Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
BMC Pulm Med ; 24(1): 262, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38816826

RESUMEN

BACKGROUND: Chronic obstructive lung disease (COPD) has diverse molecular pathomechanisms and clinical courses which, however, are not fully mirrored by current therapy. Intermittent hypoxemia is a driver of lung function decline and poor outcome, e.g., in patients with concomitant obstructive sleep apnea. Transient hypoxemia during physical exercise has been suggested to act in a similar manner. The PROSA study is designed to prospectively assess whether the clinical course of COPD patients with or without exertional desaturation differs, and to address potential pathophysiological mechanisms and biomarkers. METHODS: 148 COPD patients (GOLD stage 2-3, groups B or C) will undergo exercise testing with continuous pulse oximetry. They will be followed for 36 months by spirometry, echocardiography, endothelial function testing, and biomarker analyses. Exercise testing will be performed by comparing the 6-min walk test (6MWT), bicycle ergometry, and a 15-sec breath-hold test. Exertional desaturation will be defined as SpO2 < 90% or delta-SpO2 ≥ 4% during the 6MWT. The primary endpoint will be the rate of decline of FEV1(LLN) between COPD patients with and without exertional desaturation. DISCUSSION: The PROSA Study is an investigator-initiated prospective study that was designed to prove or dismiss the hypothesis that COPD patients with exertional desaturation have a significantly more rapid rate of decline of lung function as compared to non-desaturators. A 20% difference in the primary endpoint was considered clinically significant; it can be detected with a power of 90%. If the primary endpoint will be met, exercise testing with continuous pulse oximetry can be used as a ubiquitously available, easy screening tool to prospectively assess the risk of rapid lung function decline in COPD patients at an early disease stage. This will allow to introduce personalized, risk-adapted therapy to improve COPD outcome in the long run. PROSA is exclusively funded by public funds provided by the European Research Council through an ERC Advanced Grant. Patient recruitment is ongoing; the PROSA results are expected to be available in 2028. TRIAL REGISTRATION: The PROSA Study has been prospectively registered at clinicaltrials.gov (register no. NCT06265623, dated 09.02.2024).


Asunto(s)
Hipoxia , Oximetría , Enfermedad Pulmonar Obstructiva Crónica , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Prueba de Esfuerzo , Volumen Espiratorio Forzado , Hipoxia/fisiopatología , Pulmón/fisiopatología , Estudios Prospectivos , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Enfermedad Pulmonar Obstructiva Crónica/complicaciones , Espirometría , Vasoconstricción , Prueba de Paso , Estudios Observacionales como Asunto
2.
Pharmacol Res ; 199: 107011, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38029806

RESUMEN

BACKGROUND: Night shift work is associated with sleep disturbances, obesity, and cardiometabolic diseases. Disruption of the circadian clock system has been suggested to be an independent cause of type 2 diabetes and cardiovascular disease in shift workers. We aimed to improve alignment of circadian timing with social and environmental factors with administration of melatonin. METHODS: In a randomized, placebo-controlled, prospective study, we analysed the effects of 2 mg of sustained-release melatonin versus placebo on glucose tolerance, insulin resistance indices, sleep quality, circadian profiles of plasma melatonin and cortisol, and diurnal blood pressure profiles in 24 rotating night shift workers during 12 weeks of treatment, followed by 12 weeks of wash-out. In a novel design, the time of melatonin administration (at night or in the morning) depended upon the shift schedule. We also compared the baseline profiles of the night shift (NS) workers with 12 healthy non-night shift (NNS)-working controls. RESULTS: We found significantly impaired indices of insulin resistance at baseline in NS versus NNS (p < 0.05), but no differences in oral glucose tolerance tests nor in the diurnal profiles of melatonin, cortisol, or blood pressure. Twelve weeks of melatonin treatment did not significantly improve insulin resistance, nor did it significantly affect diurnal blood pressure or melatonin and cortisol profiles. Melatonin administration, however, caused a significant improvement in sleep quality which was significantly impaired in NS versus NNS at baseline (p < 0.001). CONCLUSIONS: Rotating night shift work causes mild-to-moderate impairment of sleep quality and insulin resistance. Melatonin treatment at bedtime improves sleep quality, but does not significantly affect insulin resistance in rotating night shift workers after 12 weeks of administration.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Melatonina , Humanos , Sueño , Melatonina/uso terapéutico , Melatonina/farmacología , Ritmo Circadiano , Hidrocortisona/farmacología , Presión Sanguínea , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Estudios Prospectivos
3.
Front Physiol ; 14: 1297636, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38093907

RESUMEN

Introduction: High altitude exposure may lead to high altitude pulmonary hypertension (HAPH) and high altitude pulmonary edema (HAPE). The pathophysiologic processes of both entities have been linked to decreased nitric oxide (NO) availability. Methods: We studied the effect of acute high altitude exposure on the plasma concentrations of asymmetric (ADMA) and symmetric dimethylarginine (SDMA), L-arginine, L-ornithine, and L-citrulline in two independent studies. We further investigated whether these biomarkers involved in NO metabolism were related to HAPH and HAPE, respectively. Fifty (study A) and thirteen (study B) non-acclimatized lowlanders were exposed to 4,559 m for 44 and 67 h, respectively. In contrast to study A, the participants in study B were characterized by a history of at least one episode of HAPE. Arterial blood gases and biomarker concentrations in venous plasma were assessed at low altitude (baseline) and repeatedly at high altitude. HAPE was diagnosed by chest radiography, and HAPH by measuring right ventricular to atrial pressure gradient (RVPG) with transthoracic echocardiography. AMS was evaluated with the Lake Louise Score (LLS) and the AMS-C score. Results: In both studies SDMA concentration significantly increased at high altitude. ADMA baseline concentrations were higher in individuals with HAPE susceptibility (study B) compared to those without (study A). However, upon high altitude exposure ADMA only increased in individuals without HAPE susceptibility, while there was no further increase in those with HAPE susceptibility. We observed an acute and transient decrease of L-ornithine and a more delayed but prolonged reduction of L-citrulline during high altitude exposure. In both studies SDMA positively correlated and L-ornithine negatively correlated with RVPG. ADMA was significantly associated with the occurrence of HAPE (study B). ADMA and SDMA were inversely correlated with alveolar PO2, while L-ornithine was inversely correlated with blood oxygenation and haemoglobin levels, respectively. Discussion: In non-acclimatized individuals ADMA and SDMA, two biomarkers decreasing endothelial NO production, increased after acute exposure to 4,559 m. The observed biomarker changes suggest that both NO synthesis and arginase pathways are involved in the pathophysiology of HAPH and HAPE.

4.
Biomolecules ; 13(9)2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37759682

RESUMEN

Asymmetric dimethylarginine (ADMA) and symmetric dimethylarginine (SDMA) interfere with nitric oxide (NO) formation from L-arginine via different mechanisms. ADMA is a biomarker of cardiovascular disease and mortality, whilst SDMA is a biomarker of mortality after ischemic stroke. Homoarginine, another L-arginine-derived amino acid, is associated with stroke and congestive heart failure. Acute ischemic events like myocardial infarction show a time-of-day variation in the timing of their onset, as do NO-mediated vascular function and blood pressure. We studied whether the plasma concentrations of L-arginine-related amino acid metabolites show diurnal variation in a clinical study comparing 12 non-night shift workers with 60 rotating night shift workers. The plasma concentrations of L-arginine-related biomarkers, melatonin, and cortisol were measured every 3 h during a 24-h period. In addition, 24-h blood pressure recordings were performed. In non-night shift workers, L-arginine and homoarginine plasma concentrations showed diurnal variation with a 12-h period, which were both attenuated in night shift workers. ADMA and SDMA showed a 24-h rhythmicity with no significant differences in phase between night shift and non-night shift workers. The plasma profiles of melatonin and cortisol were not significantly different between both groups, suggesting that the rotating night shift work does not have a major influence on central suprachiasmatic nuclei clock timing. In addition, systolic and diastolic blood pressure patterns were similar between both groups. Our data show diurnal variation of dimethylarginines with the timing of their acrophases corresponding to the published timing of the peak incidence of cardiac ischemic events.


Asunto(s)
Enfermedades Cardiovasculares , Melatonina , Humanos , Homoarginina , Hidrocortisona , Factores de Riesgo , Arginina , Aminoácidos , Factores de Riesgo de Enfermedad Cardiaca
5.
J Clin Med ; 12(16)2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37629272

RESUMEN

BACKGROUND: Chronic obstructive pulmonary disease (COPD) and obstructive sleep apnoea (OSA) are common chronic diseases that are associated with chronic and intermittent hypoxemia, respectively. Patients affected by the overlap of COPD and OSA have a particularly unfavourable prognosis. The L-arginine/nitric oxide (NO) pathway plays an important role in regulating pulmonary vascular function. Asymmetric (ADMA) and symmetric dimethylarginine (SDMA) interfere with NO production. METHODS: We analysed the serum concentrations of ADMA, SDMA, L-arginine, L-citrulline, and L-ornithine in a large sample of the Icelandic general population together with chronic airflow obstruction (CAO), a key physiological marker of COPD that was assessed by post-bronchodilator spirometry (FEV1/FVC < LLN). OSA risk was determined by the multivariable apnoea prediction (MAP) index. RESULTS: 713 individuals were analysed, of whom 78 (10.9%) showed CAO and 215 (30%) had MAP > 0.5. SDMA was significantly higher in individuals with CAO (0.518 [0.461-0.616] vs. 0.494 [0.441-0.565] µmol/L; p = 0.005), but ADMA was not. However, ADMA was significantly associated with decreasing FEV1 percent predicted among those with CAO (p = 0.002). ADMA was 0.50 (0.44-0.56) µmol/L in MAP ≤ 0.5 versus 0.52 (0.46-0.58) µmol/L in MAP > 0.5 (p = 0.008). SDMA was 0.49 (0.44-0.56) µmol/L versus 0.51 (0.46-0.60) µmol/L, respectively (p = 0.004). The highest values for ADMA and SDMA were observed in individuals with overlap of CAO and MAP > 0.5, which was accompanied by lower L-citrulline levels. CONCLUSIONS: The plasma concentrations of ADMA and SDMA are elevated in COPD patients with concomitant intermittent hypoxaemia. This may account for impaired pulmonary NO production, enhanced pulmonary vasoconstriction, and disease progression.

6.
Sci Rep ; 13(1): 9811, 2023 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-37330534

RESUMEN

We aimed to assess the potential role of Asymmetric dimethylarginine (ADMA) in conditioning respiratory function and pulmonary vasoregulation during Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV2) infection. Within 72 h from admission, samples from 90 COVID-19 patients were assessed for ADMA, SDMA, L-arginine concentrations. In addition to classical statistics, patients were also clustered by a machine learning approach according to similar features. Multivariable analysis showed that C-reactive protein (OR 1.012), serum ADMA (OR 4.652), white blood cells (OR = 1.118) and SOFA (OR = 1.495) were significantly associated with negative outcomes. Machine learning-based clustering showed three distinct clusters: (1) patients with low severity not requiring invasive mechanical ventilation (IMV), (2) patients with moderate severity and respiratory failure whilst not requiring IMV, and (3) patients with highest severity requiring IMV. Serum ADMA concentration was significantly associated with disease severity and need for IMV although less pulmonary vasodilation was observed by CT scan. High serum levels of ADMA are indicative of high disease severity and requirement of mechanical ventilation. Serum ADMA at the time of hospital admission may therefore help to identify COVID-19 patients at high risk of deterioration and negative outcome.


Asunto(s)
COVID-19 , Insuficiencia Respiratoria , Humanos , Biomarcadores , ARN Viral , SARS-CoV-2 , Arginina
8.
J Physiol Biochem ; 79(3): 555-568, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36821073

RESUMEN

Fetal undernutrition predisposes to hypertension development. Since nitric oxide (NO) is a key factor in blood pressure control, we aimed to investigate the role of NO alterations in hypertension induced by fetal undernutrition in rats. Male and female offspring from dams exposed to undernutrition during the second half of gestation (MUN) were studied at 21 days (normotensive) and 6 months of age (hypertension developed only in males). In aorta, we analyzed total and phosphorylated endothelial NO synthase (eNOS, p-eNOS), 3-nitrotyrosine (3-NT), and Nrf2 (Western blot). In plasma we assessed L-arginine, asymmetric and symmetric dimethylarginine (ADMA, SDMA; LC-MS/MS), nitrates (NOx, Griess reaction), carbonyl groups, and lipid peroxidation (spectrophotometry). In iliac arteries, we studied superoxide anion production (DHE staining, confocal microscopy) and vasodilatation to acetylcholine (isometric tension). Twenty-one-day-old MUN offspring did not show alterations in vascular e-NOS or 3NT expression, plasma L-Arg/ADMA ratio, or NOx. Compared to control group, 6-month-old MUN rats showed increased aortic expression of p-eNOS/eNOS and 3-NT, being Nrf2 expression lower, elevated plasma L-arginine/ADMA, NOx and carbonyl levels, increased iliac artery DHE staining and reduced acetylcholine-mediated relaxations. These alterations in MUN rats were sex-dependent, affecting males. However, females showed some signs of endothelial dysfunction. We conclude that increased NO production in the context of a pro-oxidative environment, leads to vascular nitrosative damage and dysfunction, which can participate in hypertension development in MUN males. Females show a better adaptation, but signs of endothelial dysfunction, which can explain hypertension in ageing.


Asunto(s)
Hipertensión , Desnutrición , Ratas , Animales , Masculino , Femenino , Estrés Nitrosativo , Acetilcolina , Cromatografía Liquida , Factor 2 Relacionado con NF-E2/metabolismo , Espectrometría de Masas en Tándem , Hipertensión/etiología , Arginina , Desnutrición/complicaciones , Óxido Nítrico/metabolismo
9.
Acta Diabetol ; 59(12): 1589-1596, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36044097

RESUMEN

AIMS: Disturbances in circadian rhythms may promote cardiometabolic disorders in rotating night shift workers (r-NSWs). We hypothesized that timed light therapy might reverse disrupted circadian rhythms and glucose intolerance observed among r-NSWs). METHODS: R-NSWs were randomly assigned to a protocol that included 12 weeks on followed by 12 weeks off light therapy (n = 13; 6 men; mean age, 39.5 ± 7.3 years) or a no-treatment control group (n = 9; 3 men; mean age 41.7 ± 6.3 years). Experimental and control participants underwent identical metabolic evaluations that included anthropometric, metabolic (including oral glucose tolerance tests), lipid, and inflammation-associated parameters together with an assessment of sleep quality and expression of circadian transcription factors REV-ERBα and BMAL1 in peripheral blood mononuclear cells (PBMCs) at baseline, 12 weeks, and 24 weeks of the protocol. RESULTS: Twelve weeks of warm white-light exposure (10,000 lx at 35 cm for 30 min per day) had no impact on sleep, metabolic, or inflammation-associated parameters among r-NSWs in the experimental group. However, our findings revealed significant decreases in REV-ERBα gene expression (p = 0.048) and increases in the REV-ERBα/BMAL1 ratio (p = 0.040) compared to baseline in PBMCs isolated from this cohort. Diminished expression of REV-ERBα persisted, although the REV-ERBα/BMAL1 ratio returned to baseline levels after the subsequent 12-day wash-out period. CONCLUSIONS: Our results revealed that intermittent light therapy had no impact on inflammatory parameters or glucose tolerance in a defined cohort of r-NSWs. However, significant changes in the expression of circadian clock genes were detected in PBMCs of these subjects undergoing light therapy.


Asunto(s)
Factores de Transcripción ARNTL , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares , Masculino , Humanos , Adulto , Persona de Mediana Edad , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/genética , Factores de Transcripción ARNTL/genética , Leucocitos Mononucleares/metabolismo , Ritmo Circadiano/genética , Fototerapia , Inflamación , Glucosa , Lípidos
10.
Front Med (Lausanne) ; 9: 835481, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35252268

RESUMEN

The pulmonary circulation responds to hypoxia with vasoconstriction, a mechanism that helps to adapt to short-lived hypoxic episodes. When sustained, hypoxic pulmonary vasoconstriction (HPV) may become deleterious, causing right ventricular hypertrophy and failure, and contributing to morbidity and mortality in the late stages of several chronic pulmonary diseases. Nitric oxide (NO) is an important endothelial vasodilator. Its release is regulated, amongst other mechanisms, by the presence of endogenous inhibitors like asymmetric dimethylarginine (ADMA). Evidence has accumulated in recent years that elevated ADMA may be implicated in the pathogenesis of HPV and in its clinical sequelae, like pulmonary arterial hypertension (PAH). PAH is one phenotypic trait in experimental models with disrupted ADMA metabolism. In high altitude, elevation of ADMA occurs during long-term exposure to chronic or chronic intermittent hypobaric hypoxia; ADMA is significantly associated with high altitude pulmonary hypertension. High ADMA concentration was also reported in patients with chronic obstructive lung disease, obstructive sleep apnoea syndrome, and overlap syndrome, suggesting a pathophysiological role for ADMA-mediated impairment of endothelium-dependent, NO-mediated pulmonary vasodilation in these clinically relevant conditions. Improved understanding of the molecular (dys-)regulation of pathways controlling ADMA concentration may help to dissect the pathophysiology and find novel therapeutic options for these diseases.

11.
J Clin Med ; 11(4)2022 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-35207213

RESUMEN

Asymmetric dimethylarginine is an endogenous inhibitor of nitric oxide synthesis and a cardiovascular risk factor. Its regulation has been studied extensively in experimental models, but less in humans. We studied common single-nucleotide polymorphisms (SNPs) in genes encoding for enzymes involved in ADMA biosynthesis and metabolism, i.e., PRMT1, DDAH1, DDAH2, and AGXT2, and assessed their associations with blood ADMA concentration in 377 unselected humans. The minor allele of DDAH1 SNP rs233112 was significantly more frequent in individuals with ADMA in the highest tertile or in the highest quartile, as was the major allele of DDAH2 rs805304. A combined genotype comprising both SNPs showed a significant genotype-phenotype association, with increasing ADMA concentration by an increasing number of inactive alleles. SNPs in the AGXT2 and PRMT1 genes showed no significant associations with blood ADMA concentration. Our study provides comprehensive evidence that DDAH1 and DDAH2 are the major enzymes regulating blood ADMA concentration, whilst PRMT1 indirectly affects ADMA, and AGXT2 may act as a back-up enzyme in ADMA metabolism under pathophysiological conditions only.

12.
J Clin Med ; 10(24)2021 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-34945057

RESUMEN

Chronic intermittent hypoxia leads to high-altitude pulmonary hypertension, which is associated with high asymmetric dimethylarginine (ADMA), an endogenous inhibitor of nitric oxide synthesis. Therefore, we aimed to understand the relation of single nucleotide polymorphisms in this pathway to high-altitude pulmonary hypertension (HAPH). We genotyped 69 healthy male Chileans subjected to chronic intermittent hypoxia. Acclimatization to altitude was determined using the Lake Louise Score and the presence of acute mountain sickness. Echocardiography was performed after six months in 24 individuals to estimate pulmonary arterial pressure. The minor allele of dimethylarginine dimethylaminohydrolase (DDAH)1 rs233112 was associated with high-baseline plasma ADMA concentration, while individuals homozygous for the major allele of DDAH2 rs805304 had a significantly greater increase in ADMA during chronic intermittent hypoxia. The major allele of alanine glyoxylate aminotransferase-2 (AGXT2) rs37369 was associated with a greater reduction of plasma symmetric dimethylarginine (SDMA). Several genes were associated with high-altitude pulmonary hypertension, and the nitric oxide synthase (NOS)3 and DDAH2 genes were related to acute mountain sickness. In conclusion, DDAH1 determines baseline plasma ADMA, while DDAH2 modulates ADMA increase in hypoxia. AGXT2 may be up-regulated in hypoxia. Genomic variation in the dimethylarginine pathway affects the development of HAPH and altitude acclimatization.

13.
Front Physiol ; 12: 703069, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34483959

RESUMEN

Objective: Chronic hypoxia induces pulmonary and cardiovascular pathologies, including pulmonary hypertension (PH). L-arginine:glycine amidinotransferase (AGAT) is essential for homoarginine (hArg) and guanidinoacetate synthesis, the latter being converted to creatine by guanidinoacetate methyltransferase. Low hArg concentrations are associated with cardiovascular morbidity and predict mortality in patients with PH. We therefore aimed to investigate the survival and cardiac outcome of AGAT knockout (Agat -/-) mice under hypoxia and a possible rescue of the phenotype. Methods: Agat -/- mice and wild-type (WT) littermates were subjected to normoxia or normobaric hypoxia (10% oxygen) for 4 weeks. A subgroup of Agat -/- mice was supplemented with 1% creatine from weaning. Survival, hematocrit, blood lactate and glucose, heart weight-to-tibia length (HW/TL) ratio, hArg plasma concentration, and Agat and Gamt expression in lung, liver, and kidneys were evaluated. Results: After 6 h of hypoxia, blood lactate was lower in Agat -/--mice as compared to normoxia (p < 0.001). Agat -/- mice died within 2 days of hypoxia, whereas Agat -/- mice supplemented with creatine and WT mice survived until the end of the study. In WT mice, hematocrit (74 ± 4 vs. 55 ± 2%, mean ± SD, p < 0.001) and HW/TL (9.9 ± 1.3 vs. 7.3 ± 0.7 mg/mm, p < 0.01) were higher in hypoxia, while hArg plasma concentration (0.25 ± 0.06 vs. 0.38 ± 0.12 µmol/L, p < 0.01) was lower. Agat and Gamt expressions were differentially downregulated by hypoxia in lung, liver, and kidneys. Conclusion: Agat and Gamt are downregulated in hypoxia. Agat-/- mice are nonviable in hypoxia. Creatine rescues the lethal phenotype, but it does not reduce right ventricular hypertrophy of Agat-/- mice in hypoxia.

14.
PLoS One ; 16(9): e0254577, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34492019

RESUMEN

BACKGROUND: Circulating levels of the endogenous inhibitor of nitric oxide synthase, asymmetric dimethylarginine (ADMA), are positively associated with the prevalence of metabolic syndrome (MetS) in cross-sectional investigations. It is unclear if circulating ADMA and other methylarginines are associated with incident MetS prospectively. METHODS: We related circulating ADMA, symmetric dimethylarginine (SDMA), L-arginine (ARG) concentrations (measured with a validated tandem mass spectrometry assay) and the ARG/ADMA ratio to MetS and its components in 2914 (cross-sectional analysis, logistic regression; mean age 58 years, 55% women) and 1656 (prospective analysis, Cox regression; mean age 56 years, 59% women) individuals from the Framingham Offspring Study who attended a routine examination. RESULTS: Adjusting for age, sex, smoking, and eGFR, we observed significant associations of ADMA (direct) and ARG/ADMA (inverse) with odds of MetS (N = 1461 prevalent cases; Odds Ratio [OR] per SD increment 1.13, 95%CI 1.04-1.22; and 0.89, 95%CI 0.82-0.97 for ADMA and ARG/ADMA, respectively). Upon further adjustment for waist circumference, systolic and diastolic blood pressure, glucose, high-density lipoprotein cholesterol, and triglycerides, we observed a positive relation between SDMA and MetS (OR per SD increment 1.15, 95% CI 1.01-1.30) but the other associations were rendered statistically non-significant. We did not observe statistically significant associations between any of the methylarginines and the risk of new-onset MetS (752 incident events) over a median follow-up of 11 years. CONCLUSION: It is unclear whether dimethylarginines play an important role in the incidence of cardiometabolic risk in the community, notwithstanding cross-sectional associations. Further studies of larger samples are needed to replicate our findings.


Asunto(s)
Arginina/análogos & derivados , Arginina/sangre , Síndrome Metabólico/diagnóstico , Biomarcadores/sangre , Estudios Transversales , Femenino , Humanos , Masculino , Síndrome Metabólico/sangre , Persona de Mediana Edad , Prevalencia , Estudios Prospectivos , Espectrometría de Masas en Tándem
15.
Sci Rep ; 11(1): 9895, 2021 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-33972591

RESUMEN

COVID-19 is a disease with a variable clinical course ranging from mild symptoms to critical illness, organ failure, and death. Prospective biomarkers may help to predict the severity of an individual's clinical course and mortality risk. We analyzed asymmetric (ADMA) and symmetric dimethylarginine (SDMA) in blood samples from 31 patients hospitalized for COVID-19. We calculated associations of ADMA and SDMA with mortality and organ failure, and we developed a predictive algorithm based upon these biomarkers to predict mortality risk. Nine patients (29%) experienced in-hospital death. SDMA and ADMA serum concentrations were significantly higher at admission in COVID-19 patients who died than in survivors. Cut-offs of 0.90 µmol/L for SDMA (AUC, 0.904, p = 0.0005) and 0.66 µmol/L for ADMA (AUC, 0.874, p = 0.0013) were found in ROC analyses to best discriminate both subgroups of patients. Hazard ratio for in-hospital mortality was 12.2 (95% CI: 2.2-31.2) for SDMA and 6.3 (1.1-14.7) for ADMA above cut-off. Sequential analysis of both biomarkers allowed discriminating a high-risk group (87.5% mortality) from an intermediate-risk group (25% mortality) and a low-risk group (0% mortality). Elevated circulating concentrations of SDMA and ADMA may help to better identify COVID-19 patients with a high risk of in-hospital mortality.


Asunto(s)
Arginina/análogos & derivados , COVID-19/sangre , Mortalidad Hospitalaria , Hospitalización/estadística & datos numéricos , SARS-CoV-2/aislamiento & purificación , Anciano , Anciano de 80 o más Años , Arginina/sangre , Biomarcadores/sangre , COVID-19/mortalidad , COVID-19/virología , Estudios de Cohortes , Femenino , Humanos , Estimación de Kaplan-Meier , Masculino , Persona de Mediana Edad , Factores de Riesgo , SARS-CoV-2/fisiología
16.
Acta Diabetol ; 58(8): 1111-1117, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33788000

RESUMEN

OBJECTIVE: To detect premature gluco-metabolic defects among night shift workers with disturbances in circadian rhythms. DESIGN AND METHODS: We performed a hypothesis-generating, cross-sectional analysis of anthropometric, metabolic, lipid, and inflammation parameters, comparing active (a-NSW, n = 111) and former (f-NSW, n = 98) rotating night shift workers with diurnal workers (controls, n = 69). All participants were hospital nurses. We also evaluated the Pittsburgh Sleep Quality Index (PSQI) and assessed expression of transcription factors REV-ERBα and BMAL1 in peripheral blood mononuclear cells (PBMCs), as indicators of the molecular clock. RESULTS: Both a-NSW and f-NSW participants had significantly higher glycated hemoglobin (HbA1c) and white blood cell counts (WBC) (p < 0.001 for both), PSQI global score (p = 0.001) and diastolic blood pressure levels (p = 0.024) compared with controls. Expression of REV-ERBα/BMAL1 RNA in PBMC was significantly higher in a-NSW (p = 0.05) than in f-NSW or control participants. Multivariate regression analysis showed that working status and PSQI were independent determinants of higher HbA1c levels (p < 0.001). CONCLUSIONS: We demonstrated that young, healthy night shift workers show subclinical abnormalities in HbA1c and changes in peripheral clock gene expression.


Asunto(s)
Factores de Transcripción ARNTL/genética , Expresión Génica , Hemoglobina Glucada/análisis , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/genética , Horario de Trabajo por Turnos , Factores de Transcripción ARNTL/sangre , Adulto , Presión Sanguínea , Ritmo Circadiano/genética , Ritmo Circadiano/fisiología , Estudios Transversales , Femenino , Hospitales , Humanos , Inflamación , Recuento de Leucocitos , Leucocitos Mononucleares/química , Leucocitos Mononucleares/metabolismo , Masculino , Persona de Mediana Edad , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/sangre , Enfermeras y Enfermeros , ARN/sangre , Sueño/fisiología
17.
J Hypertens ; 39(8): 1678-1688, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-33710166

RESUMEN

OBJECTIVES: Night shift work is associated with high rates of hypertension and cardiometabolic disease, which are linked to disrupted circadian rhythms. We hypothesized that timed light therapy might improve disrupted circadian rhythms and stabilize diurnal control of blood pressure and glucose in night shift workers. METHODS: We randomized 24 rotating night shift workers (mean age, 36 ±â€Š13 years, 7 men) who had spent a median of 6 years on rotating night shifts (median, six night shifts per month) to 12 weeks of light therapy or no intervention and compared them with 12 daytime workers (37 ±â€Š11 years, 6 men). We measured oral glucose tolerance (OGTT), 24-h blood pressure and arterial stiffness, and the circadian profiles of melatonin, cortisol, metanephrine and nor-metanephrine at baseline, after 12 weeks of intervention, and 12 weeks after the end of intervention. RESULTS: At baseline, fewer night shift workers showed dipper status as compared with daytime workers (29 vs. 58%; P < 0.001). After 12 weeks of light therapy, there was a highly significant increase in the proportion of dippers (to 58%; P < 0.0001). We also observed a significant decrease in serum glucose during OGTT in the light therapy group (-22%; P < 0.05) with no change in serum insulin. Whilst circadian profiles of melatonin and cortisol were unchanged, plasma metanephrine and nor-metanephrine levels were significantly reduced in the light therapy group (P < 0.01). CONCLUSION: Timed light therapy improves diurnal blood pressure control and glucose tolerance in rotating night shift workers. This effect is unrelated to melatonin and cortisol but is paralleled by reduced catecholamine levels.


Asunto(s)
Catecolaminas , Melatonina , Adulto , Presión Sanguínea , Ritmo Circadiano , Humanos , Masculino , Persona de Mediana Edad , Fototerapia , Adulto Joven
18.
J Cereb Blood Flow Metab ; 41(8): 1964-1977, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33461409

RESUMEN

Alterations in the concentration of nitric oxide (NO) and L-arginine metabolites have been associated with the pathophysiology of different vascular diseases. Here, we describe striking changes in L-arginine metabolism after hemorrhagic stroke. Blood and cerebrospinal fluid (CSF) samples of patients with intracerebral hemorrhage (ICH) and/or intraventricular hemorrhage were collected over a ten-day period. Liquid chromatography-tandem mass spectrometry was used to quantify key substrates and products of L-arginine metabolizing enzymes as well as asymmetric (ADMA) and symmetric dimethylarginine (SDMA). Changes in the plasma were limited to early reductions in L-ornithine, L-lysine, and L-citrulline concentrations. Intrathecally, we observed signs of early NO synthase (NOS) upregulation followed by a decrease back to baseline accompanied by a rise in the level of its endogenous NOS-inhibitor ADMA. SDMA demonstrated increased levels throughout the observation period. For arginase, a pattern of persistently elevated activity was measured and arginine:glycine amidinotransferase (AGAT) appeared to be reduced in its activity at later time points. An early reduction in CSF L-arginine concentration was an independent risk factor for poor outcome. Together, these findings further elucidate pathophysiological mechanisms after ICH potentially involved in secondary brain injury and may reveal novel therapeutic targets.


Asunto(s)
Arginina/metabolismo , Hemorragia Cerebral/patología , Anciano , Arginina/análogos & derivados , Arginina/sangre , Arginina/líquido cefalorraquídeo , Estudios de Casos y Controles , Hemorragia Cerebral/metabolismo , Cromatografía Líquida de Alta Presión , Citrulina/sangre , Femenino , Humanos , Masculino , Persona de Mediana Edad , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa/antagonistas & inhibidores , Óxido Nítrico Sintasa/metabolismo , Ornitina/sangre , Factores de Riesgo , Espectrometría de Masas en Tándem , Regulación hacia Arriba
19.
J Nutr ; 151(4): 763-771, 2021 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-33232463

RESUMEN

BACKGROUND: Genetic variation in arginase may underlie variability in whole blood l-arginine concentrations in unsupplemented and l-arginine-supplemented adults. OBJECTIVES: We aimed to study whether single nucleotide polymorphisms (SNPs) in the arginase 1 (ARG1) and arginase 2 (ARG2) genes are associated with blood l-arginine concentrations in unsupplemented and l-arginine-supplemented individuals. METHODS: In 374 adults (mean ± SD age: 59.6 ± 14.6 y; 180 males), we analyzed SNPs in the ARG1 (rs2246012 and rs2781667) and ARG2 genes (rs3742879 and rs2759757) and their associations with blood l-arginine concentrations. We analyzed associations of haplotypes for the ARG1 gene and for the ARG1 and ARG2 genes combined with blood l-arginine concentrations in supplement users and unsupplemented participants. RESULTS: Of study participants, 120 had low (<42 µmol/L), 133 had medium (42-114 µmol/L), and 121 had high blood l-arginine concentrations (>114 µmol/L); 58 individuals were current l-arginine supplement users. We found a significantly higher prevalence of the minor allele of ARG1 rs2246012 in supplement users with higher blood l-arginine concentrations (P = 0.03). Mean ± SEM l-arginine concentration was 263 ± 9.76 µmol/L in supplement users homozygous for the minor allele of ARG1 rs2246012 (P = 0.004); it was 70.4 ± 25.6 µmol/L in unsupplemented participants homozygous for the minor allele of ARG2 rs3759757 (P = 0.03). The ARG1 haplotype was significantly associated with blood l-arginine concentrations in supplement users (P = 0.046), whereas the combined ARG1/ARG2 haplotype was significantly associated with blood l-arginine concentrations in the cohort as a whole (P = 0.012). CONCLUSIONS: Genetic variability in the ARG1 and ARG2 genes is associated with blood l-arginine concentrations in humans: ARG1 is associated with blood l-arginine concentrations in l-arginine supplement users, whereas ARG2 is associated with blood l-arginine concentrations in unsupplemented participants. Our study is the first to describe a possible functional relation between ARG1 and ARG2 SNPs and blood l-arginine concentrations; genetic variability in ARG1 may explain variation in blood l-arginine concentrations during supplement use and discrepant study results.


Asunto(s)
Arginasa/genética , Arginina/administración & dosificación , Arginina/sangre , Polimorfismo de Nucleótido Simple , Adulto , Anciano , Suplementos Dietéticos , Femenino , Frecuencia de los Genes , Estudios de Asociación Genética , Haplotipos , Homocigoto , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos
20.
J Clin Med ; 9(12)2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-33271854

RESUMEN

Delayed cerebral ischemia (DCI) often causes poor long-term neurological outcome after subarachnoidal hemorrhage (SAH). Asymmetric dimethylarginine (ADMA) inhibits nitric oxide synthase (NOS) and is associated with DCI after SAH. We studied single nucleotide polymorphisms (SNPs) in the NOS3, DDAH1, DDAH2, PRMT1, and AGXT2 genes that are part of the L-arginine-ADMA-NO pathway, and their association with DCI. We measured L-arginine, ADMA and symmetric dimethylarginine (SDMA) in plasma and cerebrospinal fluid (CSF) of 51 SAH patients at admission; follow-up was until 30 days post-discharge. The primary outcome was the incidence of DCI, defined as new infarctions on cranial computed tomography, which occurred in 18 of 51 patients. Clinical scores did not significantly differ in patients with or without DCI. However, DCI patients had higher plasma ADMA and SDMA levels and higher CSF SDMA levels at admission. DDAH1 SNPs were associated with plasma ADMA, whilst AGXT2 SNPs were associated with plasma SDMA. Carriers of the minor allele of DDAH1 rs233112 had a significantly increased relative risk of DCI (Relative Risk = 2.61 (1.25-5.43), p = 0.002). We conclude that the DDAH1 gene is associated with ADMA concentration and the incidence of DCI in SAH patients, suggesting a pathophysiological link between gene, biomarker, and clinical outcome in patients with SAH.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA