Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 293
Filtrar
1.
Surgery ; 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38839433

RESUMEN

We aimed to analyze the feasibility of endovascular treatment for brucellosis-related aorta-iliac artery pseudoaneurysm. We did a statistical analysis that among the 11 cases, the thoracic aorta was involved in 3 cases, the abdominal aorta was involved in 6 cases, and the iliac artery was involved in 2 cases. Five patients had a history of contact with cattle and sheep, 3 had a history of drinking raw milk, 10 patients had a fever before the operation, and 11 patients had positive serum agglutination test. Blood culture was positive in 2 patients. All patients were given anti-brucellosis treatment immediately after diagnosis. One died of aortic rupture 5 days after emergency endovascular gastrointestinal bleeding. Endovascular-covered stent implantation and active anti-brucellosis therapy were used to treat 10 patients. The follow-up period was 8 years without aortic complications or death for all patients. We think early diagnosis and a combination of anti-brucellosis drugs and endovascular therapy may be the first choice for treating the pseudoaneurysm caused by Brucella.

2.
Cortex ; 177: 37-52, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38833819

RESUMEN

Fearful, angry, and disgusted facial expressions are evolutionarily salient and convey different types of threat signals. However, it remains unclear whether these three expressions impact sensory perception and attention in the same way. The present ERP study investigated the temporal dynamics underlying the processing of different types of threatening faces and the impact of attentional resources employed during a perceptual load task. Participants were asked to judge the length of bars superimposed over faces presented in the center of the screen. A mass univariate statistical approach was used to analyze the EEG data. Behaviorally, task accuracy was significantly reduced following exposure to fearful faces relative to neutral distractors, independent of perceptual load. The ERP results revealed that the P1 amplitude over the right hemisphere was found to be enhanced for fearful relative to disgusted faces, reflecting the rapid and coarse detection of fearful cues. The N170 responses elicited by fearful, angry, and disgusted faces were larger than those elicited by neutral faces, suggesting the largely automatic and preferential processing of threats. Furthermore, the early posterior negativity (EPN) component yielded increased responses to fearful and angry faces, indicating prioritized attention to stimuli representing acute threats. Additionally, perceptual load exerted a pronounced influence on the EPN and late positive potential (LPP), with larger responses observed in the low perceptual load condition, indicating goal-directed cognitive processing. Overall, the early sensory processing of fearful, angry, and disgusted faces is characterized by differential sensitivity in capturing attention automatically, despite the importance of these facial signals for survival. Fearful faces produce a strong interference effect and are processed with higher priority than angry and disgusted ones.

3.
Appl Opt ; 63(13): 3399-3405, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38856524

RESUMEN

Weakly coupled mode-division multiplexing (MDM) transmission over legacy laid multimode fiber (MMF) has great economic efficiency and can enormously enhance the capacity of short-reach optical interconnections. In order to be compatible with cost-efficient intensity-modulation/direct-detection (IM/DD) transceivers, weakly coupled mode-group demultiplexers that can simultaneously receive each mode group of MMFs are highly desired. In this paper, we propose a scalable low-modal-crosstalk mode-group demultiplexer over MMF based on multiplane light conversion (MPLC). Multiple input Hermite-Gaussian (HG) modes of MMF are first converted to bridging modes that are composed of H G 00 modes distributed as a right-angle triangle in Cartesian coordinates, and then each H G 00 mode belonging to a degenerate mode group is mapped to different overlapped H G n0 modes with vertical orientation for simultaneous detection. With the help of bridging modes, the MPLC-based mode-group demultiplexer can efficiently demultiplex all mode groups in standard MMFs with less than 20 phase masks. A nine-mode-group demultiplexer is further designed for demonstration, and simulation results show that the MPLC-based demultiplexer achieves low modal crosstalk of lower than -22.3d B at 1550 nm and lower than -17.9d B over the C-band for all the nine mode groups with only 16 phase masks.

4.
Virol J ; 21(1): 123, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38822405

RESUMEN

BACKGROUND: Long coronavirus disease (COVID) after COVID-19 infection is continuously threatening the health of people all over the world. Early prediction of the risk of Long COVID in hospitalized patients will help clinical management of COVID-19, but there is still no reliable and effective prediction model. METHODS: A total of 1905 hospitalized patients with COVID-19 infection were included in this study, and their Long COVID status was followed up 4-8 weeks after discharge. Univariable and multivariable logistic regression analysis were used to determine the risk factors for Long COVID. Patients were randomly divided into a training cohort (70%) and a validation cohort (30%), and factors for constructing the model were screened using Lasso regression in the training cohort. Visualize the Long COVID risk prediction model using nomogram. Evaluate the performance of the model in the training and validation cohort using the area under the curve (AUC), calibration curve, and decision curve analysis (DCA). RESULTS: A total of 657 patients (34.5%) reported that they had symptoms of long COVID. The most common symptoms were fatigue or muscle weakness (16.8%), followed by sleep difficulties (11.1%) and cough (9.5%). The risk prediction nomogram of age, diabetes, chronic kidney disease, vaccination status, procalcitonin, leukocytes, lymphocytes, interleukin-6 and D-dimer were included for early identification of high-risk patients with Long COVID. AUCs of the model in the training cohort and validation cohort are 0.762 and 0.713, respectively, demonstrating relatively high discrimination of the model. The calibration curve further substantiated the proximity of the nomogram's predicted outcomes to the ideal curve, the consistency between the predicted outcomes and the actual outcomes, and the potential benefits for all patients as indicated by DCA. This observation was further validated in the validation cohort. CONCLUSIONS: We established a nomogram model to predict the long COVID risk of hospitalized patients with COVID-19, and proved its relatively good predictive performance. This model is helpful for the clinical management of long COVID.


Asunto(s)
COVID-19 , Nomogramas , SARS-CoV-2 , Humanos , COVID-19/epidemiología , COVID-19/complicaciones , COVID-19/diagnóstico , Masculino , Femenino , Persona de Mediana Edad , Pronóstico , Factores de Riesgo , Estudios de Cohortes , Anciano , Adulto , Hospitalización/estadística & datos numéricos , Medición de Riesgo , Síndrome Post Agudo de COVID-19
5.
J Endovasc Ther ; : 15266028241245325, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38616626

RESUMEN

PURPOSE: The purpose was to evaluate the clinical outcomes of a dedicated venous stent with the tripartite composite segments for the treatment of iliofemoral venous obstruction (IVO) in a mixed cohort of nonthrombotic iliac vein lesion (NIVL) and post-thrombotic syndrome (PTS) over a period of 12 months. METHODS: The Grency Trial is a prospective, multicenter, single-arm, open-label, pivotal study, which was conducted at 18 large tertiary hospitals in China from August 2019 to October 2020. A total of 133 hospitalized patients were screened and 110 patients with clinical, etiology, anatomical, and pathophysiology clinical class (CEAP) clinical grade C>3 and iliac vein stenosis >50% or occlusion, including 72 patients with NIVL and 38 patients with PTS, were implanted with Grency venous stents. Primary endpoint was stent patency at 12 months follow-up, and secondary outcomes were technical success; improvement in venous clinical severity score (VCSS) at 3, 6, and 12 month follow-up; and rates of clinical adverse events. RESULTS: Among 110 patients who were implanted with Grency venous stents, 107 patients completed the 12 month follow-up. All 129 stents were successfully implanted in 110 limbs. Twelve-month primary patency rate was 94.39% [95% confidence interval [CI]=88.19%-97.91%] overall, and 100% [94.94%-100%] and 83.33% [67.19%-93.63%] in the NIVL and PTS subgroups, respectively. Venous clinical severity score after iliac vein stenting improved significantly up to 12 months follow-up. There were 3 early major adverse events (1 intracerebral hemorrhage and 2 stent thrombosis events related to anticoagulation therapy), and 7 late major adverse events (1 cardiovascular death, 1 intracranial hemorrhage with uncontrolled hypertension, and 5 in-stent restenosis cases without stent fractures or migration). CONCLUSIONS: The Grency venous stent system appeared excellent preliminary safe and effective for IVO treatment. Further large-scale studies with longer-term follow-up are needed to evaluate long-term patency and durability of stent. CLINICAL IMPACT: The design of venous stents for iliofemoral venous obstruction (IVO) must address engineering challenges distinct from those encountered in arterial stenting. The Grency venous stent, a nitinol self-expanding stent specifically tailored for IVO, features a composite structure designed to meet the stent requirements of various iliac vein segments. The Grency Trial is a prospective, multicenter, single-arm, open-label pivotal study aimed at evaluating the efficacy and safety of the Grency stent system. Following a 12-month follow-up period, the Grency venous stent system has demonstrated both safety and efficacy in treating iliofemoral venous outflow obstruction.

6.
Zhen Ci Yan Jiu ; 49(3): 247-255, 2024 Mar 25.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-38500321

RESUMEN

OBJECTIVES: To observe the effect of Guasha on inflammation factors, apoptosis and autophagy in the cartilage tissue of knee joint in rats with knee osteoarthritis (KOA), so as to explore its mechanisms underlying improvement of KOA. METHODS: A total of 51 male SD rats were randomized into three groups:blank control, KOA model and Guasha (n= 17 in each group) . The rats in the blank control group received intra-articular injection of 0.9% NaCl solution in the right knee joint. The KOA model was established by intraarticular injection of glutamate sodium iodoacetic acid in the right knee joint. For rats of the Guasha group, Guasha (at a frequency of 1 time/s, and an applied pressure of 0.3-0.5 kgf) was applied to "Yanglingquan" (GB34) and "Xuehai"(SP10) areas of the right leg, once every other day, for 7 consecutive sessions. The circumference of the right knee was measured, The histopathological changes of right knee cartilage were observed after H.E. staining. The contents of inflammatory factors interleukin (IL)-1ß and tumor necrosis factor (TNF)-α in the right knee articular cartilage tissue were assayed using ELISA. The expression levels of autophagy-related key molecule Beclin-1 (homologous series of yeast Atg6), light chain protease complication 3 type II/I (LC3II/LC3 I), ubiquitin binding factor 62 (P62) and cysteine aspartate protease-3 (Caspase-3) mRNAs and proteins of the right knee articular cartilage tissue were measured using real-time fluorescent quantitative PCR and Western blot, separately. The apoptosis of chondrocytes was assayed using TUNEL staining, and the immunoactivity of LC3 determined using immunofluorescence staining. RESULTS: After modeling, the right knee circumfe-rence of the model and Guasha groups was significantly increased compared with the blank control group (P<0.01), and after the intervention, the knee circumference of the Guasha group was markedly decreased in comparison with that of the model group (P<0.05). Results of H.E. staining showed obvious degeneration and defects in the cartilage tissue, necrosis of a large number of chondrocytes, fibrous hyperplasia, accompanied by inflammatory cell infiltration, osteoclast increase, fibroplasia and bone trabecular destruction in the model group, which was relatively milder in the Guasha group. Compared with the blank control group, the expression of Beclin-1 and LC3 mRNAs and proteins, and LC immunofluorescence intensity in the right knee articular cartilage tissue were significantly down-regulated (P<0.01, P<0.001), whereas the expression of P62 and Caspase-3 mRNAs and proteins, the apoptosis rate, contents of IL-1ß and TNF-α in the right knee articular cartilage tissue considerably increased (P<0.01, P<0.001) in the model group. In contrast to the model group, the Guasha group had an apparent increase in the expression levels of Beclin-1 and LC3 mRNAs and proteins and LC immunofluorescence intensity in the right knee articular cartilage tissue (P<0.05), and a pronounced decrease in the expression of P62 and Caspase-3 mRNAs and proteins, the apoptosis rate, and contents of IL-1ß and TNF-α in the right knee articular cartilage tissue (P<0.05, P<0.01). CONCLUSIONS: Guasha stimulation of GB34 and SP10 can improve joint cartilage damage in KOA rats, which may be associated with its functions in inhibiting the excessive release of inflammatory factors and apoptosis, possibly by down-regulating the expression of P62 and Caspase-3 mRNAs and proteins and up-regulating the expression of Beclin-1 and LC3 mRNAs and proteins, and by promoting autophagy of chondrocytes.


Asunto(s)
Osteoartritis de la Rodilla , Ratas , Masculino , Animales , Osteoartritis de la Rodilla/genética , Osteoartritis de la Rodilla/terapia , Caspasa 3/metabolismo , Condrocitos/metabolismo , Ratas Sprague-Dawley , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Beclina-1/metabolismo , Apoptosis/genética , Autofagia/genética
7.
Small ; : e2311741, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38470196

RESUMEN

Hydrogen (H2 ) has emerged as a highly promising energy carrier owing to its remarkable energy density and carbon emission-free properties. However, the widespread application of H2 fuel has been limited by the difficulty of storage. In this work, spontaneous electrochemical hydrogen production is demonstrated using hydrazine (N2 H4 ) as a liquid hydrogen storage medium and enabled by a highly active Co catalyst for hydrazine electrooxidation reaction (HzOR). The HzOR electrocatalyst is developed by a self-limited growth of Co nanoparticles from a Co-based zeolitic imidazolate framework (ZIF), exhibiting abundant defective surface atoms as active sites for HzOR. Notably, these self-limited Co nanoparticles exhibit remarkable HzOR activity with a negative working potential of -0.1 V (at 10 mA cm-2 ) in 0.1 m N2 H4 /1 m KOH electrolyte. Density functional theory (DFT) calculations are employed to validate the superior performance of low-coordinated Co active sites in facilitating HzOR. By taking advantage of the potential difference between HzOR and the hydrogen evolution reaction (HER), a novel HzOR||HER electrochemical system is developed to spontaneously produce H2 without external energy input. Overall, the work offers valuable guidance for developing active HzOR catalyst. The novel HzOR||HER electrochemical system represents a promising and innovative solution for energy-efficient hydrogen production.

8.
J Agric Food Chem ; 72(12): 6226-6235, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38492240

RESUMEN

The sleep-breathing condition obstructive sleep apnea (OSA) is characterized by repetitive upper airway collapse, which can exacerbate oxidative stress and free radical generation, thereby detrimentally impacting both motor and sensory nerve function and inducing muscular damage. OSA development is promoted by increasing proportions of fast-twitch muscle fibers in the genioglossus. Orientin, a water-soluble dietary C-glycosyl flavonoid with antioxidant properties, increased the expression of slow myosin heavy chain (MyHC) and signaling factors associated with AMP-activated protein kinase (AMPK) activation both in vivo and in vitro. Inhibiting AMPK signaling diminished the effects of orientin on slow MyHC, fast MyHC, and Sirt1 expression. Overall, orientin enhanced type I muscle fibers in the genioglossus, enhanced antioxidant capacity, increased mitochondrial biogenesis through AMPK signaling, and ultimately improved fatigue resistance in C2C12 myotubes and mouse genioglossus. These findings suggest that orientin may contribute to upper airway stability in patients with OSA, potentially preventing airway collapse.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Glucósidos , Apnea Obstructiva del Sueño , Humanos , Ratones , Animales , Proteínas Quinasas Activadas por AMP/metabolismo , Antioxidantes/metabolismo , Biogénesis de Organelos , Músculo Esquelético/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares de Contracción Lenta/metabolismo , Flavonoides/metabolismo , Apnea Obstructiva del Sueño/metabolismo
9.
J Psychosom Res ; 179: 111641, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38461621

RESUMEN

OBJECTIVE: This study employed bidirectional two-sample Mendelian randomization (MR) to investigate the causal links between psychiatric disorders and sensorineural hearing loss (SNHL). METHODS: Instrumental variables were chosen from genome-wide association studies of schizophrenia (SCH, N = 127,906), bipolar disorder (BD, N = 51,710), major depressive disorder (MDD, N = 500,199), and SNHL (N = 212,544). In the univariable MR analysis, the inverse-variance weighted method (IVW) was conducted as the primary analysis, complemented by various sensitivity analyses to ensure result robustness. RESULTS: SCH exhibited a decreased the risk of SNHL (OR = 0.949, P = 0.005), whereas BD showed an increased incidence of SNHL (OR = 1.145, P = 0.005). No causal association was found for MDD on SNHL (OR = 1.088, P = 0.246). Multivariable MR validated these results. In the reverse direction, genetically predicted SNHL was linked to a decreased risk of SCH with suggestive significance (OR = 0.912, P = 0.023). No reverse causal relationships were observed for SNHL influencing BD or MDD. These findings remained consistent across various MR methods and sensitivity analyses. CONCLUSION: This study demonstrated that the causal relationships between diverse psychiatric disorders with SNHL were heterogeneous. Specifically, SCH was inversely associated with SNHL susceptibility, and similarly, a reduced risk of SNHL was observed in schizophrenia patients. In contrast, BD exhibited an increased incidence of SNHL, although SNHL did not influence the prevalence of BD. No causal association between MDD and SNHL was found.


Asunto(s)
Trastorno Depresivo Mayor , Pérdida Auditiva Sensorineural , Trastornos Mentales , Humanos , Análisis de la Aleatorización Mendeliana , Trastorno Depresivo Mayor/complicaciones , Trastorno Depresivo Mayor/epidemiología , Trastorno Depresivo Mayor/genética , Estudio de Asociación del Genoma Completo , Pérdida Auditiva Sensorineural/epidemiología , Pérdida Auditiva Sensorineural/genética
10.
J Psychiatr Res ; 172: 244-253, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38412787

RESUMEN

The comorbidities between gastroesophageal reflux disease (GERD) and various neurodegenerative and psychiatric disorders have been widely reported. However, the genetic correlations, causal relationships, and underlying mechanisms linking GERD to these disorders remain largely unknown. Here, we conducted a bidirectional Mendelian randomization (MR) analysis to determine the causality between GERD and 6 neurodegenerative and psychiatric disorders. Sensitivity analyses and multivariable MR were performed to test the robustness of our findings. Linkage disequilibrium score regression was used to assess the genetic correlation between these diseases as affected by heredity. Multiple bioinformatics tools combining two machine learning algorithms were applied to further investigate the potential mechanisms underlying these diseases. We found that genetically predicted GERD significantly increased the risk of Alzheimer's disease, major depressive disorder, and anxiety disorders. There might be a bidirectional relationship between GERD and insomnia. GERD has varying degrees of genetic correlations with AD, ALS, anxiety disorders, insomnia, and depressive disorder. Bioinformatics analyses revealed the hub shared genes and the common pathways between GERD and 6 neurodegenerative and psychiatric disorders. Our findings demonstrated the complex nature of the genetic architecture across these diseases and clarified their causality, highlighting that treatments for the cure or remission of GERD may serve as potential strategies for preventing and managing neurodegenerative and psychiatric disorders.


Asunto(s)
Trastorno Depresivo Mayor , Reflujo Gastroesofágico , Trastornos Mentales , Trastornos del Inicio y del Mantenimiento del Sueño , Humanos , Trastorno Depresivo Mayor/epidemiología , Trastorno Depresivo Mayor/genética , Trastornos Mentales/epidemiología , Trastornos Mentales/genética , Trastornos de Ansiedad/epidemiología , Trastornos de Ansiedad/genética , Reflujo Gastroesofágico/epidemiología , Reflujo Gastroesofágico/genética , Estudio de Asociación del Genoma Completo
11.
Nano Lett ; 24(8): 2661-2670, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38345313

RESUMEN

Nanomaterial-assisted chemodynamic therapy (CDT) has received considerable attention in recent years. It outperforms other modalities by its distinctive reactive oxygen species (ROS) generation through a nonexogenous stimulant. However, CDT is limited by the insufficient content of endogenous hydrogen peroxide (H2O2). Herein, a biodegradable MnS@HA-DOX nanocluster (MnS@HA-DOX NC) was constructed by in situ biomineralization from hyaluronic acid, to enlarge the ROS cascade and boost Mn2+-based CDT. The acid-responsive NCs could quickly degrade after internalization into endo/lysosomes, releasing Mn2+, H2S gas, and anticancer drug doxorubicin (DOX). The Fenton-like reaction catalyzed by Mn2+ was amplified by both H2S and DOX, producing a mass of cytotoxic ·OH radicals. Through the combined action of gas therapy (GT), CDT, and chemotherapy, oxidative stress would be synergistically enhanced, inducing irreversible DNA damage and cell cycle arrest, eventually resulting in cancer cell apoptosis.


Asunto(s)
Peróxido de Hidrógeno , Neoplasias , Humanos , Especies Reactivas de Oxígeno , Peróxido de Hidrógeno/farmacología , Doxorrubicina/farmacología , Apoptosis , Biomineralización , Gases , Línea Celular Tumoral , Microambiente Tumoral
12.
ACS Appl Mater Interfaces ; 16(10): 13082-13090, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38416690

RESUMEN

Smart electromagnetic interference (EMI) shielding materials are of great significance in coping with the dynamic performance demands of cutting-edge electronic devices. However, smart EMI shielding materials are still in their infancy and face a variety of challenges (e.g., large thickness, limited tunable range, poor reversibility, and unclear mechanisms). Here, we report a method for controllable shielding electromagnetic (EM) waves through subwavelength structure changes regulated by the customized structure via a direct printing route. The highly conductive MXene ink is regulated with metal ions (Al3+ ions), giving superb metallic conductivity (∼5000 S cm-1) for the printed lines without an annealing treatment. The reversible tunability of EMI shielding effectiveness (SE) ranging from 8.2 dB ("off" state) to 34 dB ("on" state) is realized through the controllable modulation of subwavelength structure driven by stress. This work provides a feasible strategy to develop intelligent shielding materials and EM devices.

13.
Front Oncol ; 14: 1328703, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38410108

RESUMEN

Purpose: Periprosthetic fracture (PPF) is one of the severe complications in patients with osteosarcoma and carries the risk of limb loss. This study describes the characteristics, treatment strategies, and outcomes of this complication. Methods: Patients were consecutively included who were treated at our institution between 2016 and 2020 with a PPF of distal femur. The treatment strategies included two types: 1) open reduction and internal fixation with plates and screws and 2) replacement with long-stem endoprosthesis and reinforcement with wire rope if necessary. Results: A total of 11 patients (mean age 12.2 years (9-14)) were included, and the mean follow-up period was 36.5 (21-54) months. Most fractures were caused by direct or indirect trauma (n = 8), and others (n = 3) underwent PPF without obvious cause. The first type of treatment was performed on four patients, and the second type was performed on seven patients. The mean Musculoskeletal Tumor Society (MSTS) score was 20 (17-23). All patients recovered from the complication, and limb preservation could be achieved. Conclusion: PPF is a big challenge for musculoskeletal oncologists, particularly in younger patients. Additionally, PPF poses a challenge for orthopedic surgeons, as limb preservation should be an important goal. Hence, internal fixation with plates and endoprosthetic replacement are optional treatment strategies based on fracture type and patient needs.

14.
Nanomicro Lett ; 16(1): 114, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38353764

RESUMEN

Quasi-solid electrolytes (QSEs) based on nanoporous materials are promising candidates to construct high-performance Li-metal batteries (LMBs). However, simultaneously boosting the ionic conductivity (σ) and lithium-ion transference number (t+) of liquid electrolyte confined in porous matrix remains challenging. Herein, we report a novel Janus MOFLi/MSLi QSEs with asymmetric porous structure to inherit the benefits of both mesoporous and microporous hosts. This Janus QSE composed of mesoporous silica and microporous MOF exhibits a neat Li+ conductivity of 1.5 × 10-4 S cm-1 with t+ of 0.71. A partially de-solvated structure and preference distribution of Li+ near the Lewis base O atoms were depicted by MD simulations. Meanwhile, the nanoporous structure enabled efficient ion flux regulation, promoting the homogenous deposition of Li+. When incorporated in Li||Cu cells, the MOFLi/MSLi QSEs demonstrated a high Coulombic efficiency of 98.1%, surpassing that of liquid electrolytes (96.3%). Additionally, NCM 622||Li batteries equipped with MOFLi/MSLi QSEs exhibited promising rate performance and could operate stably for over 200 cycles at 1 C. These results highlight the potential of Janus MOFLi/MSLi QSEs as promising candidates for next-generation LMBs.

15.
Nat Commun ; 15(1): 1186, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38332033

RESUMEN

In-situ wastewater treatment has gained popularity due to cost and energy savings tailored to water sources and user needs. However, this treatment, particularly through advanced oxidation processes (AOPs), poses ecological risks due to the need for strong oxidizing agents. Here, we present a decoupled oxidation process (DOP) using single-atom copper-modified graphite felt electrodes. This process creates a positive potential difference (ΔE ~ 0.5 V) between spatially isolated oxidants and organics and drives electron transfer-based redox reactions. The approach avoids the drawbacks of conventional AOPs, while being capable of treating various recalcitrant electron-rich organics. A floating water treatment device designed based on the DOP approach can degrade organic molecules in large bodies of water with oxidants stored separately in the device. We demonstrate that over 200 L of contaminated water can be treated with a floating device containing only 40 mL of oxidant (10 mM peroxysulphate). The modular device can be used in tandem structures on demand, maximizing water remediation per unit area. Our result provides a promising, eco-friendly method for in-situ water treatment that is unattainable with existing techniques.

16.
Res Nurs Health ; 47(3): 324-334, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38229213

RESUMEN

Currently, the number of pregnant women at high risk for gestational diabetes mellitus (GDM) and using assisted reproductive technology (ART) is increasing. The present study aims to explore the relationship between ART and physical activity in Chinese pregnant women at high risk for GDM in early pregnancy. A cross-sectional study was conducted in a regional teaching hospital in Guangzhou, China, between July 2022 and March 2023. Three hundred fifty-five pregnant women at high risk for GDM in early pregnancy completed the Chinese version of the Pregnant Physical Activity Questionnaire (PPAQ), the Pregnancy Physical Activity Knowledge Scale, the Pregnancy Physical Activity Self-Efficacy Scale, the Pregnancy Physical Activity Social Support Scale, and a sociodemographic and obstetric characteristics data sheet. Compared to women who conceived naturally, women who used ART were more likely to be 35 years or older, unemployed, primigravidae, and to have intentionally planned their pregnancies. Women who used ART had significantly lower levels of physical activity and self-efficacy compared to their counterparts who conceived naturally. Over half (55.6%) of women who used ART reported being physically inactive, and those with lower self-efficacy, as well as the unemployed, were significantly more likely to be inactive. Physical inactivity is a critical clinical issue among women who use ART, especially in the context of GDM risk. Future research should develop and test physical activity programs, including enhancing physical activity self-efficacy for women who use ART. Patient or public contribution: In this study, survey questionnaires were completed by participants among Chinese pregnant women at high risk for GDM in early pregnancy.


Asunto(s)
Diabetes Gestacional , Embarazo , Femenino , Humanos , Mujeres Embarazadas , Estudios Transversales , Técnicas Reproductivas Asistidas , Ejercicio Físico
17.
Adv Mater ; 36(14): e2310849, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38185468

RESUMEN

Flexible and adaptable polymer composites with high-performance reliability over wide temperature range are imperative for various applications. However, the distinct filler-matrix thermomechanical behaviors often cause severe structure damage and performance degradation upon large thermal shock. To address this issue, a general strategy is proposed to construct leakage-free, self-adaptive, stable percolation networks in polymer composites over wide temperature (77-473 K) with biphasic Ga35In65 alloy. The in situ micro-CT technology, for the first time, reveals the conformable phase transitions of Ga35In65 alloys in the polymer matrix that help repair the disruptive conductive networks over large temperature variations. The cryo-expanded Ga compensates the disruptive carbon networks at low temperatures, and flowable Ga and melted In at high temperatures conformably fill and repair the deboned interfaces and yielded crevices. As a proof-of-concept, this temperature-resistant composite demonstrates superb electrical conductivity and electromagnetic interference shielding properties and stability even after a large temperature shock (ΔT = 396 K). Furthermore, the superiority of the construction of temperature self-adaptive networks within the composite enables them for additive manufacturing of application-oriented components. This work offers helpful inspiration for developing high-performance polymer composites for extreme-temperature applications.

18.
Biol Reprod ; 110(2): 408-418, 2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-37903059

RESUMEN

Non-obstructive azoospermia affects more than 10% of infertile men with over 70% patients are idiopathic with uncharacterized molecular mechanisms, which is referred as idiopathic non-obstructive azoospermia. In this study, we checked the morphology of Sertoli cell mitochondria in testis biopsies from patients with idiopathic non-obstructive azoospermia and patients with obstructive azoospermia who have normal spermiogenesis. The expression of 104 genes controlling mitochondria fission and fusion were analyzed in three gene expression datasets including a total of 60 patients with non-obstructive azoospermia. The levels of 7 candidate genes were detected in testis biopsies from 38 patients with idiopathic non-obstructive azoospermia and 24 patients with obstructive azoospermia who have normal spermatogenesis by RT-qPCR. Cell viability, apoptosis, mitochondria membrane potential, adenosine triphosphate production, oxygen consumption, and mitochondria morphology were examined in primary human Sertoli cells. Mouse spermatogonial stem cells were used to detect the cell supporting capacity of Sertoli cells. We observed that patients with idiopathic non-obstructive azoospermia had elongated mitochondria. MTFR2 and ATP5IF1 were downregulated, whereas BAK1 was upregulated in idiopathic non-obstructive azoospermia testis and Sertoli cells. Sertoli cells from patients with idiopathic non-obstructive azoospermia had reduced viability, mitochondria membrane potential, adenosine triphosphate production, oxygen consumption rate, glycolysis and increased apoptosis. Knockdown MTFR2 in Sertoli cells increased the mitochondria size. Knockdown ATP5IF1 did not change mitochondrial morphology but increased adenosine triphosphate hydrolysis. Overexpression of BAK1 reduced membrane potential and upregulated cell apoptosis. The dysregulation of all these three genes contributed to the dysfunction of Sertoli cells, which provides a clue for idiopathic non-obstructive azoospermia treatment.


Asunto(s)
Azoospermia , Enfermedades Mitocondriales , Masculino , Humanos , Ratones , Animales , Células de Sertoli/metabolismo , Azoospermia/genética , Dinámicas Mitocondriales , Testículo/metabolismo , Espermatogénesis/genética , Adenosina Trifosfato/metabolismo , Enfermedades Mitocondriales/metabolismo , Enfermedades Mitocondriales/patología , Proteína Destructora del Antagonista Homólogo bcl-2/genética , Proteína Destructora del Antagonista Homólogo bcl-2/metabolismo
19.
Water Res ; 249: 120890, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38016222

RESUMEN

Emerging electrochemical disinfection techniques provide a promising pathway to the biofouling control of reverse osmosis (RO) process. However, the comparative effectiveness and mechanism of it under flow-through conditions with low voltage remains unclear. This study investigated the effect of a flow-through electrode system (FES) with both direct current (DC) and alternating pulse current (AC) on RO biofouling control compared with chlorine disinfection. At the initial stage of biofouling development, the normalized flux of AC-FES (67% on Day 5) was saliently higher than the control group (56% on Day 5). Subsequently, the normalized fluxes of each group tended similarity in their differences until the 20th day. After mild chemical cleaning, the RO membrane in the AC-FES group reached the highest chemical cleaning efficiency of 58%, implying its foulant was more readily removable and the biofouling was more reversible. The biofouling layer in the DC-FES group was also found to be easily cleanable. Morphological analysis suggested that the thickness and compactness of the fouling layers were the major reasons for the fouling behavior difference. The abundance of 4 fouling-related abundant genera (>1%), which were Pseudomonas, Thiobacillus, Sphingopyxis, and Mycobacterium exhibited a salient correlation with the biofouling degree. The operating cost of FES was also lower than that of chlorine disinfection. In summary, AC-FES is a promising alternative to chlorine disinfection in RO biofouling control, as it caused less and easy-cleaning biofouling layer mainly due to two advantages: a) reducing the regrowth potential after disinfection of the bacteria, leading to alleviated initial fouling, (b) reshaping the microbial community to those with weaker biofilm formation capacity.


Asunto(s)
Incrustaciones Biológicas , Purificación del Agua , Aguas Residuales , Incrustaciones Biológicas/prevención & control , Cloro , Membranas Artificiales , Ósmosis , Purificación del Agua/métodos
20.
Small ; 20(12): e2307637, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37946399

RESUMEN

The electrochemical conversion of carbon dioxide (CO2) into ethanol with high added value has attracted increasing attention. Here, an efficient catalyst with abundant Cu2O/Ag interfaces for ethanol production under pulsed CO2 electrolysis is reported, which is composed of Cu2O hollow nanospheres loaded with Ag nanoparticles (named as se-Cu2O/Ag). The CO2-to-ethanol Faradaic efficiency is prominently improved to 46.3% at a partial current density up to 417 mA cm-2 under pulsed electrolysis conditions in a neutral flow cell, notably outperforming conventional Cu catalysts during static electrolysis. In situ spectroscopy reveals the stabilized Cu+ species of se-Cu2O/Ag during pulsed electrolysis and the enhanced adsorbed CO intermediate (*CO)coverage on the heterostructured catalyst. Density functional theory (DFT) calculations further confirm that the Cu2O/Ag heterostructure stabilizes the *CO intermediate and promotes the coupling of *CO and adsorbed CH intermediate (*CH). Meanwhile, the stable Cu+ species under pulsed electrolysis favor the hydrogenation of adsorbed HCCOH intermediate (*HCCOH) to adsorbed HCCHOH intermediate (*HCCHOH) on the pathway to ethanol. The synergistic effect between the enhanced generation of *CO on Cu2O/Ag and regenerated Cu+ species under pulsed electrolysis steers the reaction pathway toward ethanol. This work provides some insights into selective ethanol production from CO2 electroreduction via combined catalyst design and non-steady state electrolysis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA