Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
J Cachexia Sarcopenia Muscle ; 9(5): 975-986, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30207087

RESUMEN

BACKGROUND: A pharmacologic strategy for age-related muscle weakness is desired to improve mortality and disability in the elderly. Angiotensin-converting enzyme 2 (ACE2) cleaves angiotensin II into angiotensin 1-7, a peptide known to protect against acute and chronic skeletal muscle injury in rodents. Since physiological aging induces muscle weakness via mechanisms distinct from other muscle disorders, the role of ACE2-angiotensin 1-7 in age-related muscle weakness remains undetermined. Here, we investigated whether deletion of ACE2 alters the development of muscle weakness by aging and whether angiotensin 1-7 reverses muscle weakness in older mice. METHODS: After periodic measurement of grip strength and running distance in male ACE2KO and wild-type mice until 24 months of age, we infused angiotensin 1-7 or vehicle for 4 weeks, and measured grip strength, and excised tissues. Tissues were also excised from younger (3-month-old) and middle-aged (15-month-old) mice. Microarray analysis of RNA was performed using tibialis anterior (TA) muscles from middle-aged mice, and some genes were further tested using RT-PCR. RESULTS: Grip strength of ACE2KO mice was reduced at 6 months and was persistently lower than that of wild-type mice (p < 0.01 at 6, 12, 18, and 24-month-old). Running distance of ACE2KO mice was shorter than that of wild-type mice only at 24 months of age [371 ± 26 vs. 479 ± 24 (m), p < 0.01]. Angiotensin 1-7 improved grip strength in both types of older mice, with larger effects observed in ACE2KO mice (% increase, 3.8 ± 1.5 and 13.3 ± 3.1 in wild type and ACE2KO mice, respectively). Older, but not middle-aged ACE2KO mice had higher oxygen consumption assessed by a metabolic cage than age-matched wild-type mice. Angiotensin 1-7 infusion modestly increased oxygen consumption in older mice. There was no difference in a wheel-running activity or glucose tolerance between ACE2KO and wild-type mice and between mice with vehicle and angiotensin 1-7 infusion. Analysis of TA muscles revealed that p16INK4a, a senescence-associated gene, and central nuclei of myofibers increased in middle-aged, but not younger ACE2KO mice. p16INK4a and central nuclei increased in TA muscles of older wild-type mice, but the differences between ACE2KO and wild-type mice remained significant (p < 0.01). Angiotensin 1-7 did not alter the expression of p16INK4a or central nuclei in TA muscles of both types of mice. Muscle ACE2 expression of wild-type mice was the lowest at middle age (2.6 times lower than younger age, p < 0.05). CONCLUSIONS: Deletion of ACE2 induced the early manifestation of muscle weakness with signatures of muscle senescence. Angiotensin 1-7 improved muscle function in older mice, supporting future application of the peptide or its analogues in the treatment of muscle weakness in the elderly population.


Asunto(s)
Angiotensina I/metabolismo , Debilidad Muscular/etiología , Debilidad Muscular/metabolismo , Músculo Esquelético/metabolismo , Fragmentos de Péptidos/metabolismo , Peptidil-Dipeptidasa A/deficiencia , Factores de Edad , Enzima Convertidora de Angiotensina 2 , Animales , Biomarcadores , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Prueba de Tolerancia a la Glucosa , Ratones , Ratones Noqueados , Debilidad Muscular/fisiopatología , Músculo Esquelético/fisiopatología , Consumo de Oxígeno , Condicionamiento Físico Animal , Transcriptoma
2.
FASEB J ; 29(8): 3342-56, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25877213

RESUMEN

The angiotensin II type 1 receptor (AT1) is a 7-transmembrane domain GPCR that when activated by its ligand angiotensin II, generates signaling events promoting vascular dysfunction and the development of cardiovascular disease. Here, we show that the single-transmembrane oxidized LDL (oxLDL) receptor (LOX-1) resides in proximity to AT1 on cell-surface membranes and that binding of oxLDL to LOX-1 can allosterically activate AT1-dependent signaling events. oxLDL-induced signaling events in human vascular endothelial cells were abolished by knockdown of AT1 and inhibited by AT1 blockade (ARB). oxLDL increased cytosolic G protein by 350% in Chinese hamster ovary (CHO) cells with genetically induced expression of AT1 and LOX-1, whereas little increase was observed in CHO cells expressing only LOX-1. Immunoprecipitation and in situ proximity ligation assay (PLA) assays in CHO cells revealed the presence of cell-surface complexes involving LOX-1 and AT1. Chimeric analysis showed that oxLDL-induced AT1 signaling events are mediated via interactions between the intracellular domain of LOX-1 and AT1 that activate AT1. oxLDL-induced impairment of endothelium-dependent vascular relaxation of vascular ring from mouse thoracic aorta was abolished by ARB or genetic deletion of AT1. These findings reveal a novel pathway for AT1 activation and suggest a new mechanism whereby oxLDL may be promoting risk for cardiovascular disease.


Asunto(s)
Lectinas/metabolismo , Lipoproteínas LDL/metabolismo , Receptor de Angiotensina Tipo 1/metabolismo , Receptores de LDL Oxidadas/metabolismo , Animales , Células CHO , Células COS , Línea Celular , Línea Celular Tumoral , Chlorocebus aethiops , Cricetulus , Células Endoteliales/metabolismo , Endotelio Vascular/metabolismo , Humanos , Transducción de Señal/fisiología
3.
Diabetes ; 62(1): 223-33, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22933108

RESUMEN

ACE type 2 (ACE2) functions as a negative regulator of the renin-angiotensin system by cleaving angiotensin II (AII) into angiotensin 1-7 (A1-7). This study assessed the role of endogenous ACE2 in maintaining insulin sensitivity. Twelve-week-old male ACE2 knockout (ACE2KO) mice had normal insulin sensitivities when fed a standard diet. AII infusion or a high-fat, high-sucrose (HFHS) diet impaired glucose tolerance and insulin sensitivity more severely in ACE2KO mice than in their wild-type (WT) littermates. The strain difference in glucose tolerance was not eliminated by an AII receptor type 1 (AT1) blocker but was eradicated by A1-7 or an AT1 blocker combined with the A1-7 inhibitor (A779). The expression of GLUT4 and a transcriptional factor, myocyte enhancer factor (MEF) 2A, was dramatically reduced in the skeletal muscles of the standard diet-fed ACE2KO mice. The expression of GLUT4 and MEF2A was increased by A1-7 in ACE2KO mice and decreased by A779 in WT mice. A1-7 enhanced upregulation of MEF2A and GLUT4 during differentiation of myoblast cells. In conclusion, ACE2 protects against high-calorie diet-induced insulin resistance in mice. This mechanism may involve the transcriptional regulation of GLUT4 via an A1-7-dependent pathway.


Asunto(s)
Transportador de Glucosa de Tipo 4/genética , Resistencia a la Insulina , Peptidil-Dipeptidasa A/fisiología , Angiotensina I/farmacología , Angiotensina II/farmacología , Enzima Convertidora de Angiotensina 2 , Animales , Dieta Alta en Grasa , Carbohidratos de la Dieta/administración & dosificación , Ingestión de Energía , Glucosa/metabolismo , Intolerancia a la Glucosa , Transportador de Glucosa de Tipo 4/fisiología , Homeostasis , Factores de Transcripción MEF2 , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , Factores Reguladores Miogénicos/genética , Fragmentos de Péptidos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA