Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Biomed Mater ; 19(3)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38636492

RESUMEN

Three-dimensional (3D) printing has emerged as a transformative technology for tissue engineering, enabling the production of structures that closely emulate the intricate architecture and mechanical properties of native biological tissues. However, the fabrication of complex microstructures with high accuracy using biocompatible, degradable thermoplastic elastomers poses significant technical obstacles. This is primarily due to the inherent soft-matter nature of such materials, which complicates real-time control of micro-squeezing, resulting in low fidelity or even failure. In this study, we employ Poly (L-lactide-co-ϵ-caprolactone) (PLCL) as a model material and introduce a novel framework for high-precision 3D printing based on the material plasticization process. This approach significantly enhances the dynamic responsiveness of the start-stop transition during printing, thereby reducing harmful errors by up to 93%. Leveraging this enhanced material, we have efficiently fabricated arrays of multi-branched vascular scaffolds that exhibit exceptional morphological fidelity and possess elastic moduli that faithfully approximate the physiological modulus spectrum of native blood vessels, ranging from 2.5 to 45 MPa. The methodology we propose for the compatibilization and modification of elastomeric materials addresses the challenge of real-time precision control, representing a significant advancement in the domain of melt polymer 3D printing. This innovation holds considerable promise for the creation of detailed multi-branch vascular scaffolds and other sophisticated organotypic structures critical to advancing tissue engineering and regenerative medicine.


Asunto(s)
Materiales Biocompatibles , Elastómeros , Poliésteres , Impresión Tridimensional , Ingeniería de Tejidos , Andamios del Tejido , Elastómeros/química , Andamios del Tejido/química , Ingeniería de Tejidos/métodos , Poliésteres/química , Materiales Biocompatibles/química , Módulo de Elasticidad , Ensayo de Materiales , Humanos , Estrés Mecánico , Vasos Sanguíneos , Prótesis Vascular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA