Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 457
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38896135

RESUMEN

Proton magnetic resonance spectroscopy (1H-MRS) has shown inconsistent alterations in the brain metabolites of individuals with chronic pain. We used 3T 1H-MRS to investigate the brain metabolites in the anterior cingulate cortex and thalamus of 22 patients with chronic mild pain and no gait disturbance and 22 healthy controls. The chronic-pain group included patients with chronic low back pain and/or osteoarthritis but none suffering from hypersensitivity. There were no significant between group-differences in glutamate, glutamate plus glutamine (Glx), N-acetylaspartate, glycerophosphorylcholine (GPC), glutamine, creatine plus phosphocreatine, or myo-inositol in the anterior cingulate cortex, but the patients showed a significant decrease in GPC, but not other metabolites, in the thalamus compared to the controls. The GPC values in the patients' thalamus were significantly correlated with pain components on the Short-Form McGill Pain Questionnaire (SF-MPQ-2) and affective empathy components on the Questionnaire of Cognitive and Affective Empathy (QCAE). The GPC in the patients' anterior cingulate cortex showed significant correlations with cognitive empathy components on the QCAE. Myo-inositol in the controls' anterior cingulate cortex and Glx in the patients' thalamus each showed significant relationships with peripheral responsivity on the QCAE. These significances were not significant after Bonferroni corrections. These preliminary findings indicate important roles of GPC, myo-inositol, and Glx in the brain of patients with chronic mild pain.

2.
J Steroid Biochem Mol Biol ; 243: 106574, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38945307

RESUMEN

Porcine carbonyl reductases (pCBR1 and pCBR-N1) and aldo-keto reductases (pAKR1C1 and pAKR1C4) exhibit hydroxysteroid dehydrogenase (HSD) activity. However, their roles in the metabolism of porcine-specific androgens (19-nortestosterone and epiandrosterone), 11-oxygenated androgens, neurosteroids, and corticosteroids remain unclear. Here, we compared the steroid specificity of the four recombinant enzymes by kinetic and product analyses. In C18/C19-steroids,11-keto- and 11ß-hydroxy-5α-androstane-3,17-diones were reduced by all the enzymes, whereas 5α-dihydronandrolone (19-nortestosterone metabolite) and 11-ketodihydrotestosterone were reduced by pCBR1, pCBR-N1, and pAKR1C1, of which pCBR1 exhibited the lowest (submicromolar) Km values. Product analysis showed that pCBR1 and pCBR-N1 function as 3α/ß-HSDs, in contrast to pAKR1C1 and pAKR1C4 (acting as 3ß-HSD and 3α-HSD, respectively). Additionally, 17ß-HSD activity was observed in pCBR1 and pCBR-N1 (toward epiandrosterone and its 11-oxygenated derivatives) and in pAKR1C1 (toward androsterone, 4-androstene-3,17-dione and their 11-oxygenated derivatives). The four enzymes also showed different substrate specificity for 3-keto-5α/ß-dihydro-C21-steroids, including GABAergic neurosteroid precursors and corticosteroid metabolites. 5ß-Dihydroprogesterone was reduced by all the enzymes, whereas 5α-dihydroprogesterone was reduced only by pCBR1, and 5α/ß-dihydrodeoxycorticosterones by pCBR1 and pCBR-N1. The two pCBRs also reduced the 5α/ß-dihydro-metabolites of cortisol, 11-deoxycortisol, cortisone, and corticosterone. pCBR1 exhibited lower Km values (0.3-2.9 µM) for the 3-keto-C21-steroids than pCBR-N1 (Km=10-36 µM). The reduced products of the 3-keto-C21-steroids by pCBR1 and pCBR-N1 were their 3α-hydroxy-metabolites. Finally, we found that human CBR1 has similar substrate specificity for the C18/C19/C21-steroids to pCBR-N1. Based on these results, it was concluded that porcine and human CBRs can be involved in the metabolism of the aforementioned steroids as 3α/ß,17ß-HSDs.

3.
Sci Rep ; 14(1): 10197, 2024 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702506

RESUMEN

Fibromyalgia is a heterogenous chronic pain disorder diagnosed by symptom-based criteria. The aim of this study was to clarify different pathophysiological characteristics between subgroups of patients with fibromyalgia. We identified subgroups with distinct pain thresholds: those with a low pressure pain threshold (PL; 16 patients) and those with a normal pressure pain threshold (PN; 15 patients). Both groups experienced severe pain. We performed resting-state functional MRI analysis and detected 11 functional connectivity pairs among all 164 ROIs with distinct difference between the two groups (p < 0.001). The most distinctive one was that the PN group had significantly higher functional connectivity between the secondary somatosensory area and the dorsal attention network (p < 0.0001). Then, we investigated the transmission pathway of pain stimuli. Functional connectivity of the thalamus to the insular cortex was significantly higher in the PL group (p < 0.01 - 0.05). These results suggest that endogenous pain driven by top-down signals via the dorsal attention network may contribute to pain sensation in a subgroup of fibromyalgia patients with a normal pain threshold. Besides, external pain driven by bottom-up signals via the spinothalamic tract may contribute to pain sensations in another group of patients with a low pain threshold. Trial registration: UMIN000037712.


Asunto(s)
Fibromialgia , Imagen por Resonancia Magnética , Umbral del Dolor , Humanos , Fibromialgia/fisiopatología , Fibromialgia/diagnóstico por imagen , Femenino , Estudios de Casos y Controles , Umbral del Dolor/fisiología , Adulto , Persona de Mediana Edad , Masculino , Atención/fisiología , Red Nerviosa/fisiopatología , Red Nerviosa/diagnóstico por imagen
4.
Methods Mol Biol ; 2794: 13-19, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38630216

RESUMEN

In situ hybridization (ISH) is an important technique for identifying gene expression at the cellular level in various organs, including brain slices. This approach hybridizes nucleic acid probes to cellular mRNA, allowing the detection of transcriptional products. Recent advances have enabled RNA preservation in formalin-fixed paraffin-embedded (FFPE) samples, making ISH applicable to brain tumor diagnosis and research. Here, we provide a concise overview of the standard application of chromogenic ISH in neuroscience research and neuropathology practice using FFPE blocks of brain slice sections.


Asunto(s)
Neoplasias Encefálicas , Neurociencias , Humanos , Encéfalo , Hibridación in Situ , ARN Mensajero/genética
5.
Methods Mol Biol ; 2794: 21-32, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38630217

RESUMEN

Immunohistochemistry (IHC) is the basis of histological or pathological analysis and is widely used to enable the detection and characterization of proteins in various organ tissues, including brain tissues. IHC is commonly performed on formalin-fixed paraffin-embedded (FFPE) tissues because of their easy storage and versatility. IHC is a key method for providing more accurate analysis of localization and function of neurons, neuroendocrine cells, and neural stem cells in the brain and other nervous systems. The related cells such as glial cells and neurovascular units have also been analyzed by IHC. Visualization of antibody-antigen interactions can be performed primarily in one of the following ways: chromogenically stained IHC and fluorescently stained IHC. In chromogenically stained IHC, an antibody is chemically conjugated to an enzyme, such as peroxidase, that can be reacted with a suitable substrate to give a colored product. In fluorescently stained IHC, the antibodies are finally tagged with fluorescent chemicals such as fluorescein isothiocyanate (FITC) or rhodamine. Here, we describe the standard methods of IHC applied to brain slice sections. Furthermore, an automated immunostainer is presented as another option for standardized immunohistochemistry.


Asunto(s)
Anticuerpos , Encéfalo , Inmunohistoquímica , Colorantes , Fluoresceína
6.
Neuroradiology ; 66(6): 907-917, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38607437

RESUMEN

PURPOSE: This study aimed to compare the radiological tumor (T)-category using multiparametric MRI with the pathological T category in patients with oral tongue squamous cell carcinoma (OTSCC) and to examine which is a better predictor of prognosis. METHODS: This retrospective study included 110 consecutive patients with surgically resected primary OTSCC who underwent preoperative contrast-enhanced MRI. T categories determined by maximum diameter and depth of invasion were retrospectively assessed based on the pathological specimen and multiparametric MRI. The MRI assessment included the axial and coronal T1-weighted image (T1WI), axial T2-weighted image (T2WI), coronal fat-suppressed T2WI, and axial and coronal fat-suppressed contrast-enhanced T1WI (CET1WI). Axial and coronal CET1WI measurements were divided into two groups: measurements excluding peritumoral enhancement (MEP) and measurements including peritumoral enhancement. The prognostic values for recurrence and disease-specific survival after radiological and pathological T categorization of cases into T1/T2 and T3/T4 groups were compared. RESULTS: The T category of MEP on coronal CET1WI was the most relevant prognostic factor for recurrence [hazard ratio (HR) = 3.30, p = 0.001] and the HR was higher than the HR for pathological assessment (HR = 2.26, p = 0.026). The T category determined by MEP on coronal CET1WI was also the most relevant prognostic factor for disease-specific survival (HR = 3.12, p = 0.03), and the HR was higher than the HR for pathological assessment (HR = 2.02, p = 0.20). CONCLUSION: The T category determined by MEP on the coronal CET1WI was the best prognostic factor among all radiological and pathological T category measurements.


Asunto(s)
Carcinoma de Células Escamosas , Medios de Contraste , Imagen por Resonancia Magnética , Neoplasias de la Lengua , Humanos , Neoplasias de la Lengua/diagnóstico por imagen , Neoplasias de la Lengua/patología , Masculino , Femenino , Persona de Mediana Edad , Pronóstico , Estudios Retrospectivos , Anciano , Imagen por Resonancia Magnética/métodos , Carcinoma de Células Escamosas/diagnóstico por imagen , Carcinoma de Células Escamosas/patología , Adulto , Estadificación de Neoplasias , Anciano de 80 o más Años , Recurrencia Local de Neoplasia/diagnóstico por imagen , Tasa de Supervivencia , Imágenes de Resonancia Magnética Multiparamétrica/métodos , Invasividad Neoplásica
7.
PLoS One ; 19(2): e0298284, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38330036

RESUMEN

Galectin-3 is a beta-galactoside-binding lectin that plays important roles in diverse physiological functions, such as cell proliferation, apoptosis, and mRNA splicing. This protein is expressed on inflammatory cells and acts as a local inflammatory mediator. Recently, galectin-3 has been detected in several diseases, such as chronic liver, heart, and kidney diseases, diabetes, viral infection, autoimmune and neurodegenerative diseases, and tumors, and its role as a biomarker has attracted attention. Alpha-galactosylceramide is an artificially synthesized sphingolipid that can induce acute liver injury via the natural killer T pathway. However, the pathophysiological roles and kinetics of galectin-3 in acute liver injury are not fully understood. This study aimed to elucidate the expression and time course of galectin-3 in liver tissues during acute liver injury following alpha-galactosylceramide injection. Animals were histologically examined on days 1, 2, 4, and 7 after intraperitoneal injection of alpha-galactosylceramide, and the expressions of galectin-3 and ionized calcium-binding adaptor molecule 1 were analyzed. Notably, galectin-3 formed characteristic cluster foci, particularly on day 2 after injection. Cluster formation was not observed in chronic liver disease. Simultaneously, ionized calcium-binding adaptor molecule 1-positive cells were observed in the cluster foci. Serum galectin-3 levels increased on day 2 of treatment and correlated well with the number of galectin-3-positive cell clusters in the liver. Moreover, galectin-3 expression was an important mediator of the early phase of liver injury after alpha-galactosylceramide injection. These results suggest that serum galectin-3 may be a biomarker for the early diagnosis of acute liver injury and that clusters of galectin-3-positive cells may be a specific finding in acute liver injury.


Asunto(s)
Galactosilceramidas , Galectina 3 , Hepatopatías , Animales , Galectina 3/metabolismo , Calcio , Hígado/metabolismo , Hepatopatías/patología , Biomarcadores
8.
J Pain ; 25(6): 104462, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38211844

RESUMEN

Oxaliplatin, a platinum-based anticancer drug, is associated with peripheral neuropathy (oxaliplatin-induced peripheral neuropathy, OIPN), which can lead to worsening of quality of life and treatment interruption. The endothelial glycocalyx, a fragile carbohydrate-rich layer covering the luminal surface of endothelial cells, acts as an endothelial gatekeeper and has been suggested to protect nerves, astrocytes, and other cells from toxins and substances released from the capillary vessels. Mechanisms underlying OIPN and the role of the glycocalyx remain unclear. This study aimed to define changes in the three-dimensional ultrastructure of capillary endothelial glycocalyx near nerve fibers in the hind paws of mice with OIPN. The mouse model of OPIN revealed disruption of the endothelial glycocalyx in the peripheral nerve compartment, accompanied by vascular permeability, edema, and damage to the peripheral nerves. To investigate the potential treatment interventions, nafamostat mesilate, a glycocalyx protective agent was used in tumor-bearing male mice. Nafamostat mesilate suppressed mechanical allodynia associated with neuropathy. It also prevented intra-epidermal nerve fiber loss and improved vascular permeability in the peripheral paws. The disruption of endothelial glycocalyx in the capillaries that lie within peripheral nerve bundles is a novel finding in OPIN. Furthermore, these findings point toward the potential of a new treatment strategy targeting endothelial glycocalyx to prevent vascular injury as an effective treatment of neuropathy as well as of many other diseases. PERSPECTIVE: OIPN damages the endothelial glycocalyx in the peripheral capillaries, increasing vascular permeability. In order to prevent OIPN, this work offers a novel therapy approach that targets endothelial glycocalyx.


Asunto(s)
Antineoplásicos , Glicocálix , Oxaliplatino , Animales , Glicocálix/efectos de los fármacos , Glicocálix/metabolismo , Glicocálix/patología , Oxaliplatino/toxicidad , Ratones , Masculino , Antineoplásicos/farmacología , Enfermedades del Sistema Nervioso Periférico/inducido químicamente , Enfermedades del Sistema Nervioso Periférico/patología , Capilares/efectos de los fármacos , Capilares/patología , Modelos Animales de Enfermedad , Hiperalgesia/inducido químicamente , Hiperalgesia/patología , Permeabilidad Capilar/efectos de los fármacos , Permeabilidad Capilar/fisiología , Ratones Endogámicos C57BL
9.
J Invest Dermatol ; 144(1): 96-105.e2, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37482288

RESUMEN

KITL signaling is important for melanocyte development in mammals; however, its function in the melanocyte stem cells in adult skin is not well-understood. In this study, we have generated genetically modified mice that express a Kitl transgene under the control of a doxycycline-inducible promoter to investigate the impact of its overexpression in embryo, young postnatal, and adult skin with intact hair follicles. We report that overexpression of KITL influences the proliferation and differentiation of melanocytes as well as the self-renewal capacity of resident melanocyte stem cells within the follicular niche. Notably, activation of Kit-KITL signaling induced the migration of melanocytes from hair follicles to the epidermis. In addition, we demonstrate that a single pulse of Kitl transgene expression in postnatal mice results in long-lasting effects on melanocyte stem cells and their differentiated progeny as pigmented skin cells that persist through adulthood. Our findings indicate that regulation of KITL signaling in melanocyte lineage is crucial for melanocyte stem cell homeostasis and melanocyte cell differentiation in postnatal and adult mice.


Asunto(s)
Epidermis , Folículo Piloso , Ratones , Animales , Epidermis/metabolismo , Folículo Piloso/metabolismo , Melanocitos/metabolismo , Pigmentación , Células Epidérmicas , Diferenciación Celular , Mamíferos
10.
Biochem Biophys Res Commun ; 691: 149286, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38016339

RESUMEN

Vincristine-induced peripheral neuropathy (VIPN) adversely affects the quality of life and treatment continuity of patients. The endothelial glycocalyx (eGCX) protects nerves from harmful substances released from the capillary vessels, but its role in peripheral neuropathy remains unclear. We investigated the impact of eGCX protection on VIPN. Using a murine model of VIPN, we administered nafamostat mesylate to protect the eGCX shedding, and analyzed the eGCX integrity and manifestation of peripheral neuropathy. Nafamostat treatment suppressed allodynia associated with neuropathy. Additionally, nafamostat administration resulted in the suppression of increased vascular permeability in capillaries of peripheral nerves, further indicating its positive influence on eGCX in VIPN model mice. This study provided the importance of eGCX in VIPN. With the potential for rapid clinical translation through drug repositioning, nafamostat may be a new promising treatment for the prevention of VIPN.


Asunto(s)
Glicocálix , Enfermedades del Sistema Nervioso Periférico , Humanos , Ratones , Animales , Vincristina/efectos adversos , Calidad de Vida , Enfermedades del Sistema Nervioso Periférico/inducido químicamente , Enfermedades del Sistema Nervioso Periférico/prevención & control
11.
Biomedicines ; 11(10)2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37893105

RESUMEN

Treating malignant glioma is challenging owing to its highly invasive potential in healthy brain tissue and the formation of intense surrounding edema. Peritumoral edema in gliomas can lead to severe symptoms including neurological dysfunction and brain herniation. For the past 50 years, the standard treatment for peritumoral edema has been steroid therapy. However, the discovery of cerebral lymphatic vessels a decade ago prompted a re-evaluation of the mechanisms involved in brain fluid regulation and the formation of cerebral edema. This review aimed to describe the clinical features of peritumoral edema in gliomas. The mechanisms currently known to cause glioma-related edema are summarized, the limitations in current cerebral edema therapies are discussed, and the prospects for future cerebral edema therapies are presented. Further research concerning edema surrounding gliomas is needed to enhance patient prognosis and improve treatment efficacy.

13.
Hematology ; 28(1): 2240135, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37489937

RESUMEN

BACKGROUND: Transient abnormal myelopoiesis (TAM) is characterized by leukocytosis with increased circulating megakaryoblasts that harbor N-terminal truncating mutations in the GATA1 gene. Approximately 10% of affected patients experience early death. OBSERVATIONS: A 2-month-old boy with Down syndrome was diagnosed with TAM and followed without treatment. Although the blasts in the peripheral blood disappeared, liver failure progressed. A pathological examination revealed liver fibrosis, and double-immunostaining for full-length GATA1 and CD42b identified megakaryocytes with a GATA1 mutation. CONCLUSIONS: This simple and cost-effective method can be applied in routine practice to detect TAM blasts during assessment in a TAM crisis.


Asunto(s)
Síndrome de Down , Masculino , Humanos , Lactante , Leucocitos , Biopsia , Hígado , Factor de Transcripción GATA1
14.
Am J Pathol ; 193(6): 669-679, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37286277

RESUMEN

Because of their ability to infiltrate normal brain tissue, gliomas frequently evade microscopic surgical excision. The histologic infiltrative property of human glioma has been previously characterized as Scherer secondary structures, of which the perivascular satellitosis is a prospective target for anti-angiogenic treatment in high-grade gliomas. However, the mechanisms underlying perineuronal satellitosis remain unclear, and therapy remains lacking. Our knowledge of the mechanism underlying Scherer secondary structures has improved over time. New techniques, such as laser capture microdissection and optogenetic stimulation, have advanced our understanding of glioma invasion mechanisms. Although laser capture microdissection is a useful tool for studying gliomas that infiltrate the normal brain microenvironment, optogenetics and mouse xenograft glioma models have been extensively used in studies demonstrating the unique role of synaptogenesis in glioma proliferation and identification of potential therapeutic targets. Moreover, a rare glioma cell line is established that, when transplanted in the mouse brain, can replicate and recapitulate the human diffuse invasion phenotype. This review discusses the primary molecular causes of glioma, its histopathology-based invasive mechanisms, and the importance of neuronal activity and interactions between glioma cells and neurons in the brain microenvironment. It also explores current methods and models of gliomas.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Ratones , Animales , Neoplasias Encefálicas/patología , Glioma/genética , Glioma/metabolismo , Glioma/patología , Encéfalo/patología , Neuronas/patología , Línea Celular , Modelos Animales de Enfermedad , Invasividad Neoplásica/patología , Microambiente Tumoral
15.
Chem Biol Interact ; 381: 110572, 2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37247810

RESUMEN

A porcine gene, LOC100622246, encodes carbonyl reductase [NADPH] 1 (pCBR-N1), whose function remains unknown. Previously, three porcine carbonyl reductases, carbonyl reductase 1 (pCBR1), 3α/ß-hydroxysteroid dehydrogenase (p3α/ß-HSD) and prostaglandine-9-keto reductase (pPG-9-KR), were purified from neonatal testis, adult testis and adult kidney, respectively. However, the relationship of pCBR-N1 with the three enzymes is still unknown. Here, we compare the properties of the recombinant pCBR-N1 and pCBR1. The two enzymes reduced various carbonyl compounds including 5α-dihydrotestosterone, which was converted to its 3α- and 3ß-hydroxy-metabolites. Compared to pCBR1, pCBR-N1 exhibited higher Km and kcat values for most substrates, but more efficiently reduced prostaglandin E2. pCBR-N1 was inhibited by known inhibitors of p3α/ß-HSD (hexestrol and indomethacin), but not by pCBR1 inhibitors. pCBR-N1 was highly expressed than pCBR1 in the several tissues of adult domestic and microminiature pigs. The results, together with partial amino acid sequence match between pCBR-N1 and pPG-9-KR, reveal that pCBR-N1 is identical to p3α/ß-HSD and pPG-9-KR. Notably, pCBR-N1, but not pCBR1, reduced S-nitrosoglutathione and glutathione-adducts of alkenals including 4-oxo-2-nonenal with Km of 8.3-32 µM, and its activity toward non-glutathionylated substrates was activated 2- to 9-fold by 1 mM glutathione. Similar activation by glutathione was also observed for human CBR1. Site-directed mutagenesis revealed that the differences in kinetic constants and glutathione-mediated activation between pCBR-N1 and pCBR1 are due to differences in residue 236 and two glutathione-binding residues (at positions 97 and 193), respectively. Thus, pCBR-N1 is a glutathione-activated carbonyl reductase that functions in the metabolism of endogenous and xenobiotic carbonyl compounds.


Asunto(s)
Oxidorreductasas de Alcohol , Carbonil Reductasa (NADPH) , Animales , Humanos , Masculino , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Hidroxiprostaglandina Deshidrogenasas/genética , Hidroxiprostaglandina Deshidrogenasas/metabolismo , Hidroxiesteroide Deshidrogenasas/metabolismo , Porcinos
16.
J Neurosurg ; 139(6): 1542-1551, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37178023

RESUMEN

OBJECTIVE: In a previous study, the authors showed that the migration of Schwann cells (SCs) through end-to-side (ETS) neurorrhaphy promotes axonal regrowth within an acellular nerve graft. In the present study, the authors investigated whether a similar strategy using an artificial nerve (AN) would allow reconstruction of a long nerve gap (20 mm) in rats. METHODS: Forty-eight 8- to 12-week-old Sprague Dawley rats were divided into control (AN) and experimental (SC migration-induced AN [SCiAN]) groups. Prior to the experiment, the ANs used in the SCiAN group were populated in vivo with SCs over a 4-week period by ETS neurorrhaphy onto the sciatic nerve. In both groups, a 20-mm sciatic nerve defect was reconstructed in an end-to-end fashion using 20-mm ANs. Sections from the nerve graft and distal sciatic nerve in both groups underwent assessments at 4 weeks for SC migration by immunohistochemical analysis and quantitative reverse transcription-polymerase chain reaction. At 16 weeks, axonal elongation was assessed by immunohistochemical analysis, histomorphometry, and electron microscopy. The number of myelinated fibers was counted, the g-ratio was calculated, and myelin sheath thickness and axon diameter were measured. Furthermore, functional recovery was evaluated at 16 weeks using the Von Frey filament test for sensory recovery and by calculating the muscle fiber area for motor recovery. RESULTS: The area occupied by SCs at 4 weeks and by axons at 16 weeks was significantly larger in the SCiAN group than in the AN group. Histomorphometric evaluation of the distal sciatic nerve revealed a significantly greater number of axons. At 16 weeks, plantar perception in the SCiAN group was significantly better, demonstrating improvement in sensory function. However, no tibialis anterior muscle motor improvement was observed in either group. CONCLUSIONS: The induction of SC migration into an AN by ETS neurorrhaphy is a useful technique for repairing 20-mm nerve defects in rats, with better nerve regeneration and sensory recovery. No motor recovery was observed in either group; however, motor recovery might require a longer period of time than the lifespan of the AN used in this study. Future studies should investigate whether structural and material reinforcement of the AN, to lower its decomposition rate, can improve functional recovery.


Asunto(s)
Vaina de Mielina , Células de Schwann , Ratas , Animales , Ratas Sprague-Dawley , Células de Schwann/fisiología , Nervio Ciático/cirugía , Procedimientos Neuroquirúrgicos , Regeneración Nerviosa/fisiología
17.
PLoS One ; 18(2): e0281820, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36809261

RESUMEN

Heparan sulfate (HS) is a glycocalyx component present in the extracellular matrix and cell-surface HS proteoglycans (HSPGs). Although HSPGs are known to play functional roles in multiple aspects of tumor development and progression, the effect of HS expression in the tumor stroma on tumor growth in vivo remains unclear. We conditionally deleted Ext1, which encodes a glycosyltransferase essential for the biosynthesis of HS chains, using S100a4-Cre (S100a4-Cre; Ext1f/f) to investigate the role of HS in cancer-associated fibroblasts, which is the main component of the tumor microenvironment. Subcutaneous transplantation experiments with murine MC38 colon cancer and Pan02 pancreatic cancer cells demonstrated substantially larger subcutaneous tumors in S100a4-Cre; Ext1f/f mice. Additionally, the number of myofibroblasts observed in MC38 and Pan02 subcutaneous tumors of S100a4-Cre; Ext1f/f mice decreased. Furthermore, the number of intratumoral macrophages decreased in MC38 subcutaneous tumors in S100a4-Cre; Ext1f/f mice. Finally, the expression of matrix metalloproteinase-7 (MMP-7) markedly increased in Pan02 subcutaneous tumors in S100a4-Cre; Ext1f/f mice, suggesting that it may contribute to rapid growth. Therefore, our study demonstrates that the tumor microenvironment with HS-reduced fibroblasts provides a favorable environment for tumor growth by affecting the function and properties of cancer-associated fibroblasts, macrophages, and cancer cells.


Asunto(s)
Neoplasias , Ratones , Animales , Neoplasias/patología , Heparitina Sulfato/metabolismo , Proteoglicanos de Heparán Sulfato/metabolismo , Matriz Extracelular/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Microambiente Tumoral
18.
Front Cell Dev Biol ; 11: 1308879, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38269087

RESUMEN

Introduction: The abnormal glycocalyx (GCX) on the surface of cancer cells has been reported to be tall and aberrantly glycosylated and has been linked to the progression and spread of cancer-a finding also observed in bladder cancer. However, the characteristics of GCX in various types of human bladder cancer remain unknown, and herein, we aimed to provide information on the diversity of glycan components in the GCX of bladder cancers and to shed light on their characteristics. Methods: We used scanning electron microscopy and lanthanum staining to examine the surface GCX of human bladder carcinomas in three-dimensional images, showing the bulky GCX in some carcinomas. We also examined glycan alterations in early to progressive stages of bladder cancers using 20 distinct lectin stains on frozen sections from transurethral resection of bladder tumors. Results and discussion: Distinctive Vicia villosa lectin (VVL) staining was observed in invasive urothelial carcinomas, including those with muscle invasion and variant components. In the clinical setting, cancers with atypia of grades 2-3 had a significantly higher VVL scoring intensity than those with grade 1 atypia (p < 0.005). This study identified that a specific lectin, VVL, was more specific to invasive urothelial carcinomas. This lectin, which selectively binds to sites of cancer progression, is a promising target for drug delivery in future clinical investigations.

19.
Front Microbiol ; 13: 943877, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36532428

RESUMEN

COVID-19 has a wide range of clinical presentations, and the susceptibility to SARS-CoV-2 infection and the mortality rate also vary by region and ethnicity. Here, we found that rs12329760 in the TMPRSS2 gene, a missense variant common in East Asian populations, contributes to protection against SARS-CoV-2 infection. TMPRSS2 is a protease responsible for SARS-CoV-2 entry and syncytium formation. rs12329760 (c.478G>A, p. V160M) was associated with a reduced risk of moderate symptoms. The enzymatic activity of Met160-TMPRSS2 was lower than that of Val160-TMPRSS2, and thus the viral entry and the syncytium formation of SARS-CoV-2 were impaired. Collectively, these results indicate that the genetic variation in TMPRSS2, which is common in East Asians, is one of the molecular determinants of COVID-19 susceptibility.

20.
Pathol Int ; 72(12): 589-605, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36349994

RESUMEN

The biliary system is a highly branched tubular network consisting of intrahepatic bile ducts (IHBDs) and extrahepatic bile ducts (EHBDs). IHBDs are derived from hepatic progenitor cells, while EHBDs originate directly from the endoderm through a separate branching morphogenetic process. Traits that are important for cancer are often found to overlap in developmental and other processes. Therefore, it has been suggested that intrahepatic cholangiocarcinomas (iCCAs) and extrahepatic cholangiocarcinomas (eCCAs) have different developmental mechanisms. While much evidence is being gathered on the mechanism of iCCAs, the evidence for eCCA is still very limited. The main reason for this is that there are very few appropriate animal models for eCCA. We can gain important insights from these animal models, particularly genetically engineered mouse models (GEMMs). GEMMs are immunocompetent and mimic human CCA subtypes with a specific mutational pattern, allowing the development of precancerous lesions, that is, biliary intraepithelial neoplasia (BilIN) and intraductal papillary neoplasm of the bile duct (IPNB). This review provides a summary of the pathogenesis and mechanisms of eCCA that can be revealed by GEMMs. Furthermore, we discuss several clinical questions, such as whether BilIN and IPNB really become malignant, whether the peribiliary gland is the origin of eCCAs, and others.


Asunto(s)
Neoplasias de los Conductos Biliares , Conductos Biliares Extrahepáticos , Colangiocarcinoma , Animales , Ratones , Humanos , Neoplasias de los Conductos Biliares/patología , Conductos Biliares Intrahepáticos/patología , Colangiocarcinoma/patología , Conductos Biliares Extrahepáticos/patología , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Pigmentos Biliares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA