Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Mol Neurobiol ; 59(5): 2962-2976, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35249200

RESUMEN

Amyotrophic lateral sclerosis (ALS) attacks the corticomotor system, with motor cortex function affected early in disease. Younger females have a lower relative risk of succumbing to ALS than males and older females, implicating a role for female sex hormones in disease progression. However, the mechanisms driving this dimorphic incidence are still largely unknown. We endeavoured to determine if estrogen mitigates disease progression and pathogenesis, focussing upon the dendritic spine as a site of action. Using two-photon live imaging we identify, in the prpTDP-43A315T mouse model of ALS, that dendritic spines in the male motor cortex have a reduced capacity for remodelling than their wild-type controls. In contrast, females show higher capacity for remodelling, with peak plasticity corresponding to highest estrogen levels during the estrous cycle. Estrogen manipulation through ovariectomies and estrogen replacement with 17ß estradiol in vivo was found to significantly alter spine density and mitigate disease severity. Collectively, these findings reveal that synpatic plasticity is reduced in ALS, which can be amelioriated with estrogen, in conjuction with improved disease outcomes.


Asunto(s)
Esclerosis Amiotrófica Lateral , Esclerosis Amiotrófica Lateral/patología , Animales , Dendritas/patología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Estrógenos/farmacología , Femenino , Masculino , Ratones , Ratones Transgénicos , Plasticidad Neuronal
2.
Neuron ; 109(21): 3436-3455.e9, 2021 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-34508667

RESUMEN

An inhibitory extracellular milieu and neuron-intrinsic processes prevent axons from regenerating in the adult central nervous system (CNS). Here we show how the two aspects are interwoven. Genetic loss-of-function experiments determine that the small GTPase RhoA relays extracellular inhibitory signals to the cytoskeleton by adapting mechanisms set in place during neuronal polarization. In response to extracellular inhibitors, neuronal RhoA restricts axon regeneration by activating myosin II to compact actin and, thereby, restrain microtubule protrusion. However, astrocytic RhoA restricts injury-induced astrogliosis through myosin II independent of microtubules by activating Yes-activated protein (YAP) signaling. Cell-type-specific deletion in spinal-cord-injured mice shows that neuronal RhoA activation prevents axon regeneration, whereas astrocytic RhoA is beneficial for regenerating axons. These data demonstrate how extracellular inhibitors regulate axon regeneration, shed light on the capacity of reactive astrocytes to be growth inhibitory after CNS injury, and reveal cell-specific RhoA targeting as a promising therapeutic avenue.


Asunto(s)
Actinas , Axones , Enfermedades del Sistema Nervioso Central , Regeneración Nerviosa , Proteína de Unión al GTP rhoA , Actinas/metabolismo , Animales , Astrocitos/metabolismo , Axones/metabolismo , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/patología , Enfermedades del Sistema Nervioso Central/metabolismo , Enfermedades del Sistema Nervioso Central/patología , Ratones , Regeneración Nerviosa/fisiología , Proteína de Unión al GTP rhoA/metabolismo
3.
Cereb Cortex ; 27(7): 3630-3647, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27496536

RESUMEN

TDP-43 is a major protein component of pathological neuronal inclusions that are present in frontotemporal dementia and amyotrophic lateral sclerosis. We report that TDP-43 plays an important role in dendritic spine formation in the cortex. The density of spines on YFP+ pyramidal neurons in both the motor and somatosensory cortex of Thy1-YFP mice, increased significantly from postnatal day 30 (P30), to peak at P60, before being pruned by P90. By comparison, dendritic spine density was significantly reduced in the motor cortex of Thy1-YFP::TDP-43A315T transgenic mice prior to symptom onset (P60), and in the motor and somatosensory cortex at symptom onset (P90). Morphological spine-type analysis revealed that there was a significant impairment in the development of basal mushroom spines in the motor cortex of Thy1-YFP::TDP-43A315T mice compared to Thy1-YFP control. Furthermore, reductions in spine density corresponded to mislocalisation of TDP-43 immunoreactivity and lowered efficacy of synaptic transmission as determined by electrophysiology at P60. We conclude that mutated TDP-43 has a significant pathological effect at the dendritic spine that is associated with attenuated neural transmission.


Asunto(s)
Corteza Cerebral/patología , Espinas Dendríticas/ultraestructura , Enfermedades Neurodegenerativas/etiología , Células Piramidales/patología , Sinapsis/ultraestructura , Proteinopatías TDP-43/complicaciones , Proteinopatías TDP-43/patología , Potenciales de Acción/fisiología , Factores de Edad , Animales , Proteínas Bacterianas/genética , Espinas Dendríticas/patología , Proteínas Luminiscentes/genética , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Transgénicos , Microscopía Confocal , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Técnicas de Placa-Clamp , Proteinopatías TDP-43/genética , Antígenos Thy-1/genética , Antígenos Thy-1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA