Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Microorganisms ; 12(5)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38792699

RESUMEN

Soil microbes are crucial in shaping the root-associated microbial communities. In this study, we analyzed the effect of the soil-root niche gradient on the diversity, composition, and assembly of the bacterial community and co-occurrence network of two cotton varieties. The results revealed that the bacterial communities in cotton soil-root compartment niches exhibited a skewed species abundance distribution, dominated by abundant taxa showing a strong spatial specificity. The assembly processes of the rhizosphere bacterial communities were mainly driven by stochastic processes, dominated by the enrichment pattern and supplemented by the depletion pattern to recruit bacteria from the bulk soil, resulting in a more stable bacterial community. The assembly processes of the endosphere bacterial communities were determined by processes dominated by the depletion pattern and supplemented by the enrichment pattern to recruit species from the rhizosphere, resulting in a decrease in the stability and complexity of the community co-occurrence network. The compartment niche shaped the diversity of the bacterial communities, and the cotton variety genotype was an important source of diversity in bacterial communities within the compartment niche. We suggest that the moderate taxa contribute to significantly more changes in the diversity of the bacterial community than the rare and abundant taxa during the succession of bacterial communities in the cotton root-soil continuum.

2.
Mol Biol Rep ; 51(1): 554, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38642178

RESUMEN

BACKGROUND: The Lateral Organ Boundaries Domain (LBD) gene family is a family of plant-specific transcription factors (TFs) that are widely involved in processes such as lateral organ formation, stress response, and nutrient metabolism. However, the function of LBD genes in maize remains poorly understood. METHODS AND RESULTS: In this study, a total of 49 ZmLBD genes were identified at the genome-wide level of maize, they were classified into nine branches based on phylogenetic relationships, and all of them were predicted to be nuclear localized. The 49 ZmLBD genes formed eight pairs of segmental duplicates, and members of the same branches' members had similar gene structure and conserved motif composition. The promoters of ZmLBD genes contain multiple types of cis-acting elements. In addition, by constructing the regulatory network of ZmLBD and other genes and miRNAs, 12 and 22 ZmLBDs were found to be involved in the gene regulatory network and miRNA regulatory network, respectively. The expression pattern analysis suggests that ZmLBD genes may be involved in different biological pathways, and drought stress induced the expressions of two inbred lines. CONCLUSIONS: The findings enhance our comprehension of the potential roles of the ZmLBD gene family in maize growth and development, which is pivotal for genetic enhancement and breeding efforts pertaining to this significant crop.


Asunto(s)
Genoma de Planta , Zea mays , Genoma de Planta/genética , Familia de Multigenes , Filogenia , Fitomejoramiento , Regulación de la Expresión Génica de las Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética , Perfilación de la Expresión Génica
3.
PeerJ ; 10: e12855, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35186463

RESUMEN

BACKGROUND: YABBY is a plant-specific transcription factor (TF) that belongs to the zinc finger protein superfamily and is composed of a C2-C2 domain at the N-terminus and a YABBY domain at the C-terminus. It plays a role in plant development and growth. METHODS: In this study, 20 YABBY TFs were identified in the wheat genome. Phylogenetic relationships, collinearity relationships, gene structures, conserved motifs, and expression patterns were analyzed. RESULTS: Twenty TaYABBY TFs were distributed unevenly on 15 chromosomes. Collinearity analysis showed that these genes have a close relationship with monocot plants. The phylogenetic tree of wheat YABBYs classified these TaYABBYs into FIL, YAB2, INO, and CRC clades. Gene structure and conserved motif analyses showed that they share similar components in the same clades. Expression profile analysis showed that many TaYABBY genes have high expression levels in leaf tissues and are regulated by abiotic stresses, especially salt stress. Our results provide a basis for further functional characterization of the YABBY gene family.


Asunto(s)
Factores de Transcripción , Triticum , Triticum/genética , Filogenia , Factores de Transcripción/genética , Proteínas de Plantas/genética , Hojas de la Planta/metabolismo
4.
Sci Rep ; 11(1): 4330, 2021 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-33619339

RESUMEN

Silicon plays a vital role in plant growth. However, molecular mechanisms in response to silicon have not previously been studied in wheat. In this study, we used RNA-seq technology to identify differentially expressed genes (DEGs) in wheat seedlings treated with silicon. Results showed that many wheat genes responded to silicon treatment, including 3057 DEGs, of which 6.25% (191/3057) were predicted transcription factors (TFs). Approximately 14.67% (28 out of 191) of the differentially expressed TFs belonged to the MYB TF family. Gene ontology (GO) enrichment showed that the highly enriched DEGs were responsible for secondary biosynthetic processes. According to KEGG pathway analysis, the DEGs were related to chaperones and folding catalysts, phenylpropanoid biosynthesis, and protein processing in the endoplasmic reticulum. Moreover, 411 R2R3-MYB TFs were identified in the wheat genome, all of which were classified into 15 groups and accordingly named S1-S15. Among them, 28 were down-regulated under silicon treatment. This study revealed the essential role of MYB TFs in the silicon response mechanism of plants, and provides important genetic resources for breeding silicon-tolerant wheat.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Silicio/metabolismo , Factores de Transcripción/genética , Transcriptoma , Triticum/genética , Triticum/metabolismo , Biología Computacional/métodos , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Ontología de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Anotación de Secuencia Molecular , Filogenia , Análisis de Secuencia de ARN , Silicio/farmacología , Factores de Transcripción/metabolismo , Triticum/clasificación
5.
PeerJ ; 8: e9551, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32742811

RESUMEN

The Ethylene-Response Factor (ERF) subfamily transcription factors (TFs) belong to the APETALA2/Ethylene-Responsive Factor (AP2/ERF) superfamily and play a vital role in plant growth and development. However, identification and analysis of the ERF subfamily genes in maize have not yet been performed at genome-wide level. In this study, a total of 76 ERF subfamily TFs were identified and were found to be unevenly distributed on the maize chromosomes. These maize ERF (ZmERF) TFs were classified into six groups, namely groups B1 to B6, based on phylogenetic analysis. Synteny analysis showed that 50, 54, and 58 of the ZmERF genes were orthologous to those in rice, Brachypodium, and Sorghum, respectively. Cis-element analysis showed that elements related to plant growth and development, hormones, and abiotic stress were identified in the promoter region of ZmERF genes. Expression profiles suggested that ZmERF genes might participate in plant development and in response to salinity and drought stresses. Our findings lay a foundation and provide clues for understanding the biological functions of ERF TFs in maize.

6.
PeerJ ; 6: e5816, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30356996

RESUMEN

As one of the non-selective cation channel gene families, the cyclic nucleotide-gated channel (CNGC) gene family plays a vital role in plant physiological processes that are related to signal pathways, plant development, and environmental stresses. However, genome-wide identification and analysis of the CNGC gene family in maize has not yet been undertaken. In the present study, twelve ZmCNGC genes were identified in the maize genome, which were unevenly distributed on chromosomes 1, 2, 4, 5, 6, 7, and 8. They were classified into five major groups: Groups I, II, III, IVa, and IVb. Phylogenetic analysis showed that gramineous plant CNGC genes expanded unequally during evolution. Group IV CNGC genes emerged first, whereas Groups I and II appeared later. Prediction analysis of cis-acting regulatory elements showed that 137 putative cis-elements were related to hormone-response, abiotic stress, and organ development. Furthermore, 120 protein pairs were predicted to interact with the 12 ZmCNGC proteins and other maize proteins. The expression profiles of the ZmCNGC genes were expressed in tissue-specific patterns. These results provide important information that will increase our understanding of the CNGC gene family in maize and other plants.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA