Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Int J Mol Sci ; 25(14)2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39062836

RESUMEN

Common challenges in cryogenic electron microscopy, such as orientation bias, conformational diversity, and 3D misclassification, complicate single particle analysis and lead to significant resource expenditure. We previously introduced an in silico method using the maximum Feret diameter distribution, the Feret signature, to characterize sample heterogeneity of disc-shaped samples. Here, we expanded the Feret signature methodology to identify preferred orientations of samples containing arbitrary shapes with only about 1000 particles required. This method enables real-time adjustments of data acquisition parameters for optimizing data collection strategies or aiding in decisions to discontinue ineffective imaging sessions. Beyond detecting preferred orientations, the Feret signature approach can serve as an early-warning system for inconsistencies in classification during initial image processing steps, a capability that allows for strategic adjustments in data processing. These features establish the Feret signature as a valuable auxiliary tool in the context of single particle analysis, significantly accelerating the structure determination process.


Asunto(s)
Microscopía por Crioelectrón , Procesamiento de Imagen Asistido por Computador , Flujo de Trabajo , Microscopía por Crioelectrón/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Algoritmos , Imagenología Tridimensional/métodos
2.
Int J Mol Sci ; 25(13)2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-39000548

RESUMEN

Gold nanoparticles with sizes in the range of 5-15 nm are a standard method of providing fiducial markers to assist with alignment during reconstruction in cryogenic electron tomography. However, due to their high electron density and resulting contrast when compared to standard cellular or biological samples, they introduce artifacts such as streaking in the reconstructed tomograms. Here, we demonstrate a tool that automatically detects these nanoparticles and suppresses them by replacing them with a local background as a post-processing step, providing a cleaner tomogram without removing any sample relevant information or introducing new artifacts or edge effects from uniform density replacements.


Asunto(s)
Tomografía con Microscopio Electrónico , Marcadores Fiduciales , Oro , Nanopartículas del Metal , Oro/química , Nanopartículas del Metal/química , Tomografía con Microscopio Electrónico/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Artefactos , Algoritmos
3.
Commun Chem ; 7(1): 164, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39079963

RESUMEN

Actin filament assembly and the regulation of its mechanical properties are fundamental processes essential for eukaryotic cell function. Residue E167 in vertebrate actins forms an inter-subunit salt bridge with residue K61 of the adjacent subunit. Saccharomyces cerevisiae actin filaments are more flexible than vertebrate filaments and have an alanine at this position (A167). Substitution of this alanine for a glutamic acid (A167E) confers Saccharomyces cerevisiae actin filaments with salt-dependent stiffness similar to vertebrate actins. We developed an optimized cryogenic electron microscopy workflow refining sample preparation and vitrification to obtain near-atomic resolution structures of wild-type and A167E mutant Saccharomyces cerevisiae actin filaments. The difference between these structures allowed us to pinpoint the potential binding site of a filament-associated cation that controls the stiffness of the filaments in vertebrate and A167E Saccharomyces cerevisiae actins. Through an analysis of previously published high-resolution reconstructions of vertebrate actin filaments, along with a newly determined high-resolution vertebrate actin structure in the absence of potassium, we identified a unique peak near residue 167 consistent with the binding of a magnesium ion. Our findings show how magnesium can contribute to filament stiffening by directly bridging actin subunits and allosterically affecting the orientation of the DNase-I binding loop of actin, which plays a regulatory role in modulating actin filament stiffness and interactions with regulatory proteins.

4.
J Microsc ; 294(3): 420-439, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38747464

RESUMEN

In September 2023, the two largest bioimaging networks in the Americas, Latin America Bioimaging (LABI) and BioImaging North America (BINA), came together during a 1-week meeting in Mexico. This meeting provided opportunities for participants to interact closely with decision-makers from imaging core facilities across the Americas. The meeting was held in a hybrid format and attended in-person by imaging scientists from across the Americas, including Canada, the United States, Mexico, Colombia, Peru, Argentina, Chile, Brazil and Uruguay. The aims of the meeting were to discuss progress achieved over the past year, to foster networking and collaborative efforts among members of both communities, to bring together key members of the international imaging community to promote the exchange of experience and expertise, to engage with industry partners, and to establish future directions within each individual network, as well as common goals. This meeting report summarises the discussions exchanged, the achievements shared, and the goals set during the LABIxBINA2023: Bioimaging across the Americas meeting.

5.
ArXiv ; 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38351940

RESUMEN

Together with the molecular knowledge of genes and proteins, biological images promise to significantly enhance the scientific understanding of complex cellular systems and to advance predictive and personalized therapeutic products for human health. For this potential to be realized, quality-assured image data must be shared among labs at a global scale to be compared, pooled, and reanalyzed, thus unleashing untold potential beyond the original purpose for which the data was generated. There are two broad sets of requirements to enable image data sharing in the life sciences. One set of requirements is articulated in the companion White Paper entitled "Enabling Global Image Data Sharing in the Life Sciences," which is published in parallel and addresses the need to build the cyberinfrastructure for sharing the digital array data (arXiv:2401.13023 [q-bio.OT], https://doi.org/10.48550/arXiv.2401.13023). In this White Paper, we detail a broad set of requirements, which involves collecting, managing, presenting, and propagating contextual information essential to assess the quality, understand the content, interpret the scientific implications, and reuse image data in the context of the experimental details. We start by providing an overview of the main lessons learned to date through international community activities, which have recently made considerable progress toward generating community standard practices for imaging Quality Control (QC) and metadata. We then provide a clear set of recommendations for amplifying this work. The driving goal is to address remaining challenges, and democratize access to common practices and tools for a spectrum of biomedical researchers, regardless of their expertise, access to resources, and geographical location.

6.
Nat Commun ; 13(1): 7831, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36539423

RESUMEN

Protein micropatterning enables robust control of cell positioning on electron-microscopy substrates for cryogenic electron tomography (cryo-ET). However, the combination of regulated cell boundaries and the underlying electron-microscopy substrate (EM-grids) provides a poorly understood microenvironment for cell biology. Because substrate stiffness and morphology affect cellular behavior, we devised protocols to characterize the nanometer-scale details of the protein micropatterns on EM-grids by combining cryo-ET, atomic force microscopy, and scanning electron microscopy. Measuring force displacement characteristics of holey carbon EM-grids, we found that their effective spring constant is similar to physiological values expected from skin tissues. Despite their apparent smoothness at light-microscopy resolution, spatial boundaries of the protein micropatterns are irregular at nanometer scale. Our protein micropatterning workflow provides the means to steer both positioning and morphology of cell doublets to determine nanometer details of punctate adherens junctions. Our workflow serves as the foundation for studying the fundamental structural changes governing cell-cell signaling.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Proteínas , Procesamiento de Imagen Asistido por Computador/métodos , Microscopía por Crioelectrón/métodos , Carbono/química , Transducción de Señal
7.
J Struct Biol ; 214(4): 107916, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36332745

RESUMEN

Nanodiscs have become a popular tool in structure determination of membrane proteins using cryogenic electron microscopy and single particle analysis. However, the structure determination of small membrane proteins remains challenging. When the embedded protein is in the same size range as the nanodisc, the nanodisc can significantly contribute to the alignment and classification during the structure determination process. In those cases, it is crucial to minimize the heterogeneity in the nanodisc preparations to assure maximum accuracy in the classification and alignment steps of single particle analysis. Here, we introduce a new in-silico method for the characterization of nanodisc samples that is based on analyzing the Feret diameter distribution of their particle projection as imaged in the electron microscope. We validated the method with comprehensive simulation studies and show that Feret signatures can detect subtle differences in nanodisc morphologies and composition that might otherwise go unnoticed. We used the method to identify a specific biochemical nanodisc preparation with low size variations, allowing us to obtain a structure of the 23-kDa single-span membrane protein Bcl-xL while embedded in a nanodisc. Feret signature analysis can steer experimental data collection strategies, allowing more efficient use of high-end data collection hardware, as well as image analysis investments in studies where nanodiscs significantly contribute to the total volume of the full molecular species.

8.
J Struct Biol ; 214(4): 107921, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36372192

RESUMEN

The throughput and fidelity of cryogenic cellular electron tomography (cryo-ET) is constantly increasing through advances in cryogenic electron microscope hardware, direct electron detection devices, and powerful image processing algorithms. However, the need for careful optimization of sample preparations and for access to expensive, high-end equipment, make cryo-ET a costly and time-consuming technique. Generally, only after the last step of the cryo-ET workflow, when reconstructed tomograms are available, it becomes clear whether the chosen imaging parameters were suitable for a specific type of sample in order to answer a specific biological question. Tools for a-priory assessment of the feasibility of samples to answer biological questions and how to optimize imaging parameters to do so would be a major advantage. Here we describe MEPSi (Membrane Embedded Protein Simulator), a simulation tool aimed at rapid and convenient evaluation and optimization of cryo-ET data acquisition parameters for studies of transmembrane proteins in their native environment. We demonstrate the utility of MEPSi by showing how to detangle the influence of different data collection parameters and different orientations in respect to tilt axis and electron beam for two examples: (1) simulated plasma membranes with embedded single-pass transmembrane αIIbß3 integrin receptors and (2) simulated virus membranes with embedded SARS-CoV-2 spike proteins.


Asunto(s)
COVID-19 , Proteínas de la Membrana , Humanos , SARS-CoV-2
9.
Mol Biol Cell ; 33(14): br28, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36287913

RESUMEN

Matrix stiffness and dimensionality have been shown to be major determinants of cell behavior. However, a workflow for examining nanometer-scale responses of the associated molecular machinery is not available. Here, we describe a comprehensive, quantitative workflow that permits the analysis of cells responding to mechanical and dimensionality cues in their native state at nanometer scale by cryogenic electron tomography. Using this approach, we quantified distinct cytoskeletal nanoarchitectures and vesicle phenotypes induced in human mammary epithelial cells in response to stiffness and dimensionality of reconstituted basement membrane. Our workflow closely recapitulates the microenvironment associated with acinar morphogenesis and identified distinct differences in situ at nanometer scale. Using drug treatment, we showed that molecular events and nanometer-scale rearrangements triggered by engagement of apical cell receptors with reconstituted basement membrane correspond to changes induced by reduction of cortical tension. Our approach is fully adaptable to any kind of stiffness regime, extracellular matrix composition, and drug treatment.


Asunto(s)
Células Epiteliales , Matriz Extracelular , Humanos , Flujo de Trabajo , Morfogénesis , Matriz Extracelular/metabolismo , Tomografía con Microscopio Electrónico
10.
EMBO J ; 41(17): e109205, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35880301

RESUMEN

Patient-derived organoids and cellular spheroids recapitulate tissue physiology with remarkable fidelity. We investigated how engagement with a reconstituted basement membrane in three dimensions (3D) supports the polarized, stress resilient tissue phenotype of mammary epithelial spheroids. Cells interacting with reconstituted basement membrane in 3D had reduced levels of total and actin-associated filamin and decreased cortical actin tension that increased plasma membrane protrusions to promote negative plasma membrane curvature and plasma membrane protein associations linked to protein secretion. By contrast, cells engaging a reconstituted basement membrane in 2D had high cortical actin tension that forced filamin unfolding and endoplasmic reticulum (ER) associations. Enhanced filamin-ER interactions increased levels of PKR-like ER kinase effectors and ER-plasma membrane contact sites that compromised calcium homeostasis and diminished cell viability. Consequently, cells with decreased cortical actin tension had reduced ER stress and survived better. Consistently, cortical actin tension in cellular spheroids regulated polarized basement membrane membrane deposition and sensitivity to exogenous stress. The findings implicate cortical actin tension-mediated filamin unfolding in ER function and underscore the importance of tissue mechanics in organoid homeostasis.


Asunto(s)
Actinas , Retículo Endoplásmico , Actinas/metabolismo , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico , Células Epiteliales/metabolismo , Filaminas/metabolismo , Fenotipo
11.
Nat Struct Mol Biol ; 29(2): 97-107, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35132256

RESUMEN

Neurotransmitter release is mediated by proteins that drive synaptic vesicle fusion with the presynaptic plasma membrane. While soluble N-ethylmaleimide sensitive factor attachment protein receptors (SNAREs) form the core of the fusion apparatus, additional proteins play key roles in the fusion pathway. Here, we report that the C-terminal amphipathic helix of the mammalian accessory protein, complexin (Cpx), exerts profound effects on membranes, including the formation of pores and the efficient budding and fission of vesicles. Using nanodisc-black lipid membrane electrophysiology, we demonstrate that the membrane remodeling activity of Cpx modulates the structure and stability of recombinant exocytic fusion pores. Cpx had particularly strong effects on pores formed by small numbers of SNAREs. Under these conditions, Cpx increased the current through individual pores 3.5-fold, and increased the open time fraction from roughly 0.1 to 1.0. We propose that the membrane sculpting activity of Cpx contributes to the phospholipid rearrangements that underlie fusion by stabilizing highly curved membrane fusion intermediates.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/química , Proteínas del Tejido Nervioso/química , Proteínas Adaptadoras del Transporte Vesicular/genética , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Animales , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Células HEK293 , Humanos , Membrana Dobles de Lípidos/química , Fusión de Membrana/fisiología , Simulación de Dinámica Molecular , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Poro Nuclear/química , Poro Nuclear/metabolismo , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Conformación Proteica en Hélice alfa , Estabilidad Proteica , Vesículas Sinápticas/química , Vesículas Sinápticas/metabolismo
12.
J Struct Biol ; 213(4): 107801, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34582983

RESUMEN

With the rapid increase and accessibility of high-resolution imaging technologies of cells, the interpretation of results relies more and more on the assumption that the three-dimensional integrity of the surrounding cellular landscape is not compromised by the experimental setup. However, the only available technology for directly probing the structural integrity of whole-cell preparations at the nanoscale is electron cryo-tomography, which is time-consuming, costly, and complex. We devised an accessible, inexpensive and reliable screening assay to quickly report on the compatibility of experimental protocols with preserving the structural integrity of whole-cell preparations at the nanoscale. Our Rapid Cell Integrity Assessment (RCIA) assay is executed at room temperature and relies solely on light microscopy imaging. Using cellular electron cryo-tomography as a benchmark, we verify that RCIA accurately unveils the adverse impact of reagents and/or protocols such as those used for virus inactivation or to arrest dynamic processes on the cellular nanoarchitecture.


Asunto(s)
Microscopía por Crioelectrón/métodos , Tomografía con Microscopio Electrónico/métodos , Células Eucariotas/ultraestructura , Imagenología Tridimensional/métodos , Nanoestructuras/ultraestructura , Citoesqueleto de Actina/química , Citoesqueleto de Actina/ultraestructura , Animales , Células Cultivadas , Células Eucariotas/química , Células Eucariotas/clasificación , Células HeLa , Humanos , Membranas Intracelulares/química , Membranas Intracelulares/ultraestructura , Ratones , Microscopía Fluorescente/métodos , Mitocondrias/química , Mitocondrias/ultraestructura , Células 3T3 NIH , Nanoestructuras/química , Reproducibilidad de los Resultados , Células THP-1
13.
Nat Commun ; 12(1): 1892, 2021 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-33767187

RESUMEN

Plasmodium falciparum, the causative agent of malaria, moves by an atypical process called gliding motility. Actomyosin interactions are central to gliding motility. However, the details of these interactions remained elusive until now. Here, we report an atomic structure of the divergent Plasmodium falciparum actomyosin system determined by electron cryomicroscopy at the end of the powerstroke (Rigor state). The structure provides insights into the detailed interactions that are required for the parasite to produce the force and motion required for infectivity. Remarkably, the footprint of the myosin motor on filamentous actin is conserved with respect to higher eukaryotes, despite important variability in the Plasmodium falciparum myosin and actin elements that make up the interface. Comparison with other actomyosin complexes reveals a conserved core interface common to all actomyosin complexes, with an ancillary interface involved in defining the spatial positioning of the motor on actin filaments.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Actomiosina/metabolismo , Movimiento Celular/fisiología , Plasmodium falciparum/fisiología , Plasmodium falciparum/ultraestructura , Actinas/metabolismo , Microscopía por Crioelectrón , Malaria Falciparum/parasitología , Miosinas/metabolismo , Conformación Proteica , Proteínas Protozoarias/metabolismo
14.
Elife ; 92020 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-32915141

RESUMEN

Cell-cell and cell-matrix junctions transmit mechanical forces during tissue morphogenesis and homeostasis. α-Catenin links cell-cell adhesion complexes to the actin cytoskeleton, and mechanical load strengthens its binding to F-actin in a direction-sensitive manner. Specifically, optical trap experiments revealed that force promotes a transition between weak and strong actin-bound states. Here, we describe the cryo-electron microscopy structure of the F-actin-bound αE-catenin actin-binding domain, which in solution forms a five-helix bundle. In the actin-bound structure, the first helix of the bundle dissociates and the remaining four helices and connecting loops rearrange to form the interface with actin. Deletion of the first helix produces strong actin binding in the absence of force, suggesting that the actin-bound structure corresponds to the strong state. Our analysis explains how mechanical force applied to αE-catenin or its homolog vinculin favors the strongly bound state, and the dependence of catch bond strength on the direction of applied force.


Asunto(s)
Actinas/química , alfa Catenina/química , Microscopía por Crioelectrón , Unión Proteica
15.
Blood ; 135(21): 1899-1911, 2020 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-32128578

RESUMEN

Hemophilia A, an X-linked bleeding disorder caused by deficiency of factor VIII (FVIII), is treated by protein replacement. Unfortunately, this regimen is costly due to the expense of producing recombinant FVIII as a consequence of its low-level secretion from mammalian host cells. FVIII expression activates the endoplasmic reticulum (ER) stress response, causes oxidative stress, and induces apoptosis. Importantly, little is known about the factors that cause protein misfolding and aggregation in metazoans. Here, we identified intrinsic and extrinsic factors that cause FVIII to form aggregates. We show that FVIII forms amyloid-like fibrils within the ER lumen upon increased FVIII synthesis or inhibition of glucose metabolism. Significantly, FVIII amyloids can be dissolved upon restoration of glucose metabolism to produce functional secreted FVIII. Two ER chaperone families and their cochaperones, immunoglobulin binding protein (BiP) and calnexin/calreticulin, promote FVIII solubility in the ER, where the former is also required for disaggregation. A short aggregation motif in the FVIII A1 domain (termed Aggron) is necessary and sufficient to seed ß-sheet polymerization, and BiP binding to this Aggron prevents amyloidogenesis. Our findings provide novel insight into mechanisms that limit FVIII secretion and ER protein aggregation in general and have implication for ongoing hemophilia A gene-therapy clinical trials.


Asunto(s)
Amiloide/química , Estrés del Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/efectos de los fármacos , Factor VIII/metabolismo , Glucosa/farmacología , Chaperonas Moleculares/metabolismo , Amiloide/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Factor VIII/genética , Hemostáticos , Células Hep G2 , Humanos , Chaperonas Moleculares/genética , Edulcorantes/farmacología
16.
Structure ; 27(6): 988-999.e4, 2019 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-30982634

RESUMEN

B cell lymphoma-2-associated X protein (BAX) plays a pivotal role in triggering cell apoptosis by permeabilizing the mitochondrial outer membrane. Contrary to previous findings, recent electron microscopy (EM) experiments showed that BAX monomers are able to perturb phospholipid nanodiscs (NDs) by forming lipidic pores. Here, we provide structural and thermodynamic interpretation of such data using multiscale resolution molecular dynamics (MD) simulations. Our results suggest that BAX is able to disrupt the stability, lateral packing and enhance the desorption propensity of the lipids in the ND, resulting in the formation of a stable toroidal-like pore. These findings prompted to re-evaluate the previously reported cryo-EM data to generate an improved reconstruction, thereby allowing for a more accurate localization of BAX in the EM map. We conclude that the reduced stability of the BAX-embedded ND eliminates the necessity of forming active BAX oligomers for its disruption.


Asunto(s)
Lípidos de la Membrana/química , Simulación de Dinámica Molecular , Nanoestructuras/química , Fosfolípidos/química , Proteína X Asociada a bcl-2/química , Fenómenos Biofísicos , Microscopía por Crioelectrón/métodos , Humanos , Lípidos de la Membrana/metabolismo , Nanoestructuras/ultraestructura , Fosfolípidos/metabolismo , Porosidad , Multimerización de Proteína , Termodinámica , Proteína X Asociada a bcl-2/metabolismo
17.
J Struct Biol ; 206(2): 149-155, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30822456

RESUMEN

High-resolution imaging of hair-cell stereocilia of the inner ear has contributed substantially to our understanding of auditory and vestibular function. To provide three-dimensional views of the structure of stereocilia cytoskeleton and membranes, we developed a method for rapidly freezing unfixed stereocilia on electron microscopy grids, which allowed subsequent 3D imaging by electron cryo-tomography. Structures of stereocilia tips, shafts, and tapers were revealed, demonstrating that the actin paracrystal was not perfectly ordered. This sample-preparation and imaging procedure will allow for examination of structural features of stereocilia in a near-native state.


Asunto(s)
Frío , Tomografía con Microscopio Electrónico/métodos , Células Ciliadas Vestibulares/ultraestructura , Estereocilios/ultraestructura , Animales , Ratones
18.
Proc Natl Acad Sci U S A ; 116(4): 1267-1272, 2019 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-30630946

RESUMEN

Rac1 activation is at the core of signaling pathways regulating polarized cell migration. So far, it has not been possible to directly explore the structural changes triggered by Rac1 activation at the molecular level. Here, through a multiscale imaging workflow that combines biosensor imaging of Rac1 dynamics with electron cryotomography, we identified, within the crowded environment of eukaryotic cells, a unique nanoscale architecture of a flexible, signal-dependent actin structure. In cell regions with high Rac1 activity, we found a structural regime that spans from the ventral membrane up to a height of ∼60 nm above that membrane, composed of directionally unaligned, densely packed actin filaments, most shorter than 150 nm. This unique Rac1-induced morphology is markedly different from the dendritic network architecture in which relatively short filaments emanate from existing, longer actin filaments. These Rac1-mediated scaffold assemblies are devoid of large macromolecules such as ribosomes or other filament types, which are abundant at the periphery and within the remainder of the imaged volumes. Cessation of Rac1 activity induces a complete and rapid structural transition, leading to the absence of detectable remnants of such structures within 150 s, providing direct structural evidence for rapid actin filament network turnover induced by GTPase signaling events. It is tempting to speculate that this highly dynamical nanoscaffold system is sensitive to local spatial cues, thus serving to support the formation of more complex actin filament architectures-such as those mandated by epithelial-mesenchymal transition, for example-or resetting the region by completely dissipating.


Asunto(s)
Citoesqueleto/metabolismo , Citosol/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animales , Línea Celular , Movimiento Celular/fisiología , Polaridad Celular/fisiología , Transición Epitelial-Mesenquimal/fisiología , GTP Fosfohidrolasas/metabolismo , Humanos , Ratones , Transducción de Señal/fisiología
19.
J Micromech Microeng ; 29(11)2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32879557

RESUMEN

Cryogenic electron tomography is the highest resolution tool available for structural analysis of macromolecular organization inside cells. Micropatterning of extracellular matrix (ECM) proteins is an established in vitro cell culture technique used to control cell shape. Recent traction force microscopy studies have shown correlation between cell morphology and the regulation of force transmission. However, it remains unknown how cells sustain increased strain energy states and localized stresses at the supramolecular level. Here, we report a technology to enable direct observation of mesoscale organization in epithelial cells under morphological modulation, using a maskless protein photopatterning method (PRIMO) to confine cells to ECM micropatterns on electron microscopy substrates. These micropatterned cell culture substrates can be used in mechanobiology research to correlate changes in nanometer-scale organization at cell-cell and cell-ECM contacts to strain energy states and traction stress distribution in the cell.

20.
Biophys Rev ; 10(6): 1571-1575, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30448941

RESUMEN

Arp2/3 complex nucleates dendritic actin networks and plays a pivotal role in the formation of lamellipodia at the leading edge of motile cells. Mouse fibroblasts lacking functional Arp2/3 complex have the characteristic smooth, veil-like lamellipodial leading edge of wild-type cells replaced by a massive, bifurcating filopodia-like protrusions (FLPs) with fractal geometry. The nanometer-scale actin-network organization of these FLPs can be linked to the fractal geometry of the cell boundary by a self-organized criticality through the bifurcation behavior of cross-linked actin bundles. Despite the pivotal role of the Arp2/3 complex in cell migration, the cells lacking functional Arp2/3 complex migrate at rates similar to wild-type cells. However, these cells display defects in the persistence of a directional movement. We suggest that Arp2/3 complex suppresses the formation of FLPs by locally fine-tuning actin networks and favoring dendritic geometry over bifurcating bundles, giving cells a distinct evolutionary edge by providing the means for a directed movement.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA