fecal short-chain fatty acid concentrations. Notably, IgY may have a protective role by changing intestinal amino acid metabolism and affecting C. jejuni chemotaxis. Collectively, specific IgY is a promising therapeutic strategy for C. jejuni-induced cat diarrhea.

2.
Breastfeed Med ; 19(3): 208-216, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38489527

RESUMEN

Background: Lactoferrin (LF) is a multifunctional glycoprotein found in human milk and body fluids, which has been shown to play a vital role in regulating the immunity and supporting the intestinal health of infants. Aim: This study evaluated the association between maternal/parturient factors and LF concentration in the breast milk of Chinese mothers. Methods: 207 breast milk samples were collected from healthy mothers with in the first year of lactation. Maternal and parturient information was collected for these participants through questionnaires. The content of lactoferrin in breast milk was detected by liquid chromatography, and macronutrient concentration in breast milk was measured by human milk analyzer in only 109 samples. Results: Our findings demonstrated that the LF content was much higher within the first month of lactation than it was after that period (p < 0.05). When compared with normal and lean mothers, the LF content of obese mothers was considerably higher (p < 0.05). The parity and LF content showed a favorable correlation. The proportion of LF to total protein tended to decrease as lactation progressed. Protein, fat, dry matter, and energy content were significantly positively correlated with LF content (p < 0.001). Conclusion: Early breast milk tends to have a higher level of LF, and the change of LF concentration in breast milk is associated with the parity and body mass index of the mother.


Asunto(s)
Lactoferrina , Leche Humana , Embarazo , Lactante , Femenino , Humanos , Leche Humana/química , Lactoferrina/análisis , Índice de Masa Corporal , Lactancia Materna , Lactancia/fisiología , Paridad
3.
Int J Biol Macromol ; 253(Pt 7): 127463, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37852397

RESUMEN

Variations in the structure and activities of polysaccharides from Tetrastigma hemsleyanum Diels et Gilg fermented by Sanghuangporus sanghuang fungi were investigated. Compare with the unfermented polysaccharide (THDP2), the major monosaccharide composition and molecular weight of polysaccharide after fermentation (F-THDP2) altered dramatically, which caused galactose-induced conversion from glucose and one-third of molecular weight. F-THDP2 had a molecular weight of 1.23 × 104 Da. Moreover, the glycosidic linkage of F-THDP2 varied significantly, a 1, 2-linked α-d-Galp and 1, 2-linked α-d-Manp backbone was established in F-THDP2, which differed from that of 1, 4-linked α-d-Glcp and 1, 4-linked ß-d-Galp in THDP2. In addition, F-THDP2 showed a more flexible chain conformation than that of THDP2 in aqueous solution. Strikingly, F-THDP2 exhibited superior inhibitory effects on HeLa cells via Fas/FasL-mediated Caspase-3 signaling pathways than that of the original polysaccharide. These variations in both structure and biological activities indicated that fermentation-mediated modification by Sanghuangporus sanghuang might a promising novel method for the effective conversion of starch and other polysaccharides from Tetrastigma hemsleyanum Diels et Gilg into highly bioactive biomacromolecules, which could be developed as a potential technology for use in the food industry.


Asunto(s)
Polisacáridos , Vitaceae , Humanos , Células HeLa , Fermentación , Polisacáridos/farmacología , Polisacáridos/química , Vitaceae/química
4.
Nat Commun ; 14(1): 4796, 2023 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-37558705

RESUMEN

Spinal cord injury (SCI) leads to severe sensory and motor dysfunction below the lesion. However, the cellular dynamic responses and heterogeneity across different regions below the lesion remain to be elusive. Here, we used single-cell transcriptomics to investigate the region-related cellular responses in female rhesus monkeys with complete thoracic SCI from acute to chronic phases. We found that distal lumbar tissue cells were severely impacted, leading to degenerative microenvironments characterized by disease-associated microglia and oligodendrocytes activation alongside increased inhibitory interneurons proportion following SCI. By implanting scaffold into the injury sites, we could improve the injury microenvironment through glial cells and fibroblast regulation while remodeling spared lumbar tissues via reduced inhibitory neurons proportion and improved phagocytosis and myelination. Our findings offer crucial pathological insights into the spared distal tissues and proximal tissues after SCI, emphasizing the importance of scaffold-based treatment approaches targeting heterogeneous microenvironments.


Asunto(s)
Traumatismos de la Médula Espinal , Médula Espinal , Animales , Femenino , Macaca mulatta , Médula Espinal/patología , Neuroglía/patología , Análisis de la Célula Individual
5.
Metabolites ; 13(3)2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36984766

RESUMEN

Transportation is common in cats and often causes stress and intestinal disorders. Antimicrobial peptides (AMPs) exhibit a broad spectrum of antibacterial activity, and they may have the capacity for antioxidant and immune regulation. The objective of this study was to investigate the effects of dietary supplementation with AMPs on stress response, gut microbiota and metabolites of cats that have undergone transport stress. A total of 14 Ragdoll cats were randomly allocated into 2 treatments: basal diet (CON) and a basal diet supplemented with 0.3% AMPs. After a 6-week feeding period, all cats were transported for 3 h and, then, fed for another week. The results show that the diarrhea rate of cats was markedly reduced by supplementation with AMPs throughout the trial period (p < 0.05). In addition, AMPs significantly reduced serum cortisol and serum amyloid A (p < 0.05) and increased apolipoprotein 1 after transportation (p < 0.05). Moreover, AMPs reduced the level of inflammatory factors in the serum caused by transportation stress, including tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1ß) (p < 0.05). The AMPs enhanced the activities of glutathione peroxidase (p < 0.01) and superoxide dismutase (p < 0.05). Furthermore, cats fed AMPs had higher levels of branched chain fatty acids (BCFAs) and a relative abundance of Blautia and a lower relative abundance of Negativibacillus after transportation (p < 0.05). The serum metabolome analysis further revealed that AMPs markedly regulated lipid metabolism by upregulating cholic acid expression. In conclusion, AMP supplementation alleviated oxidative stress and inflammatory response in transportation by regulating the gut microbiota and metabolites, thereby relieving stress-induced diarrhea and supporting gut and host health in cats.

6.
Foods ; 11(19)2022 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-36230153

RESUMEN

Raw milk microbiota is complex and influenced by many factors that facilitate the introduction of undesirable microorganisms. Milk microbiota is closely related to the safety and quality of dairy products, and it is therefore critical to characterize the variation in the microbial composition of raw milk. In this cross-sectional study, the variation in raw milk microbiota throughout the year (n = 142) from three farms in China was analyzed using 16S rRNA amplicon sequencing, including α and ß diversity, microbial composition, and the relationship between microbiota and milk quality parameters. This aimed to characterize the contamination risk of raw milk throughout the year and the changes in quality parameters caused by contamination. Collection month had a significant effect on microbial composition; microbial diversity was higher in raw milk collected in May and June, while milk collected in October and December had the lowest microbial diversity. Microbiota composition differed significantly between milk collected in January−June, July−August, and September−December (p < 0.05). Bacterial communities represented in raw milk at the phylum level mainly included Proteobacteria, Firmicutes and Bacteroidota; Pseudomonas, Acinetobacter, Streptococcus and Lactobacillus were the most common genera. Redundancy analysis (RDA) found strong correlations between microbial distribution and titratable acidity (TA), fat, and protein. Many genera were significantly correlated with TA, for example Acinetobacter (R = 0.426), Enhydrobacter (R = 0.309), Chryseobacterium (R = 0.352), Lactobacillus (R = −0.326), norank_o__DTU014 (R = −0.697), norank_f__SC-I-84 (R = −0.678), and Subgroup_10 (R = −0.721). Additionally, norank_f__ Muribaculaceae was moderately negatively correlated with fat (R = −0.476) and protein (R = −0.513). These findings provide new information on the ecology of raw milk microbiota at the farm level and contribute to the understanding of the variation in raw milk microbiota in China.

7.
Front Microbiol ; 13: 838164, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35859746

RESUMEN

Methylsulfonylmethane (MSM) is a natural sulfur-containing organic substance that has many biological functions, such as antioxidant, anti-inflammatory, skin nourishing, and hair growth-promoting effects. This study was conducted to determine the effect of MSM supplementation on growth performance, antioxidant capacity, and hair quality in kittens. A total of 21 Ragdoll kittens were assigned to three diets by initial body weight and gender: basal diet supplemented with 0%, 0.2%, and 0.4% MSM (CON, LMSM, and HMSM groups) for 65 days. During the whole period, the food intake of kittens in the MSM-treated groups tended to be higher (P < 0.10) compared with the CON group, and the average daily gain (ADG) had no significant difference when compared to the kittens in the CON group (P > 0.05). Antioxidant capacity had no significant difference (P > 0.05) among the groups. The scale thickness of hair tended to be smaller in the LMSM group compared to the CON group (P < 0.10) and decreased significantly (P < 0.05) over time from d 0 to d 65 in the LMSM group, indicating the improvement of hair quality. Besides, supplementation with LMSM increased bacterial diversity. Kittens fed MSM had no significant differences in fecal genus at the end of the study. No significant differences in fecal short-chain fatty acids were observed among groups. Fecal metabolomics analysis further revealed that MSM hardly affected the metabolites. Overall, dietary supplementation with 0.2% MSM can improve the hair quality of kittens. Furthermore, 0.2∼0.4% of MSM had no detrimental effects on serum biochemistry, growth performance, gut microbiota, and metabolome, which supports the safety inclusion of MSM to a certain degree in feline diets. To the best of our knowledge, this is the first study to investigate the effects of MSM supplementation in cats.

8.
Front Nutr ; 9: 847966, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35571952

RESUMEN

Stress exposure is a potential threat to humans who live or work in extreme environments, often leading to oxidative stress, inflammatory response, intestinal dysbiosis, and metabolic disorders. Gallnut tannic acid (TA), a naturally occurring polyphenolic compound, has become a compelling source due to its favorable anti-diarrheal, anti-oxidative, anti-inflammatory, and anti-microbial activities. Thus, this study aimed to evaluate the anti-stress effects of gallnut TA on the stress-induced inflammatory response, dysbiotic gut microbiota, and alterations of serum metabolic profile using beagle models. A total of 13 beagle dogs were randomly divided into the stress (ST) and ST + TA groups. Dietary supplementation with TA at 2.5 g/kg was individually fed to each dog in the ST + TA group for 14 consecutive days. On day 7, all dogs were transported for 3 h from a stressful environment (days 1-7) to a livable site (days 8-14). In our results, TA relieved environmental stress-induced diarrheal symptoms in dogs and were shown to protect from myocardial injury and help improve immunity by serum biochemistry and hematology analysis. Also, TA inhibited the secretion of serum hormones [cortisol (COR), glucocorticoid (GC), and adrenocorticotropic hormone (ACTH)] and the expression of heat shock protein (HSP) 70 to protect dogs from stress-induced injury, thereby relieving oxidative stress and inflammatory response. Fecal 16S rRNA gene sequencing revealed that TA stimulated the growth of beneficial bacteria (Allobaculum, Dubosiella, Coriobacteriaceae_UCG-002, and Faecalibaculum) and suppressed the growth of pathogenic bacteria (Escherichia-Shigella and Streptococcus), thereby increasing fecal butyrate levels. Serum metabolomics further showed that phytosphingosine, indoleacetic acid, arachidonic acid, and biotin, related to the metabolism of sphingolipid, tryptophan, arachidonic acid, and biotin, respectively, could serve as potential biomarkers of stress exposure. Furthermore, Spearman's correlation analysis showed strong relationships between the four potential serum biomarkers and differential bacteria. Overall, gallnut TA may be a potential prebiotic for the prevention and treatment of stress-induced metabolic disorders by targeting intestinal microbiota.

9.
EMBO Rep ; 22(11): e52728, 2021 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-34605607

RESUMEN

During central nervous system development, neurogenesis and gliogenesis occur in an orderly manner to create precise neural circuitry. However, no systematic dataset of neural lineage development that covers both neurogenesis and gliogenesis for the human spinal cord is available. We here perform single-cell RNA sequencing of human spinal cord cells during embryonic and fetal stages that cover neuron generation as well as astrocytes and oligodendrocyte differentiation. We also map the timeline of sensory neurogenesis and gliogenesis in the spinal cord. We further identify a group of EGFR-expressing transitional glial cells with radial morphology at the onset of gliogenesis, which progressively acquires differentiated glial cell characteristics. These EGFR-expressing transitional glial cells exhibited a unique position-specific feature during spinal cord development. Cell crosstalk analysis using CellPhoneDB indicated that EGFR glial cells can persistently interact with other neural cells during development through Delta-Notch and EGFR signaling. Together, our results reveal stage-specific profiles and dynamics of neural cells during human spinal cord development.


Asunto(s)
Análisis de la Célula Individual , Médula Espinal , Humanos , Neurogénesis , Neuroglía , Neuronas
10.
Front Immunol ; 12: 762564, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34675940

RESUMEN

Accumulating evidences support that amino acids direct the fate decision of immune cells. Glycine is a simple structural amino acid acting as an inhibitory neurotransmitter. Besides, glycine receptors as well as glycine transporters are found in macrophages, indicating that glycine alters the functions of macrophages besides as an inhibitory neurotransmitter. Mechanistically, glycine shapes macrophage polarization via cellular signaling pathways (e.g., NF-κB, NRF2, and Akt) and microRNAs. Moreover, glycine has beneficial effects in preventing and/or treating macrophage-associated diseases such as colitis, NAFLD and ischemia-reperfusion injury. Collectively, this review highlights the conceivable role of glycinergic signaling for macrophage polarization and indicates the potential application of glycine supplementation as an adjuvant therapy in macrophage-associated diseases.


Asunto(s)
Glicina/inmunología , Macrófagos/inmunología , Animales , Colitis/inmunología , Glicina/metabolismo , Humanos , Enfermedades Metabólicas/inmunología , MicroARNs , Neoplasias/inmunología , Daño por Reperfusión/inmunología , Transducción de Señal
11.
Stem Cells ; 38(1): 118-133, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31621984

RESUMEN

Nerve regeneration is blocked after spinal cord injury (SCI) by a complex myelin-associated inhibitory (MAI) microenvironment in the lesion site; however, the underlying mechanisms are not fully understood. During the process of neural stem cell (NSC) differentiation, pathway inhibitors were added to quantitatively assess the effects on neuronal differentiation. Immunoprecipitation and lentivirus-induced overexpression were used to examine effects in vitro. In vivo, animal experiments and lineage tracing methods were used to identify nascent neurogenesis after SCI. In vitro results indicated that myelin inhibited neuronal differentiation by activating the epidermal growth factor receptor (EGFR)-extracellular-regulated kinase (ERK) signaling cascade. Subsequently, we found that tripartite motif (TRIM) 32, a neuronal fate-determining factor, was inhibited. Moreover, inhibition of EGFR-ERK promoted TRIM32 expression and enhanced neuronal differentiation in the presence of myelin. We further demonstrated that ERK interacts with TRIM32 to regulate neuronal differentiation. In vivo results indicated that EGFR-ERK blockade increased TRIM32 expression and promoted neurogenesis in the injured area, thus enhancing functional recovery after SCI. Our results showed that EGFR-ERK blockade antagonized MAI of neuronal differentiation of NSCs through regulation of TRIM32 by ERK. Collectively, these findings may provide potential new targets for SCI repair.


Asunto(s)
Receptores ErbB/antagonistas & inhibidores , Quinasas MAP Reguladas por Señal Extracelular/antagonistas & inhibidores , Proteínas de Unión al GTP/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Traumatismos de la Médula Espinal/metabolismo , Animales , Células Cultivadas , Cetuximab/farmacología , Receptores ErbB/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Femenino , Flavonoides/farmacología , Gefitinib/farmacología , Ratones , Ratones Endogámicos C57BL , Neurogénesis/efectos de los fármacos , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Ratas , Ratas Sprague-Dawley , Transducción de Señal , Regulación hacia Arriba
12.
PLoS One ; 14(8): e0220861, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31390372

RESUMEN

By using the semi-discretization technique of differential equations, the discrete analogue of a kind of cellular neural networks with stochastic perturbations and fuzzy operations is formulated, which gives a more accurate characterization for continuous-time models than that by Euler scheme. Firstly, the existence of at least one p-th mean almost periodic sequence solution of the semi-discrete stochastic models with almost periodic coefficients is investigated by using Minkowski inequality, Hölder inequality and Krasnoselskii's fixed point theorem. Secondly, the p-th moment global exponential stability of the semi-discrete stochastic models is also studied by using some analytical skills and the proof of contradiction. Finally, a problem of stochastic stabilization for discrete cellular neural networks is studied.


Asunto(s)
Modelos Teóricos , Red Nerviosa , Periodicidad , Procesos Estocásticos
13.
J Mol Neurosci ; 68(2): 251-260, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30949957

RESUMEN

The present meta-analysis aimed to evaluate the interaction between type 2 diabetes mellitus (T2DM) and the risk of cognitive impairment. The studies that fulfilled certain inclusion criteria were selected from online databases including PubMed, Embase, and the Cochrane Library. Data extraction and quality assessment were conducted, and subgroup analysis was performed according to the study area, population sources, and types of cognitive impairment. Publication bias and sensitivity analysis were evaluated. In total, 30 studies from 25 articles, including 2 case-control studies, 9 cohort studies, and 19 cross-sectional studies, were included. Subgroup analysis showed that despite the presence of hospital-based and multi-center subgroups in the cohort studies, the association between T2DM and cognitive impairment risk was statistically significant in all other subgroups (P < 0.05). Furthermore, the sensitivity and publication bias analysis showed good stability in all enrolled studies. T2DM might be associated with the risk of cognitive impairment. Further studies on early detection and appropriate management of cognitive impairment might be required in T2DM patients of different regions.


Asunto(s)
Disfunción Cognitiva/epidemiología , Diabetes Mellitus Tipo 2/epidemiología , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad
14.
J Neurotrauma ; 36(15): 2316-2324, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-30801232

RESUMEN

Spinal cord injury (SCI) repair is one of the most desirable but extremely challenging clinical problems. Developing suitable animal models and validating the therapeutic interventions in these models is the prerequisite for SCI repair improvement. Non-human primates, closer to humans than other species, are considered to be ideal models for translating laboratory discoveries into human clinical trials. In this study, the acute thoracic (T9) complete transection model in rhesus monkeys was established to evaluate the effects of linear-ordered collagen scaffold (LOCS) and LOCS combined with collagen binding neurotrophin-3 (CBD-NT3), which has been demonstrated to promote axonal regrowth and functional restoration in rodent models. After 10 months post-surgery, the grafted groups dramatically reduced cystic cavity formation and chondroitin sulfate proteoglycans (CSPGs) deposition and facilitated the ingrowth of axonal fibers at the lesion site. Further, the grafted groups displayed more regenerated fibers, exhibiting remyelination and synapse formation. Notably, the LOCS+CBD-NT3 group showed significant locomotor and electrophysiological recovery compared with the Control and LOCS groups. Therefore, LOCS+CBD-NT3 transplantation represents an effective strategy to promote spinal cord repair in non-human primates. More importantly, this complete transection model in non-human primate will contribute to effectively evaluating the potential interventions and accelerating clinical transformation in the future.


Asunto(s)
Colágeno/administración & dosificación , Modelos Animales de Enfermedad , Neurotrofina 3/administración & dosificación , Traumatismos de la Médula Espinal/patología , Traumatismos de la Médula Espinal/cirugía , Andamios del Tejido , Animales , Embrión de Pollo , Macaca mulatta , Masculino , Primates , Recuperación de la Función/fisiología
15.
Biomaterials ; 197: 20-31, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30639547

RESUMEN

Complete transected spinal cord injury (SCI) severely influences the quality of life and mortality rates of animals and patients. In the past decade, many simple and combinatorial therapeutic treatments have been tested in improving locomotor function in animals with this extraordinarily challenging SCI. The potential mechanism for promotion of locomotor function relies either on direct motor axon regeneration through the lesion gap or indirect neuronal relay bridging to functionally reconnect transected spinal stumps. In this review, we first compare the advantages and problems of complete transection SCI animal models with other prevailing SCI models used in motor axon regeneration research. Next, we enumerate some of the popular bio-scaffolds utilized in complete SCI repair in the last decade. Then, the current state of motor axon regeneration as well as its role on locomotor improvement of animals after complete SCI is discussed. Last, the current approach of directing endogenous neuronal relays formation to achieve motor function recovery by well-designed functional bio-scaffolds implantation in complete transected SCI animals is reviewed. Although facilitating neuronal relays formation by bio-scaffolds implantation appears to be more practical and feasible than directing motor axon regeneration in promoting locomotor outcome in animals after complete SCI, there are still challenges in neuronal relays formation, maintaining and debugging for spinal cord regenerative repair.


Asunto(s)
Materiales Biocompatibles/uso terapéutico , Regeneración Nerviosa , Traumatismos de la Médula Espinal/terapia , Andamios del Tejido , Animales , Axones/efectos de los fármacos , Axones/patología , Axones/fisiología , Materiales Biocompatibles/química , Modelos Animales de Enfermedad , Humanos , Locomoción/efectos de los fármacos , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/patología , Neuronas Motoras/fisiología , Regeneración Nerviosa/efectos de los fármacos , Recuperación de la Función/efectos de los fármacos , Traumatismos de la Médula Espinal/fisiopatología , Andamios del Tejido/química
16.
J Mater Sci Mater Med ; 29(9): 147, 2018 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-30171486

RESUMEN

Mandibular defects, caused by congenital, pathological or iatrogenic insults, can significantly affect patient quality of life. The reconstruction of mandible has recently gained the interest of clinical and tissue engineering researchers. The purpose of this study was to evaluate the effectiveness of three-dimensional (3-D) cultured autologous grafts prepared using bone marrow-derived mesenchymal stem cells (BMSCs) combined with demineralized bone matrix (DBM) scaffolds for the restoration of mandibular defects. Cylindrical defects were created in the mandibular body of minipigs and filled with 3D-cultured BMSCs/DBM autografts, 2D-cultured BMSCs/DBM autografts, DBM material (without cells), or were left unfilled (blank). Using computed tomographic (CT) imaging and histological staining, we found that treatment of mandibular defects using 3-D cultured BMSCs/DBM autografts offered improvements in bone formation over both 2-D cultured autografts and cell-free DBM scaffolds. We found increased osteoid formation in 3D and 2D cultures, with more osteogenic cells present in the 3D constructs. We suggest that 3-D cultured homograft BMSCs combined with DBM scaffolds represents a new strategy for bone reconstruction, with potential future clinical applicability.


Asunto(s)
Células de la Médula Ósea/fisiología , Matriz Ósea , Regeneración Ósea , Ingeniería de Tejidos/métodos , Animales , Matriz Ósea/ultraestructura , Mandíbula/patología , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/fisiología , Porcinos , Porcinos Enanos , Andamios del Tejido
17.
Cell Transplant ; 27(6): 907-915, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29871514

RESUMEN

Stem cells and biomaterials transplantation hold a promising treatment for functional recovery in spinal cord injury (SCI) animal models. However, the functional recovery of complete SCI patients was still a huge challenge in clinic. Additionally, there is no clinical standard procedure available to diagnose precisely an acute patient as complete SCI. Here, two acute SCI patients, with injury at thoracic 11 (T11) and cervical 4 (C4) level respectively, were judged as complete injury by a stricter method combined with American Spinal Injury Association (ASIA) Impairment Scale, magnetic resonance imaging (MRI) and nerve electrophysiology. Collagen scaffolds, named NeuroRegen scaffolds, with human umbilical cord mesenchymal stem cells (MSCs) were transplanted into the injury site. During 1 year follow up, no obvious adverse symptoms related to the functional scaffolds implantation were found after treatment. The recovery of the sensory and motor functions was observed in the two patients. The sensory level expanded below the injury level, and the patients regained the sense function in bowel and bladder. The thoracic SCI patient could walk voluntary with the hip under the help of brace. The cervical SCI patient could raise his lower legs against the gravity in the wheelchair and shake his toes under control. The injury status of the two patients was improved from ASIA A complete injury to ASIA C incomplete injury. Furthermore, the improvement of sensory and motor functions was accompanied with the recovery of the interrupted neural conduction. These results showed that the supraspinal control of movements below the injury was regained by functional scaffolds implantation in the two patients who were judged as the complete injury with combined criteria, it suggested that functional scaffolds transplantation could serve as an effective treatment for acute complete SCI patients.


Asunto(s)
Colágeno/química , Trasplante de Células Madre Mesenquimatosas/métodos , Traumatismos de la Médula Espinal/terapia , Regeneración de la Medula Espinal , Andamios del Tejido/química , Adulto , Colágeno/uso terapéutico , Humanos , Masculino , Células Madre Mesenquimatosas/citología , Recuperación de la Función , Médula Espinal/patología , Médula Espinal/fisiopatología , Traumatismos de la Médula Espinal/patología , Traumatismos de la Médula Espinal/fisiopatología , Resultado del Tratamiento
18.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 32(6): 650-659, 2018 06 15.
Artículo en Chino | MEDLINE | ID: mdl-29905040

RESUMEN

Objective: To evaluate the effect of the combination of collagen scaffold and brain-derived neurotrophic factor (BDNF) on the repair of transected spinal cord injury in rats. Methods: Thirty-two Sprague-Dawley rats were randomly divided into 4 groups: group A (sham operation group), T 9, T 10 segments of the spinal cord was only exposed; group B, 4-mm T 9, T 10 segments of the spinal cord were resected; group C, 4-mm T 9, T 10 segments of the spinal cord were resected and linear ordered collagen scaffolds (LOCS) with corresponding length was transplanted into lesion site; group D, 4-mm T 9, T 10 segments of the spinal cord were resected and LOCS with collagen binding domain (CBD)-BDNF was transplanted into lesion site. During 3 months after operation, Basso-Beattie-Bresnahan (BBB) locomotor score assessment was performed for each rat once a week. At 3 months after operation, electrophysiological test of motor evoked potential (MEP) was performed for rats in each group. Subsequently, retrograde tracing was performed for each rat by injection of fluorogold (FG) at the L 2 spinal cord below the injury level. One week later, brains and spinal cord tissues of rats were collected. Morphological observation was performed to spinal cord tissues after dehydration. The thoracic spinal cords including lesion area were collected and sliced horizontally. Thoracic spinal cords 1 cm above lesion area and lumbar spinal cords 1 cm below lesion area were collected and sliced coronally. Coronal spinal cord tissue sections were observed by the laser confocal scanning microscope and calculated the integral absorbance ( IA) value of FG-positive cells. Horizontal tissue sections of thoracic spinal cord underwent immunofluorescence staining to observe the building of transected spinal cord injury model, axonal regeneration in damaged area, and synapse formation of regenerated axons. Results: During 3 months after operation, the BBB scores of groups B, C, and D were significantly lower than those of group A ( P<0.05). The BBB scores of group D at 2-12 weeks after operation were significantly higher than those of groups B and C ( P<0.05). Electrophysiological tests revealed that there was no MEP in group B; the latencies of MEP in groups C and D were significantly longer than that in group A ( P<0.05), and in group C than in group D ( P<0.05). Morphological observation of spinal cord tissues showed that the injured area of the spinal cord in group B extended to both two ends, and the lesion site was severely damaged. The morphologies of spinal cord tissues in groups C and D recovered well, and the morphology in group D was closer to normal tissue. Results of retrograde tracing showed that the gray matters of lumbar spinal cords below the lesion area in each group were filled with FG-positive cells; in thoracic spinal cords above lesion sites, the IA value of FG-positive cells in coronal section of spinal cord in group A was significantly larger than those in groups B, C, and D ( P<0.05), and in groups C and D than in group B ( P<0.05), but no significant difference was found between groups C and D ( P>0.05). Immunofluorescence staining results of spinal cord tissue sections selected from dorsal to ventral spinal cord showed transected injured areas of spinal cords which were significantly different from normal tissues. The numbers of NF-positive axons in lesion center of group A were significantly larger than those of groups B, C, and D ( P<0.05), and in groups C and D than in group B ( P<0.05), and in group D than in group C ( P<0.05). Conclusion: The combined therapeutic approach containing LOCS and CBD-BDNF can promote axonal regeneration and recovery of hind limb motor function after transected spinal cord injury in rats.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Colágeno , Regeneración Nerviosa , Traumatismos de la Médula Espinal , Andamios del Tejido , Animales , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley , Recuperación de la Función , Regeneración , Médula Espinal , Traumatismos de la Médula Espinal/terapia
19.
Exp Neurol ; 306: 132-137, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29753649

RESUMEN

Traditional views consider scar tissue formed in the lesion epicenter after severe spinal cord injury (SCI) as both a physical barrier and chemical impediment for axonal regeneration. Recently, a controversial opinion suggested that astrocyte scar formation aids rather than prevents axonal regeneration in the CNS. Here, following complete transection of the thoracic spinal cord (T8) in rats, we found that scar tissue showed greater growth factor expression at 2 weeks than 8 weeks post-SCI. Further, tandem mass tag (TMT)-based quantitative proteomic analysis revealed that the components of scar tissue formed in the subacute phase are quite different from that formed in the chronic phase. We also found significantly increased axonal regrowth of sensory axons into the lesion center after chronically formed scar tissue was removed. This indicates that scar tissue formed at the chronic phase actually inhibits axonal regeneration, and that chronic removal of scar tissue may have clinical significance and benefit for SCI repair. Taken together, our study suggests that the features and roles of subacute and chronic scar tissues formed post-SCI is different and scar tissue-targeted strategies for spinal cord regeneration cannot be generalized.


Asunto(s)
Cicatriz/patología , Traumatismos de la Médula Espinal/patología , Animales , Axones , Cicatriz/genética , Femenino , Péptidos y Proteínas de Señalización Intercelular/biosíntesis , Regeneración Nerviosa , Vías Nerviosas , Proteómica , Ratas , Ratas Sprague-Dawley , Células Receptoras Sensoriales , Traumatismos de la Médula Espinal/genética , Regeneración de la Medula Espinal
20.
J Tissue Eng Regen Med ; 12(5): 1285-1296, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29499096

RESUMEN

Numerous studies have focused on the development of novel and innovative approaches for the treatment of peripheral nerve injury using artificial nerve guide conduits. In this study, we attempted to bridge 3.5-cm defects of the sciatic nerve with a longitudinally oriented collagen conduit (LOCC) loaded with human umbilical cord mesenchymal stem cells (hUC-MSCs). The LOCC contains a bundle of longitudinally aligned collagenous fibres enclosed in a hollow collagen tube. Our previous studies showed that an LOCC combined with neurotrophic factors enhances peripheral nerve regeneration. However, it remained unknown whether an LOCC seeded with hUC-MSCs could also promote regeneration. In this study, using various histological and electrophysiological analyses, we found that an LOCC provides mechanical support to newly growing nerves and functions as a structural scaffold for cells, thereby stimulating sciatic nerve regeneration. The LOCC and hUC-MSCs synergistically promoted regeneration and improved the functional recovery in a dog model of sciatic nerve injury. Therefore, the combined use of an LOCC and hUC-MSCs might have therapeutic potential for the treatment of peripheral nerve injury.


Asunto(s)
Colágeno/farmacología , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/citología , Regeneración Nerviosa , Nervio Ciático/lesiones , Nervio Ciático/fisiopatología , Andamios del Tejido/química , Animales , Células Cultivadas , Perros , Fenómenos Electrofisiológicos/efectos de los fármacos , Humanos , Células Madre Mesenquimatosas/ultraestructura , Músculos/efectos de los fármacos , Nervio Ciático/efectos de los fármacos , Nervio Ciático/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA