Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 749
Filtrar
1.
Acta Pharm Sin B ; 14(6): 2685-2697, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38828153

RESUMEN

Targeting androgen receptor (AR) has shown great therapeutic potential in triple-negative breast cancer (TNBC), yet its efficacy remains unsatisfactory. Here, we aimed to identify promising targeted agents that synergize with enzalutamide, a second-generation AR inhibitor, in TNBC. By using a strategy for screening drug combinations based on the Sensitivity Index (SI), we found that MK-8776, a selective checkpoint kinase1 (CHK1) inhibitor, showed favorable synergism with enzalutamide in AR-positive TNBC. The combination of enzalutamide and MK-8776 was found to exert more significant anti-tumor effects in TNBC than the single application of enzalutamide or MK-8776, respectively. Furthermore, a nanoparticle-based on hyaluronic acid (HA)-modified hollow-manganese dioxide (HMnO2), named HMnE&M@H, was established to encapsulate and deliver enzalutamide and MK-8776. This HA-modified nanosystem managed targeted activation via pH/glutathione responsiveness. HMnE&M@H repressed tumor growth more obviously than the simple addition of enzalutamide and MK-8776 without a carrier. Collectively, our study elucidated the synergy of enzalutamide and MK-8776 in TNBC and developed a novel tumor-targeted nano drug delivery system HMnE&M@H, providing a potential therapeutic approach for the treatment of TNBC.

2.
Exp Eye Res ; 244: 109919, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38729254

RESUMEN

Age-related macular degeneration (AMD) is the leading cause of vision loss among the elderly, which is primarily attributed to oxidative stress-induced damage to the retinal pigment epithelium (RPE). Human amniotic mesenchymal stem cells (hAMSC) were considered to be one of the most promising stem cells for clinical application due to their low immunogenicity, tissue repair ability, pluripotent potential and potent paracrine effects. The conditional medium (hAMSC-CM) and exosomes (hAMSC-exo) derived from hAMSC, as mediators of intercellular communication, play an important role in the treatment of retinal diseases, but their effect and mechanism on oxidative stress-induced retinal degeneration are not explored. Here, we reported that hAMSC-CM alleviated H2O2-induced ARPE-19 cell death through inhibiting mitochondrial-mediated apoptosis pathway in vitro. The overproduction of reactive oxygen species (ROS), alteration in mitochondrial morphology, loss of mitochondrial membrane potential and elevation of Bax/Bcl2 ratio in ARPE-19 cells under oxidative stress were efficiently reversed by hAMSC-CM. Moreover, it was found that hAMSC-CM protected cells against oxidative injury via PI3K/Akt/FoxO3 signaling. Intriguingly, exosome inhibitor GW4869 alleviated the inhibitory effect of hAMSC-CM on H2O2-induced decrease in cell viability of ARPE-19 cells. We further demonstrated that hAMSC-exo exerted the similar protective effect on ARPE-19 cells against oxidative damage as hAMSC-CM. Additionally, both hAMSC-CM and hAMSC-exo ameliorated sodium iodate-induced deterioration of RPE and retinal damage in vivo. These results first indicate that hAMSC-CM and hAMSC-exo protect RPE cells from oxidative damage by regulating PI3K/Akt/FoxO3 pathway, suggesting hAMSC-CM and hAMSC-exo will be a promising cell-free therapy for the treatment of AMD in the future.

3.
Nanomaterials (Basel) ; 14(10)2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38786844

RESUMEN

The exploration of catalysts for the oxygen evolution reaction (OER) with high activity and acceptable price is essential for water splitting to hydrogen generation. High-entropy materials (HEMs) have aroused increasing interest in the field of electrocatalysis due to their unusual physicochemical properties. In this work, we reported a novel FeCoNiMoZn-OH high entropy hydroxide (HEH)/nickel foam (NF) synthesized by a facile pulsed electrochemical deposition method at room temperature. The FeCoNiMoZn-OH HEH displays a 3D porous nanosheet morphology and polycrystalline structure, which exhibits extraordinary OER activity in alkaline media, including much lower overpotential (248 mV at 10 mA cm-2) and Tafel slope (30 mV dec-1). Furthermore, FeCoNiMoZn-OH HEH demonstrates excellent OER catalytic stability. The enhanced catalytic performance of the FeCoNiMoZn-OH HEH primarily contributed to the porous morphology and the positive synergistic effect between Mo and Zn. This work provides a novel insight into the design of HEMs in catalytic application.

4.
PLoS One ; 19(5): e0304403, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38809931

RESUMEN

BACKGROUND: In the realm of Gut-Brain axis research, existing evidence points to a complex bidirectional regulatory mechanism between gut microbiota and the brain. However, the question of whether a causal relationship exists between gut microbiota and specific types of brain tumors, such as gliomas, remains unresolved. To address this gap, we employed publicly available Genome-Wide Association Study (GWAS) and MIOBEN databases, conducting an in-depth analysis using Two-Sample Mendelian Randomization (MR). METHOD: We carried out two sets of MR analyses. The preliminary analysis included fewer instrumental variables due to a high genome-wide statistical significance threshold (5×10-8). To enable a more comprehensive and detailed analysis, we adjusted the significance threshold to 1×10-5. We performed linkage disequilibrium analysis (R2 <0.001, clumping distance = 10,000kb) and detailed screening of palindromic SNPs, followed by MR analysis and validation through sensitivity analysis. RESULTS: Our findings reveal a causal relationship between gut microbiota and gliomas. Further confirmation via Inverse Variance Weighting (IVW) identified eight specific microbial communities related to gliomas. Notably, the Peptostreptococcaceae and Olsenella communities appear to have a protective effect, reducing glioma risk. CONCLUSION: This study not only confirms the causal link between gut microbiota and gliomas but also suggests a new avenue for future glioma treatment.


Asunto(s)
Neoplasias Encefálicas , Microbioma Gastrointestinal , Estudio de Asociación del Genoma Completo , Glioma , Análisis de la Aleatorización Mendeliana , Polimorfismo de Nucleótido Simple , Humanos , Glioma/genética , Glioma/microbiología , Microbioma Gastrointestinal/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/microbiología , Eje Cerebro-Intestino , Desequilibrio de Ligamiento
5.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167220, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38718847

RESUMEN

Glioblastoma is one of the most challenging malignancies with high aggressiveness and invasiveness and its development and progression of glioblastoma highly depends on branched-chain amino acid (BCAA) metabolism. The study aimed to investigate effects of inhibition of BCAA metabolism with cytosolic branched-chain amino acid transaminase (BCATc) Inhibitor 2 on glioblastoma, elucidate its underlying mechanisms, and explore therapeutic potential of targeting BCAA metabolism. The expression of BCATc was upregulated in glioblastoma and BCATc Inhibitor 2 precipitated apoptosis both in vivo and in vitro with the activation of Bax/Bcl2/Caspase-3/Caspase-9 axis. In addition, BCATc Inhibitor 2 promoted K63-linkage ubiquitination of mitofusin 2 (Mfn2), which subsequently caused lysosomal degradation of Mfn2, and then oxidative stress, mitochondrial fission and loss of mitochondrial membrane potential. Furthermore, BCATc Inhibitor 2 treatment resulted in metabolic reprogramming, and significant inhibition of expression of ATP5A, UQCRC2, SDHB and COX II, indicative of suppressed oxidative phosphorylation. Moreover, Mfn2 overexpression or scavenging mitochondria-originated reactive oxygen species (ROS) with mito-TEMPO ameliorated BCATc Inhibitor 2-induced oxidative stress, mitochondrial membrane potential disruption and mitochondrial fission, and abrogated the inhibitory effect of BCATc Inhibitor 2 on glioblastoma cells through PI3K/AKT/mTOR signaling. All of these findings indicate suppression of BCAA metabolism promotes glioblastoma cell apoptosis via disruption of Mfn2-mediated mitochondrial dynamics and inhibition of PI3K/AKT/mTOR pathway, and suggest that BCAA metabolism can be targeted for developing therapeutic agents to treat glioblastoma.


Asunto(s)
Aminoácidos de Cadena Ramificada , Apoptosis , GTP Fosfohidrolasas , Glioblastoma , Estrés Oxidativo , Humanos , Estrés Oxidativo/efectos de los fármacos , Apoptosis/efectos de los fármacos , Glioblastoma/metabolismo , Glioblastoma/patología , GTP Fosfohidrolasas/metabolismo , Animales , Aminoácidos de Cadena Ramificada/metabolismo , Línea Celular Tumoral , Ratones , Proteínas Mitocondriales/metabolismo , Ubiquitina/metabolismo , Transducción de Señal/efectos de los fármacos , Masculino , Ubiquitinación/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
6.
Phytomedicine ; 129: 155654, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38723525

RESUMEN

BACKGROUND: Wenqingyin (WQY), an ancient Chinese medicinal agent, has been extensively used in treating infectious ailments throughout history. However, the anti-sepsis mechanism remains unknown. PURPOSE: This study investigated the diverse mechanisms of WQY in mitigating sepsis-induced acute lung injury (ALI). Additionally, the effects of WQY were validated using biological experiments. METHODS: This study combined UHPLC-Orbitrap-HRMS analysis and network pharmacology to predict the potential anti-sepsis mechanism of WQY. Sepsis-induced ALI models were established in vivo via intraperitoneal lipopolysaccharide (LPS) administration and in vitro by LPS-stimulated RAW 264.7 macrophages. Various techniques, including hematoxylin-eosin staining, TUNEL, qPCR, and ELISA, were used to assess lung damage and quantify inflammatory cytokines. Inflammatory cell infiltration was visualized through immunohistochemistry. Hub targets and signaling pathways were identified using Western blotting, immunohistochemistry, and immunofluorescence staining. RESULTS: Seventy-five active components and 237 associated targets were acquired, with 145 of these targets overlapping with processes related to sepsis. Based on the comprehensive protein-protein interaction network analysis, JUN, AKT1, TP53, IL-6, HSP90AA1, CASP3, VEGFA, IL-1ß, RELA, and EGFR may be targets of WQY for sepsis. Analysis of the Kyoto Gene and Genome Encyclopedia revealed that WQY is implicated in the advanced glycation end products/receptor for advanced glycation end products (AGE/RAGE) signaling pathway. In vivo, WQY alleviated sepsis-induced ALI, suppressing proinflammatory cytokines and inhibiting macrophage/neutrophil infiltration. In vitro, WQY reduced TNF-α, IL-6, and IL-1ß in LPS-induced RAW 264.7 macrophages. Furthermore, we verified that WQY protected against sepsis-induced ALI by regulating the RAGE pathway for the first time. Baicalin, coptisine, and paeoniflorin may be the effective components of WQY that inhibit RAGE. CONCLUSION: The primary mechanism of WQY in combating sepsis-induced ALI involves controlling RAGE levels and the PI3K/AKT pathway, suppressing inflammation, and mitigating lung damage. This study establishes a scientific foundation for understanding the mechanism of WQY and its clinical use in treating sepsis.


Asunto(s)
Lesión Pulmonar Aguda , Medicamentos Herbarios Chinos , Lipopolisacáridos , Receptor para Productos Finales de Glicación Avanzada , Sepsis , Transducción de Señal , Lesión Pulmonar Aguda/tratamiento farmacológico , Animales , Sepsis/complicaciones , Sepsis/tratamiento farmacológico , Ratones , Células RAW 264.7 , Medicamentos Herbarios Chinos/farmacología , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Transducción de Señal/efectos de los fármacos , Masculino , Citocinas/metabolismo , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Farmacología en Red , Sustancias Protectoras/farmacología , Productos Finales de Glicación Avanzada/metabolismo
7.
Int J Gen Med ; 17: 2299-2309, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38799198

RESUMEN

Objective: This study aimed to explore specific biochemical indicators and construct a risk prediction model for diabetic kidney disease (DKD) in patients with type 2 diabetes (T2D). Methods: This study included 234 T2D patients, of whom 166 had DKD, at the First Hospital of Jilin University from January 2021 to July 2022. Clinical characteristics, such as age, gender, and typical hematological parameters, were collected and used for modeling. Five machine learning algorithms [Extreme Gradient Boosting (XGBoost), Gradient Boosting Machine (GBM), Support Vector Machine (SVM), Logistic Regression (LR), and Random Forest (RF)] were used to identify critical clinical and pathological features and to build a risk prediction model for DKD. Additionally, clinical data from 70 patients (nT2D = 20, nDKD = 50) were collected for external validation from the Third Hospital of Jilin University. Results: The RF algorithm demonstrated the best performance in predicting progression to DKD, identifying five major indicators: estimated glomerular filtration rate (eGFR), glycated albumin (GA), Uric acid, HbA1c, and Zinc (Zn). The prediction model showed sufficient predictive accuracy with area under the curve (AUC) values of 0.960 (95% CI: 0.936-0.984) and 0.9326 (95% CI: 0.8747-0.9885) in the internal validation set and external validation set, respectively. The diagnostic efficacy of the RF model (AUC = 0.960) was significantly higher than each of the five features screened with the highest feature importance in the RF model. Conclusion: The online DKD risk prediction model constructed using the RF algorithm was selected based on its strong performance in the internal validation.

8.
Heliyon ; 10(8): e30123, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38699735

RESUMEN

Background: Tumor genetic anomalies and immune dysregulation are pivotal in the progression of multiple myeloma (MM). Accurate patient stratification is essential for effective MM management, yet current models fail to comprehensively incorporate both molecular and immune profiles. Methods: We examined 776 samples from the MMRF CoMMpass database, employing univariate regression with LASSO and CIBERSORT algorithms to identify 15 p53-related genes and six immune cells with prognostic significance in MM. A p53-TIC (tumor-infiltrating immune cells) classifier was constructed by calculating scores using the bootstrap-multicox method, which was further validated externally (GSE136337) and through ten-fold internal cross-validation for its predictive reliability and robustness. Results: The p53-TIC classifier demonstrated excellent performance in predicting the prognosis in MM. Specifically, patients in the p53low/TIChigh subgroup had the most favorable prognosis and the lowest tumor mutational burden (TMB). Conversely, those in the p53high/TIClow subgroup, with the least favorable prognosis and the highest TMB, were predicted to have the best anti-PD1 and anti-CTLA4 response rate (40 %), which can be explained by their higher expression of PD1 and CTLA4. The three-year area under the curve (AUC) was 0.80 in the total sample. Conclusions: Our study highlights the potential of an integrated analysis of p53-associated genes and TIC in predicting prognosis and aiding clinical decision-making in MM patients. This finding underscores the significance of comprehending the intricate interplay between genetic abnormalities and immune dysfunction in MM. Further research into this area may lead to the development of more effective treatment strategies.

9.
Sci Rep ; 14(1): 11462, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769348

RESUMEN

Einstein-Podolsky-Rosen (EPR) steering is commonly shared among multiple observers by utilizing unsharp measurements. Nevertheless, their usage is restricted to local measurements and does not encompass all nonlocal measurement-based cases. In this work, a method for finding beneficial local measurement settings has been expanded to include nonlocal measurement cases. This method is applicable for any bipartite state and offers benefits even in scenarios with a high number of measurement settings. Using the Greenberger-Horne-Zeilinger state as an illustration, we show that employing unsharp nonlocal measurements can activate the phenomenon of steering sharing in contrast to using local measurements. Furthermore, our findings demonstrate that nonlocal measurements with unequal strength possess a greater activation capability compared to those with equal strength. Our activation method generates fresh concepts for conservation and recycling quantum resources.

10.
Pharmacol Ther ; 257: 108639, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38561088

RESUMEN

Sirtuin3 (SIRT3) is a nicotinamide adenine dinucleotide (NAD+)-dependent protein deacetylase located in the mitochondria, which mainly regulates the acetylation of mitochondrial proteins. In addition, SIRT3 is involved in critical biological processes, including oxidative stress, inflammation, DNA damage, and apoptosis, all of which are closely related to the progression of liver disease. Liver fibrosis characterized by the deposition of extracellular matrix is a result of long termed or repeated liver damage, frequently accompanied by damaged hepatocytes, the recruitment of inflammatory cells, and the activation of hepatic stellate cells. Based on the functions and pharmacology of SIRT3, we will review its roles in liver fibrosis from three aspects: First, the main functions and pharmacological effects of SIRT3 were investigated based on its structure. Second, the roles of SIRT3 in major cells in the liver were summarized to reveal its mechanism in developing liver fibrosis. Last, drugs that regulate SIRT3 to prevent and treat liver fibrosis were discussed. In conclusion, exploring the pharmacological effects of SIRT3, especially in the liver, may be a potential strategy for treating liver fibrosis.


Asunto(s)
Hepatopatías , Sirtuina 3 , Humanos , Sirtuina 3/genética , Sirtuina 3/metabolismo , Proteínas Mitocondriales , Estrés Oxidativo/fisiología , Cirrosis Hepática/tratamiento farmacológico
11.
PLoS One ; 19(4): e0300835, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38652719

RESUMEN

BACKGROUND: Previous observational studies have demonstrated a connection between the risk of Type 2 diabetes mellitus (T2DM) and gastrointestinal problems brought on by Helicobacter pylori (H. pylori) infection. However, little is understood about how these factors impact on T2DM. METHOD: This study used data from the GWAS database on H. pylori antibodies, gastroduodenal ulcers, chronic gastritis, gastric cancer, T2DM and information on potential mediators: obesity, glycosylated hemoglobin (HbA1c) and blood glucose levels. Using univariate Mendelian randomization (MR) and multivariate MR (MVMR) analyses to evaluate the relationship between H. pylori and associated gastrointestinal diseases with the risk of developing of T2DM and explore the presence of mediators to ascertain the probable mechanisms. RESULTS: Genetic evidence suggests that H. pylori IgG antibody (P = 0.006, b = 0.0945, OR = 1.0995, 95% CI = 1.023-1.176), H. pylori GroEL antibody (P = 0.028, OR = 1.033, 95% CI = 1.004-1.064), gastroduodenal ulcers (P = 0.019, OR = 1.036, 95% CI = 1.006-1.068) and chronic gastritis (P = 0.005, OR = 1.042, 95% CI = 1.012-1.074) are all linked to an increased risk of T2DM, additionally, H. pylori IgG antibody is associated with obesity (P = 0.034, OR = 1.03, 95% CI = 1.002-1.055). The results of MVMR showed that the pathogenic relationship between H. pylori GroEL antibody and gastroduodenal ulcer in T2DM is mediated by blood glucose level and obesity, respectively. CONCLUSION: Our study found that H. pylori IgG antibody, H. pylori GroEL antibody, gastroduodenal ulcer and chronic gastritis are all related to t T2DM, and blood glucose level and obesity mediate the development of H. pylori GroEL antibody and gastroduodenal ulcer on T2DM, respectively. These findings may inform new prevention and intervention strategies for T2DM.


Asunto(s)
Diabetes Mellitus Tipo 2 , Infecciones por Helicobacter , Helicobacter pylori , Análisis de la Aleatorización Mendeliana , Humanos , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/microbiología , Diabetes Mellitus Tipo 2/genética , Infecciones por Helicobacter/complicaciones , Infecciones por Helicobacter/microbiología , Anticuerpos Antibacterianos/sangre , Enfermedades Gastrointestinales/microbiología , Enfermedades Gastrointestinales/complicaciones , Obesidad/complicaciones , Obesidad/microbiología , Estudio de Asociación del Genoma Completo , Úlcera Péptica/microbiología , Úlcera Péptica/epidemiología , Gastritis/microbiología , Gastritis/complicaciones , Chaperonina 60/genética , Factores de Riesgo
12.
Front Pharmacol ; 15: 1370900, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38628648

RESUMEN

Osteoporosis characterized by decreased bone density and mass, is a systemic bone disease with the destruction of microstructure and increase in fragility. Osteoporosis is attributed to multiple causes, including aging, inflammation, diabetes mellitus, and other factors induced by the adverse effects of medications. Without treatment, osteoporosis will further progress and bring great trouble to human life. Due to the various causes, the treatment of osteoporosis is mainly aimed at improving bone metabolism, inhibiting bone resorption, and promoting bone formation. Although the currently approved drugs can reduce the risk of fragility fractures in individuals, a single drug has limitations in terms of safety and effectiveness. By contrast, traditional Chinese medicine (TCM), a characteristic discipline in China, including syndrome differentiation, Chinese medicine prescription, and active ingredients, shows unique advantages in the treatment of osteoporosis and has received attention all over the world. Therefore, this review summarized the pathogenic factors, pathogenesis, therapy limitations, and advantages of TCM, aiming at providing new ideas for the prevention and treatment of OP.

13.
Heliyon ; 10(8): e29611, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38660264

RESUMEN

Background: The impact of climate on zoonotic infectious diseases (or can be referred to as climate-sensitive zoonotic diseases) is confirmed. Yet, research on the association between brucellosis and climate is limited. We aim to understand the impact of meteorological factors on the risk of brucellosis, especially in northeastern China. Methods: Monthly incidence data for brucellosis from 2005 to 2019 in Jilin province was obtained from the China Information System for Disease Control and Prevention (CDC). Monthly meteorological data (average temperature (°C), wind velocity (m/s), relative humidity (%), sunshine hours (h), air pressure (hPa), and rainfall (mm)) in Jilin province, China, from 2005 to 2019 were collected from the China Meteorological Information Center (http://data.cma.cn/). The Spearman's correlation was used to choose among the several meteorological variables. A distributed lag non-linear model (DLNM) was used to estimate the lag and non-linearity effect of meteorological factors on the risk of brucellosis. Results: A total of 24,921 cases of human brucellosis were reported in Jilin province from 2005 to 2019, with the peak epidemic period from April to June. Low temperature and low sunshine hours were protective factors for the brucellosis, where the minimum RR values were 0.50 (95 % CI = 0.31-0.82) for -13.7 °C with 1 month lag and 0.61 (95 % CI = 0.41-0.91) for 110.5h with 2 months lag, respectively. High temperature, high sunshine hours, and low wind velocity were risk factors for brucellosis. The maximum RR values were 2.91 (95 % CI = 1.43-5.92, lag = 1, 25.7 °C), 1.85 (95 % CI = 1.23-2.80, lag = 2, 332.6h), and 1.68 (95 % CI = 1.25-2.26, lag = 2, 1.4 m/s). The trends in the impact of extreme temperature and extreme sunshine hours on the transmission of brucellosis were generally consistent. Conclusion: High temperature, high sunshine hours, and low wind velocity are more conducive to the transmission of brucellosis with an obvious lag effect. The results will deepen the understanding of the relationship between climate and brucellosis and provide a reference for formulating relevant public health policies.

14.
iScience ; 27(5): 109547, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38660400

RESUMEN

Circulating tumor cell clusters/micro-emboli (CTM) possess greater metastatic capacity and survival advantage compared to individual circulating tumor cell (CTC). However, the formation of CTM subtypes and their role in tumor metastasis remain unclear. In this study, we used a microfluidic Cluster-Chip with easy operation and high efficiency to isolate CTM from peripheral blood, which confirmed their correlation with clinicopathological features and identified the critical role of CTC-platelet clusters in breast cancer metastasis. The correlation between platelets and CTM function was further confirmed in a mouse model and RNA sequencing of CTM identified high-expressed genes related to hypoxia stimulation and platelet activation which possibly suggested the correlation of hypoxia and CTC-platelet cluster formation. In conclusion, we successfully developed the Cluster-Chip platform to realize the clinical capture of CTMs and analyze the biological properties of CTC-platelet clusters, which could benefit the design of potential treatment regimens to prevent CTM-mediated metastasis and tumor malignant progression.

15.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1353-1360, 2024 Mar.
Artículo en Chino | MEDLINE | ID: mdl-38621983

RESUMEN

This study aims to investigate the effect of Xixin Decoction on the T helper 17 cell(Th17)/regulatory T cell(Treg) ba-lance of intestinal mucosa and the expression of related transcription factors in the senescence-accelerated mouse-prone 8(SAMP8) model. Fifty 14-week male mice of SAMP8 were randomized by the random number table method into model group, probiotics group, and high-, medium-, and low-dose Xixin Decoction groups, with 10 mice in each group. Ten 14-week male mice of senescence-acce-lerated mouse-resistant 1(SAMR1) served as control group. After 10 weeks of feeding, the mice were administrated with correspon-ding drugs for 10 weeks. Morris water maze test was carried out to examine the learning and memory abilities of mice. Enzyme-linked immunosorbent assay(ELISA) was employed to determine the content of secretory immunoglobulin A(SIgA) in the intestinal mucosa, and flow cytometry to detect the percentage content of Th17 and Treg in the intestinal mucosa. Western blot was performed to determine the protein levels of retinoid-related orphan receptor gamma t(RORγt) and forkhead box p3(Foxp3) in the mouse colon tissue. Compared with control group, the escape latency of mice in model group was significantly prolonged(P<0.01), and the number of times of crossing the platform and the residence time in the target quadrant were significantly reduced within 60 s(P<0.01), intestinal mucosal SIgA content was significantly decreased(P<0.01), Th17 content was increased(P<0.05), Treg content was decreased(P<0.01), the expression of RORγt protein was increased and Foxp3 protein was decreased in colon(P<0.01). Compared with the model group, high-dose Xixin Decoction group improved the learning and memory ability(P<0.05 or P<0.01). Probiotics group and high-and medium-dose Xixin Decoction group increased the content of SIgA in intestinal mucosa(P<0.05 or P<0.01), decreased percentage content of Th17 and increased the percentage content of Treg in intestinal mucosa(P<0.05 or P<0.01). Furthermore, they down-regulated the protein level of RORγt and up-regulated the protein level of Foxp3 in the intestinal mucosa(P<0.01). In conclusion, Xixin Decoction may act on intestinal mucosal immune barrier, affect gut-brain information exchange, and improve the learning and memory ability of SAMP8 by promoting SIgA secretion and regulating the Th17/Treg balance and the expression of RORγt and Foxp3.


Asunto(s)
Linfocitos T Reguladores , Células Th17 , Ratones , Masculino , Animales , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Inmunoglobulina A Secretora/farmacología
16.
BMC Cancer ; 24(1): 507, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38654231

RESUMEN

BACKGROUND: Circulating tumor cell (CTC) clusters play a critical role in carcinoma metastasis. However, the rarity of CTC clusters and the limitations of capture techniques have retarded the research progress. In vitro CTC clusters model can help to further understand the biological properties of CTC clusters and their clinical significance. Therefore, it is necessary to establish reliable in vitro methodological models to form CTC clusters whose biological characteristics are very similar to clinical CTC clusters. METHODS: The assays of immunofluorescence, transmission electron microscopy, EdU incorporation, cell adhension and microfluidic chips were used. The experimental metastasis model in mice was used. RESULTS: We systematically optimized the culture methods to form in vitro CTC clusters model, and more importantly, evaluated it with reference to the biological capabilities of reported clinical CTC clusters. In vitro CTC clusters exhibited a high degree of similarity to the reported pathological characteristics of CTC clusters isolated from patients at different stages of tumor metastasis, including the appearance morphology, size, adhesive and tight junctions-associated proteins, and other indicators of CTC clusters. Furthermore, in vivo experiments also demonstrated that the CTC clusters had an enhanced ability to grow and metastasize compared to single CTC. CONCLUSIONS: The study provides a reliable model to help to obtain comparatively stable and qualified CTC clusters in vitro, propelling the studies on tumor metastasis.


Asunto(s)
Neoplasias de la Mama , Técnicas de Cultivo de Célula , Células Neoplásicas Circulantes , Células Neoplásicas Circulantes/patología , Animales , Neoplasias de la Mama/patología , Humanos , Ratones , Femenino , Técnicas de Cultivo de Célula/métodos , Línea Celular Tumoral , Metástasis de la Neoplasia
17.
J Pharm Anal ; 14(5): 100927, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38646453

RESUMEN

Cornus officinalis, a medicinal and edible plant known for its liver-nourishing properties, has shown promise in inhibiting the activation of hepatic stellate cells (HSCs), crucial indicators of hepatic fibrosis, especially when processed by high pressure wine steaming (HPWS). Herein, this study aims to investigate the regulatory effects of cornus officinalis, both in its raw and HPWS forms, on inflammation and apoptosis in liver fibrosis and their underlying mechanisms. In vivo liver fibrosis models were established by subcutaneous injection of CCl4, while in vitro HSCs were exposed to transforming growth factor-ß (TGF-ß). These findings demonstrated that cornus officinalis with HPWS conspicuously ameliorated histopathological injury, reduced the release of proinflammatory factors, and decreased collagen deposition in CCl4-induced rats compared to its raw form. Utilizing ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometer (UHPLC-QTOF-MS) combined with network analysis, we identified that the pharmacological effects of the changed components of cornus officinalis before and after HPWS, primarily centered on the adenosine phosphate (AMP)-activated protein kinase (AMPK) pathway. Of note, cornus officinalis activated AMPK and Sirtuin 3 (SIRT3), promoting the apoptosis of activated HSCs through the caspase cascade by regulating caspase3, caspase6 and caspase9. siRNA experiments showed that cornus officinalis could regulate AMPK activity and its mediated-apoptosis through SIRT3. In conclusion, cornus officinalis exhibited the ability to reduce inflammation and apoptosis, with the SIRT3-AMPK signaling pathway identified as a potential mechanism underlying the synergistic effect of cornus officinalis with HPWS on anti-liver fibrosis.

18.
J Ethnopharmacol ; 330: 118214, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-38641076

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Ferroptosis, a recently identified non-apoptotic form of cell death reliant on iron, is distinguished by an escalation in lipid reactive oxygen species (ROS) that are iron-dependent. This phenomenon has a strong correlation with irregularities in iron metabolism and lipid peroxidation. Salvia miltiorrhiza Bunge (DS), a medicinal herb frequently utilized in China, is highly esteemed for its therapeutic effectiveness in enhancing blood circulation and ameliorating blood stasis, particularly during the treatment of cardiovascular diseases (CVDs). Numerous pharmacological studies have identified that DS manifests antioxidative stress effects as well as inhibits lipid peroxidation. However, ambiguity persists regarding the potential of DS to impede ferroptosis in cardiomyocytes and subsequently improve myocardial damage post-myocardial infarction (MI). AIM OF THE STUDY: The present work focused on investigating whether DS could be used to prevent the ferroptosis of cardiomyocytes and improve post-MI myocardial damage. MATERIALS AND METHODS: In vivo experiments: Through ligation of the left anterior descending coronary artery, we constructed both a wild-type (WT) and NF-E2 p45-related factor 2 knockout (Nrf2-/-) mouse model of MI. Effects of DS and ferrostatin-1 (Fer-1) on post-MI cardiomyocyte ferroptosis were examined through detecting ferroptosis and myocardial damage-related indicators as well as Nrf2 signaling-associated protein levels. In vitro experiments: Erastin was used for stimulating H9C2 cardiomyocytes to construct an in vitro ferroptosis cardiomyocyte model. Effects of DS and Fer-1 on cardiomyocyte ferroptosis were determined based on ferroptosis-related indicators and Nrf2 signaling-associated protein levels. Additionally, inhibitor and activator of Nrf2 were used for confirming the impact of Nrf2 signaling on DS's effect on cardiomyocyte ferroptosis. RESULTS: In vivo: In comparison to the model group, DS suppressed ferroptosis in cardiomyocytes post-MI and ameliorated myocardial damage by inducing Nrf2 signaling-related proteins (Nrf2, xCT, GPX4), diminishing tissue ferrous iron and malondialdehyde (MDA) content. Additionally, it enhanced glutathione (GSH) levels and total superoxide dismutase (SOD) activity, effects that are aligned with those of Fer-1. Moreover, the effect of DS on alleviating cardiomyocyte ferroptosis after MI could be partly inhibited through Nrf2 knockdown. In vitro: Compared with the erastin group, DS inhibited cardiomyocyte ferroptosis by promoting the expression of Nrf2 signaling-related proteins, reducing ferrous iron, ROS, and MDA levels, but increasing GSH content and SOD activity, consistent with the effect of Fer-1. Additionally, Nrf2 inhibition increased erastin-mediated ferroptosis of cardiomyocytes through decreasing Nrf2 signaling-related protein expressions. Co-treatment with DS and Nrf2 activator failed to further enhance the anti-ferroptosis effect of DS. CONCLUSION: MI is accompanied by cardiomyocyte ferroptosis, whose underlying mechanism is probably associated with Nrf2 signaling inhibition. DS possibly suppresses ferroptosis of cardiomyocytes and improves myocardial damage after MI through activating Nrf2 signaling.


Asunto(s)
Ferroptosis , Ratones Endogámicos C57BL , Ratones Noqueados , Infarto del Miocardio , Miocitos Cardíacos , Factor 2 Relacionado con NF-E2 , Salvia miltiorrhiza , Transducción de Señal , Factor 2 Relacionado con NF-E2/metabolismo , Ferroptosis/efectos de los fármacos , Animales , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Salvia miltiorrhiza/química , Transducción de Señal/efectos de los fármacos , Masculino , Ratones , Ratas , Modelos Animales de Enfermedad , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Línea Celular
19.
Adv Mater ; 36(23): e2313511, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38597395

RESUMEN

Moiré superlattices, consisting of rotationally aligned 2D atomically thin layers, provide a highly novel platform for the study of correlated quantum phenomena. However, reliable and efficient construction of moiré superlattices is challenging because of difficulties to accurately angle-align small exfoliated 2D layers and the need to shun wet-transfer processes. Here, efficient and precise construction of various moiré superlattices is demonstrated by picking up and stacking large-area 2D mono- or few-layer crystals with predetermined crystal axes, made possible by a gold-template-assisted mechanical exfoliation method. The exfoliated 2D layers are semiconductors, superconductors, or magnets and their high quality is confirmed by photoluminescence and Raman spectra and by electrical transport measurements of fabricated field-effect transistors and Hall devices. Twisted homobilayers with angle-twisting accuracy of ≈0.3°, twisted heterobilayers with sub-degree angle-alignment accuracy, and multilayer superlattices are precisely constructed and characterized by their moiré patterns, interlayer excitons, and second harmonic generation. The present study paves the way for exploring emergent phenomena in moiré superlattices.

20.
Molecules ; 29(6)2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38542890

RESUMEN

An unparalleled copper(I)-catalyzed synthesis of 1,3,4-oxadiazoles from tertiary amines in one step has been described. The one-pot reactions involving (N-isocyanimine)triphenylphosphorane, tertiary amines, and carboxylic acids resulted in the formation of 1,3,4-oxadiazoles in moderate to good yields through a consecutive oxidative Ugi/aza-Wittig reaction, enabling the direct functionalization of sp3 C-H bonds adjacent to the nitrogen atom. This method offered several notable advantages, including ligands-free, exceptional productivity and a high functional group tolerance. The preliminary biological evaluation demonstrated that compound 4f inhibited hepatoma cells efficiently, suggesting potentially broad applications of the approach for synthesis and medicinal chemistry.


Asunto(s)
Cobre , Compuestos Organofosforados , Oxadiazoles , Cobre/química , Oxadiazoles/química , Aminas/química , Catálisis , Estrés Oxidativo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA