Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 152
Filtrar
1.
Environ Sci Technol ; 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39255065

RESUMEN

The extensive use of single-use or disposable face masks has raised environmental concerns related to microfiber contamination. In contrast, research on the potential release and ecological impact of microfibers from washable masks (WMs), suggested as an eco-friendly alternative, is currently lacking. Here, we comprehensively investigated the release of microfibers from disposable and WMs of different types in simulated aquatic environments and real-life scenarios, including shaking, disinfection, hand washing, and machine washing. Using a combination of wide-field fluorescence microscopy, He-ion microscopy, and confocal µ-Raman spectroscopy, we revealed that disposable masks (DMs) released microfibers ranging from 18 to 3042 microfiber/piece, whereas WMs released 6.1 × 104-6.7 × 106 microfibers/piece depending on the simulated conditions above. Another noteworthy finding was the observed negative correlation between microfiber release and the proportion of reinforcement (embossing) on the DM surfaces. Microfibers from tested DMs primarily comprised polypropylene (PP), while WMs predominantly released poly(ethylene terephthalate) (PET) and cellulose microfibers. Furthermore, acute toxicological analyses unveiled that PP microfibers (0.01-50 mg/L) from DMs impacted zebrafish larval swimming behavior, while PET microfibers from WMs delayed early-stage zebrafish hatching. This study offers new insights into the source of microfiber contamination and raises concerns about the environmental implications linked to the use of washable face masks.

2.
bioRxiv ; 2024 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-39211180

RESUMEN

Objective: The behavioral and diagnostic heterogeneity within human opioid use disorder (OUD) diagnosis is not readily captured in current animal models, limiting translational relevance of the mechanistic research that is conducted in experimental animals. We hypothesize that a non-linear clustering of OUD-like behavioral traits will capture population heterogeneity and yield subpopulations of OUD vulnerable rats with distinct behavioral and neurocircuit profiles. Methods: Over 900 male and female heterogeneous stock rats, a line capturing genetic and behavioral heterogeneity present in humans, were assessed for several measures of heroin use and rewarded and non-rewarded seeking behaviors. Using a non-linear stochastic block model clustering analysis, rats were assigned to OUD vulnerable, intermediate and resilient clusters. Additional behavioral tests and circuit analyses using c-fos protein activation were conducted on the vulnerable and resilient subpopulations. Results: OUD vulnerable rats exhibited greater heroin taking and seeking behaviors relative to those in the intermediate and resilient clusters. Akin to human OUD diagnosis, further vulnerable rat sub-clustering revealed subpopulations with different combinations of behavioral traits, including sex differences. Lastly, heroin cue-induced neuronal patterns of circuit activation differed between resilient and vulnerable phenotypes. Behavioral sex differences were recapitulated in patterns of circuitry activation, including males preferentially engaging extended amygdala stress circuitry, and females cortico-striatal drug cue-seeking circuitry. Conclusion: Using a non-linear clustering approach in rats, we captured behavioral diagnostic heterogeneity reflective of human OUD diagnosis. OUD vulnerability and resiliency were associated with distinct neuronal activation patterns, posing this approach as a translational tool in assessing neurobiological mechanisms underpinning OUD.

3.
bioRxiv ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38712202

RESUMEN

The increased prevalence of opioid use disorder (OUD) makes it imperative to disentangle the biological mechanisms contributing to individual differences in OUD vulnerability. OUD shows strong heritability, however genetic variants contributing toward vulnerability remain poorly defined. We performed a genome-wide association study using over 850 male and female heterogeneous stock (HS) rats to identify genes underlying behaviors associated with OUD such as nociception, as well as heroin-taking, extinction and seeking behaviors. By using an animal model of OUD, we were able to identify genetic variants associated with distinct OUD behaviors while maintaining a uniform environment, an experimental design not easily achieved in humans. Furthermore, we used a novel non-linear network-based clustering approach to characterize rats based on OUD vulnerability to assess genetic variants associated with OUD susceptibility. Our findings confirm the heritability of several OUD-like behaviors, including OUD susceptibility. Additionally, several genetic variants associated with nociceptive threshold prior to heroin experience, heroin consumption, escalation of intake, and motivation to obtain heroin were identified. Tom1 , a microglial component, was implicated for nociception. Several genes involved in dopaminergic signaling, neuroplasticity and substance use disorders, including Brwd1 , Pcp4, Phb1l2 and Mmp15 were implicated for the heroin traits. Additionally, an OUD vulnerable phenotype was associated with genetic variants for consumption and break point, suggesting a specific genetic contribution for OUD-like traits contributing to vulnerability. Together, these findings identify novel genetic markers related to the susceptibility to OUD-relevant behaviors in HS rats.

4.
bioRxiv ; 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38559158

RESUMEN

To explore new worlds we must ensure humans can survive and thrive in the space environment. Incidence of kidney stones in astronauts is a major risk factor associated with long term missions, caused by increased blood calcium levels due to bone demineralisation triggered by microgravity and space radiation. Transcriptomic changes have been observed in other tissues during spaceflight, including the kidney. We analysed kidney transcriptome patterns in two different strains of mice flown on the International Space Station, C57BL/6J and BALB/c. Here we show a link between spaceflight and transcriptome patterns associated with dysregulation of lipid and extracellular matrix metabolism and altered transforming growth factor-beta signalling. A stronger response was seen in C57BL/6J mice than BALB/c. Genetic differences in hyaluronan metabolism between strains may confer protection against extracellular matrix remodelling through downregulation of epithelial-mesenchymal transition. We intend for our findings to contribute to development of new countermeasures against kidney disease in astronauts and people here on Earth.

5.
bioRxiv ; 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38463974

RESUMEN

In opioid use disorder (OUD) patients, a decrease in brain grey matter volume (GMV) has been reported. It is unclear whether this is the consequence of prolonged exposure to opioids or is a predisposing causal factor in OUD development. To investigate this, we conducted a structural MRI longitudinal study in NIH Heterogeneous Stock rats exposed to heroin self-administration and age-matched naïve controls housed in the same controlled environment. Structural MRI scans were acquired before (MRI 1 ) and after (MRI 2 ) a prolonged period of long access heroin self-administration resulting in escalation of drug intake. Heroin intake resulted in reduced GMV in various cortical and sub-cortical brain regions. In drug-naïve controls no difference was found between MRI 1 and MRI 2 . Notably, the degree of GMV reduction in the medial prefrontal cortex (mPFC) and the insula positively correlated with the amount of heroin consumed and the escalation of heroin use. In a preliminary gene expression analysis, we identified a number of transcripts linked to immune response and neuroinflammation. This prompted us to hypothesize a link between changes in microglia homeostasis and loss of GMV. For this reason, we analyzed the number and morphology of microglial cells in the mPFC and insula. The number of neurons and their morphology was also evaluated. The primary motor cortex, where no GMV change was observed, was used as negative control. We found no differences in the number of neurons and microglia cells following heroin. However, in the same regions where reduced GMV was detected, we observed a shift towards a rounder shape and size reduction in microglia, suggestive of their homeostatic change towards a reactive state. Altogether these findings suggest that escalation of heroin intake correlates with loss of GMV in specific brain regions and that this phenomenon is linked to changes in microglial morphology.

6.
Front Psychiatry ; 15: 1369783, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38476614

RESUMEN

Introduction: It is well known that chronic opioid use disorder is associated with alterations in gastrointestinal (GI) function that include constipation, reduced motility, and increased bacterial translocation due to compromised gut barrier function. These signs of disrupted GI function can be associated with alterations in the gut microbiome. However, it is not known if long-access opioid self-administration has effects on the gut microbiome. Methods: We used 16S rRNA gene sequencing to investigate the gut microbiome in three independent cohorts (N=40 for each) of NIH heterogeneous stock rats before onset of long-access heroin self-administration (i.e., naïve status), at the end of a 15-day period of self-administration, and after post-extinction reinstatement. Measures of microbial α- and ß-diversity were evaluated for all phases. High-dimensional class comparisons were carried out with MaAsLin2. PICRUSt2 was used for predicting functional pathways impacted by heroin based on marker gene sequences. Results: Community α-diversity was not altered by heroin at any of the three phases by comparison to saline-yoked controls. Analyses of ß-diversity showed that the heroin and saline-yoked groups clustered significantly apart from each other using the Bray-Curtis (community structure) index. Heroin caused significant alterations at the ASV level at the self-administration and extinction phases. At the phylum level, the relative abundance of Firmicutes was increased at the self-administration phase. Deferribacteres was decreased in heroin whereas Patescibacteria was increased in heroin at the extinction phase. Potential biomarkers for heroin emerged from the MaAsLin2 analysis. Bacterial metabolomic pathways relating to degradation of carboxylic acids, nucleotides, nucleosides, carbohydrates, and glycogen were increased by heroin while pathways relating to biosynthesis of vitamins, propionic acid, fatty acids, and lipids were decreased. Discussion: These findings support the view that long access heroin self-administration significantly alters the structure of the gut microbiome by comparison to saline-yoked controls. Inferred metabolic pathway alterations suggest the development of a microbial imbalance favoring gut inflammation and energy expenditure. Potential microbial biomarkers and related functional pathways likely invoked by heroin self-administration could be targets for therapeutic intervention.

7.
Brain Behav Immun ; 118: 210-220, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38452987

RESUMEN

In opioid use disorder (OUD) patients, a decrease in brain grey matter volume (GMV) has been reported. It is unclear whether this is the consequence of prolonged exposure to opioids or is a predisposing causal factor in OUD development. To investigate this, we conducted a structural MRI longitudinal study in NIH Heterogeneous Stock rats exposed to heroin self-administration and age-matched naïve controls housed in the same controlled environment. Structural MRI scans were acquired before (MRI1) and after (MRI2) a prolonged period of long access heroin self-administration resulting in escalation of drug intake. Heroin intake resulted in reduced GMV in various cortical and sub-cortical brain regions. In drug-naïve controls no difference was found between MRI1 and MRI2. Notably, the degree of GMV reduction in the medial prefrontal cortex (mPFC) and the insula positively correlated with the amount of heroin consumed and the escalation of heroin use. In a preliminary gene expression analysis, we identified a number of transcripts linked to immune response and neuroinflammation. This prompted us to hypothesize a link between changes in microglia homeostasis and loss of GMV. For this reason, we analyzed the number and morphology of microglial cells in the mPFC and insula. The number of neurons and their morphology was also evaluated. The primary motor cortex, where no GMV change was observed, was used as negative control. We found no differences in the number of neurons and microglia cells following heroin. However, in the same regions where reduced GMV was detected, we observed a shift towards a rounder shape and size reduction in microglia, suggestive of their homeostatic change towards a reactive state. Altogether these findings suggest that escalation of heroin intake correlates with loss of GMV in specific brain regions and that this phenomenon is linked to changes in microglial morphology.


Asunto(s)
Sustancia Gris , Heroína , Humanos , Ratas , Animales , Heroína/efectos adversos , Microglía , Estudios Longitudinales , Encéfalo , Imagen por Resonancia Magnética
8.
Stat Med ; 42(28): 5266-5284, 2023 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-37715500

RESUMEN

In recent years, comprehensive cancer genomics platforms, such as The Cancer Genome Atlas (TCGA), provide access to an enormous amount of high throughput genomic datasets for each patient, including gene expression, DNA copy number alterations, DNA methylation, and somatic mutation. While the integration of these multi-omics datasets has the potential to provide novel insights that can lead to personalized medicine, most existing approaches only focus on gene-level analysis and lack the ability to facilitate biological findings at the pathway-level. In this article, we propose Bayes-InGRiD (Bayesian Integrative Genomics Robust iDentification of cancer subgroups), a novel pathway-guided Bayesian sparse latent factor model for the simultaneous identification of cancer patient subgroups (clustering) and key molecular features (variable selection) within a unified framework, based on the joint analysis of continuous, binary, and count data. By utilizing pathway (gene set) information, Bayes-InGRiD does not only enhance the accuracy and robustness of cancer patient subgroup and key molecular feature identification, but also promotes biological understanding and interpretation. Finally, to facilitate an efficient posterior sampling, an alternative Gibbs sampler for logistic and negative binomial models is proposed using Pólya-Gamma mixtures of normal to represent latent variables for binary and count data, which yields a conditionally Gaussian representation of the posterior. The R package "INGRID" implementing the proposed approach is currently available in our research group GitHub webpage (https://dongjunchung.github.io/INGRID/).


Asunto(s)
Genómica , Neoplasias , Humanos , Teorema de Bayes , Neoplasias/genética , Modelos Estadísticos , Metilación de ADN
9.
iScience ; 26(9): 107289, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37636054

RESUMEN

Following on from the NASA twins' study, there has been a tremendous interest in the use of omics techniques in spaceflight. Individual space agencies, NASA's GeneLab, JAXA's ibSLS, and the ESA-funded Space Omics Topical Team and the International Standards for Space Omics Processing (ISSOP) groups have established several initiatives to support this growth. Here, we present recommendations from the Space Omics Topical Team to promote standard application of space omics in Europe. We focus on four main themes: i) continued participation in and coordination with international omics endeavors, ii) strengthening of the European space omics infrastructure including workforce and facilities, iii) capitalizing on the emerging opportunities in the commercial space sector, and iv) capitalizing on the emerging opportunities in human subjects research.

10.
Cells ; 12(10)2023 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-37408201

RESUMEN

The utilisation of synthetic torpor for interplanetary travel once seemed farfetched. However, mounting evidence points to torpor-induced protective benefits from the main hazards of space travel, namely, exposure to radiation and microgravity. To determine the radio-protective effects of an induced torpor-like state we exploited the ectothermic nature of the Danio rerio (zebrafish) in reducing their body temperatures to replicate the hypothermic states seen during natural torpor. We also administered melatonin as a sedative to reduce physical activity. Zebrafish were then exposed to low-dose radiation (0.3 Gy) to simulate radiation exposure on long-term space missions. Transcriptomic analysis found that radiation exposure led to an upregulation of inflammatory and immune signatures and a differentiation and regeneration phenotype driven by STAT3 and MYOD1 transcription factors. In addition, DNA repair processes were downregulated in the muscle two days' post-irradiation. The effects of hypothermia led to an increase in mitochondrial translation including genes involved in oxidative phosphorylation and a downregulation of extracellular matrix and developmental genes. Upon radiation exposure, increases in endoplasmic reticulum stress genes were observed in a torpor+radiation group with downregulation of immune-related and ECM genes. Exposing hypothermic zebrafish to radiation also resulted in a downregulation of ECM and developmental genes however, immune/inflammatory related pathways were downregulated in contrast to that observed in the radiation only group. A cross-species comparison was performed with the muscle of hibernating Ursus arctos horribilis (brown bear) to define shared mechanisms of cold tolerance. Shared responses show an upregulation of protein translation and metabolism of amino acids, as well as a hypoxia response with the shared downregulation of glycolysis, ECM, and developmental genes.


Asunto(s)
Hipotermia , Letargo , Animales , Pez Cebra/genética , Letargo/fisiología , Perfilación de la Expresión Génica , Músculos
11.
Infect Drug Resist ; 16: 2321-2338, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37155475

RESUMEN

The urgent need for SARS-CoV-2 controls has led to a reassessment of approaches to identify and develop natural product inhibitors of zoonotic, highly virulent, and rapidly emerging viruses. There are yet no clinically approved broad-spectrum antivirals available for beta-coronaviruses. Discovery pipelines for pan-virus medications against a broad range of betacoronaviruses are therefore a priority. A variety of marine natural product (MNP) small molecules have shown inhibitory activity against viral species. Access to large data caches of small molecule structural information is vital to finding new pharmaceuticals. Increasingly, molecular docking simulations are being used to narrow the space of possibilities and generate drug leads. Combining in-silico methods, augmented by metaheuristic optimization and machine learning (ML) allows the generation of hits from within a virtual MNP library to narrow screens for novel targets against coronaviruses. In this review article, we explore current insights and techniques that can be leveraged to generate broad-spectrum antivirals against betacoronaviruses using in-silico optimization and ML. ML approaches are capable of simultaneously evaluating different features for predicting inhibitory activity. Many also provide a semi-quantitative measure of feature relevance and can guide in selecting a subset of features relevant for inhibition of SARS-CoV-2.

12.
Expert Rev Mol Diagn ; 23(5): 361-373, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37078260

RESUMEN

INTRODUCTION: Opioid use disorder (OUD) is a global problem that often begins with prescribed medications. The available treatment and maintenance plans offer solutions for the consumption rate by individuals leaving the outstanding problem of relapse, which is a major factor hindering the long-term efficacy of treatments. AREAS COVERED: Understanding the neurobiology of addiction and relapse would help identifying the core causes of relapse and distinguish vulnerable from resilient individuals, which would lead to more targeted and effective treatment and provide diagnostics to screen individuals who have a propensity to OUD. In this review, we cover the neurobiology of the reward system highlighting the role of multiple brain regions and opioid receptors in the development of the disorder. We also review the current knowledge of the epigenetics of addiction and the available screening tools for aberrant use of opioids. EXPERT OPINION: Relapse remains an anticipated limitation in the way of recovery even after long period of abstinence. This highlights the need for diagnostic tools that identify vulnerable patients and prevent the cycle of addiction. Finally, we discuss the limitations of the available screening tools and propose possible solutions for the discovery of addiction diagnostics.


Asunto(s)
Trastornos Relacionados con Opioides , Humanos , Trastornos Relacionados con Opioides/diagnóstico , Trastornos Relacionados con Opioides/genética , Trastornos Relacionados con Opioides/tratamiento farmacológico , Analgésicos Opioides/uso terapéutico , Encéfalo , Recurrencia
13.
Sci Total Environ ; 883: 163582, 2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37086992

RESUMEN

Microplastics are a ubiquitous and persistent form of pollution globally, with impacts cascading from the cellular to ecosystem level. However, there is a paucity in understanding interactions between microplastic pollution with other environmental stressors, and how these could affect ecological functions and services. Freshwater ecosystems are subject to microplastic input from anthropogenic activities (eg. wastewater), but are also simultaneously exposed to many other stressors, particularly reduced dissolved oxygen availability associated with climatic warming and pollutants, as well as biological invasions. Here, we employ the comparative functional response method (CFR; quantifying and comparing organism resource use as a function of resource density) to investigate the relative impact of different microplastic concentrations and oxygen regimes on predatory trophic interactions of a native and an invasive alien gammarid (Gammarus duebeni and Gammarus pulex). No significant effect on trophic interaction strengths was found from very high concentrations of microplastics (200 mp/L and 200,000 mp/L) or low oxygen (40 %) stressors on either species. Additionally, both gammarid species exhibited significant Type II functional responses, with attack rates and handling times not significantly affected by microplastics, oxygen or gammarid invasion status. Thus, both species showed resistance to the simultaneous effects of microplastics and deoxygenation in terms of feeding behaviour. Based on these findings, we suggest that the trophic function, in terms of predation rate, of Gammarus spp. may be sustained under acute bouts of microplastic pollution even in poorly­oxygenated waters. This is the first study to investigate microplastic and deoxygenation interactions and to find no evidence for an interaction on a key invertebrate ecosystem service. We argue that our CFR methods can help understand and predict the future ecological ramifications of microplastics and other stressors across taxa and habitats.


Asunto(s)
Anfípodos , Contaminantes Químicos del Agua , Animales , Microplásticos/toxicidad , Anfípodos/fisiología , Ecosistema , Plásticos , Conducta Predatoria , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente
14.
ACS ES T Water ; 3(4): 984-995, 2023 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-37090119

RESUMEN

Microplastic (mP) pollution has been indicated as an area of concern in the marine environment. However, there is no consensus on their potential to cause significant ecological harm, and a comprehensive risk assessment of mP pollution is unattainable due to gaps in our understanding of their transport, uptake, and exchange processes. This research considers drag models that have been proposed to calculate the terminal settling velocity of regularly and irregularly shaped particles to assess their applicability in a mP modeling context. The evaluation indicates three models that predict the settling velocity of mPs to a high precision and suggests that an explicit model is the most appropriate for implementation in a mP transport model. This research demonstrates that the mP settling velocity does not vary significantly over time and depth relevant to the scale of an ocean model and that the terminal settling velocity is independent of the initial particle velocity. These findings contribute toward efforts to simulate the vertical transport of mPs in the ocean, which will improve our understanding of the residence time of mPs in the water column and subsequently their availability for uptake into the marine ecosystem.

15.
Cancer Res Commun ; 3(4): 621-639, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37082578

RESUMEN

African American (AA) prostate cancer associates with vitamin D3 deficiency, but vitamin D receptor (VDR) genomic actions have not been investigated in this context. We undertook VDR proteogenomic analyses in European American (EA) and AA prostate cell lines and four clinical cohorts. Rapid immunoprecipitation mass spectrometry of endogenous protein (RIME) analyses revealed that nonmalignant AA RC43N prostate cells displayed the greatest dynamic protein content in the VDR complex. Likewise, in AA cells, Assay for Transposase-Accessible Chromatin using sequencing established greater 1α,25(OH)2D3-regulated chromatin accessibility, chromatin immunoprecipitation sequencing revealed significant enhancer-enriched VDR cistrome, and RNA sequencing identified the largest 1α,25(OH)2D3-dependent transcriptome. These VDR functions were significantly corrupted in the isogenic AA RC43T prostate cancer cells, and significantly distinct from EA cell models. We identified reduced expression of the chromatin remodeler, BAZ1A, in three AA prostate cancer cohorts as well as RC43T compared with RC43N. Restored BAZ1A expression significantly increased 1α,25(OH)2D3-regulated VDR-dependent gene expression in RC43T, but not HPr1AR or LNCaP cells. The clinical impact of VDR cistrome-transcriptome relationships were tested in three different clinical prostate cancer cohorts. Strikingly, only in AA patients with prostate cancer, the genes bound by VDR and/or associated with 1α,25(OH)2D3-dependent open chromatin (i) predicted progression from high-grade prostatic intraepithelial neoplasia to prostate cancer; (ii) responded to vitamin D3 supplementation in prostate cancer tumors; (iii) differentially responded to 25(OH)D3 serum levels. Finally, partial correlation analyses established that BAZ1A and components of the VDR complex identified by RIME significantly strengthened the correlation between VDR and target genes in AA prostate cancer only. Therefore, VDR transcriptional control is most potent in AA prostate cells and distorted through a BAZ1A-dependent control of VDR function. Significance: Our study identified that genomic ancestry drives the VDR complex composition, genomic distribution, and transcriptional function, and is disrupted by BAZ1A and illustrates a novel driver for AA prostate cancer.


Asunto(s)
Neoplasias de la Próstata , Receptores de Calcitriol , Masculino , Humanos , Receptores de Calcitriol/genética , Transcriptoma/genética , Negro o Afroamericano/genética , Neoplasias de la Próstata/genética , Cromatina/genética , Proteínas Cromosómicas no Histona/genética
16.
Int J Mol Sci ; 24(5)2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36902274

RESUMEN

Daylily (Hemerocallis citrina Baroni) is an edible plant widely distributed worldwide, especially in Asia. It has traditionally been considered a potential anti-constipation vegetable. This study aimed to investigate the anti-constipation effects of daylily from the perspective of gastro-intestinal transit, defecation parameters, short-chain organic acids, gut microbiome, transcriptomes and network pharmacology. The results show that dried daylily (DHC) intake accelerated the defecation frequency of mice, while it did not significantly alter the levels of short-chain organic acids in the cecum. The 16S rRNA sequencing showed that DHC elevated the abundance of Akkermansia, Bifidobacterium and Flavonifractor, while it reduced the level of pathogens (such as Helicobacter and Vibrio). Furthermore, a transcriptomics analysis revealed 736 differentially expressed genes (DEGs) after DHC treatment, which are mainly enriched in the olfactory transduction pathway. The integration of transcriptomes and network pharmacology revealed seven overlapping targets (Alb, Drd2, Igf2, Pon1, Tshr, Mc2r and Nalcn). A qPCR analysis further showed that DHC reduced the expression of Alb, Pon1 and Cnr1 in the colon of constipated mice. Our findings provide a novel insight into the anti-constipation effects of DHC.


Asunto(s)
Estreñimiento , Hemerocallis , Laxativos , Animales , Ratones , Estreñimiento/terapia , Microbioma Gastrointestinal , Hemerocallis/química , Farmacología en Red , ARN Ribosómico 16S , Laxativos/química , Laxativos/farmacología , Laxativos/uso terapéutico , Ciego/efectos de los fármacos
17.
Int J Biol Macromol ; 235: 123930, 2023 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-36889616

RESUMEN

This study aimed to reveal the constipation-relieving role of chitosan (COS) with different molecular weights (1 kDa, 3 kDa and 244 kDa). Compared with COS3K (3 kDa) and COS240K (244 kDa), COS1K (1 kDa) more significantly accelerated gastrointestinal transit and defecation frequency. These differential effects were reflected in the regulation of specific gut microbiota (Desulfovibrio, Bacteroides, Parabacteroides and Anaerovorax) and short-chain fatty acids (propionic acid, butyric acid and valeric acid). RNA-sequencing found that the differential expressed genes (DEGs) caused by different molecular weights of COS were mainly enriched in intestinal immune-related pathways, especially cell adhesion molecules. Furthermore, network pharmacology revealed two candidate genes (Clu and Igf2), which can be regarded as the key molecules for the differential anti-constipation effects of COS with different molecular weights. These results were further verified by qPCR. In conclusion, our results provide a novel research strategy to help understand the differences in the anti-constipation effects of chitosan with different molecular weights.


Asunto(s)
Quitosano , Animales , Ratones , Ácido Butírico , Quitosano/farmacología , Estreñimiento/metabolismo , Peso Molecular , Farmacología en Red , Propionatos/química
18.
Sci Rep ; 13(1): 918, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36650199

RESUMEN

Mankind's quest for a manned mission to Mars is placing increased emphasis on the development of innovative radio-protective countermeasures for long-term space travel. Hibernation confers radio-protective effects in hibernating animals, and this has led to the investigation of synthetic torpor to mitigate the deleterious effects of chronic low-dose-rate radiation exposure. Here we describe an induced torpor model we developed using the zebrafish. We explored the effects of radiation exposure on this model with a focus on the liver. Transcriptomic and behavioural analyses were performed. Radiation exposure resulted in transcriptomic perturbations in lipid metabolism and absorption, wound healing, immune response, and fibrogenic pathways. Induced torpor reduced metabolism and increased pro-survival, anti-apoptotic, and DNA repair pathways. Coupled with radiation exposure, induced torpor led to a stress response but also revealed maintenance of DNA repair mechanisms, pro-survival and anti-apoptotic signals. To further characterise our model of induced torpor, the zebrafish model was compared with hepatic transcriptomic data from hibernating grizzly bears (Ursus arctos horribilis) and active controls revealing conserved responses in gene expression associated with anti-apoptotic processes, DNA damage repair, cell survival, proliferation, and antioxidant response. Similarly, the radiation group was compared with space-flown mice revealing shared changes in lipid metabolism.


Asunto(s)
Hibernación , Exposición a la Radiación , Letargo , Animales , Ratones , Pez Cebra/genética , Hígado , Hibernación/fisiología , Letargo/fisiología
19.
Sci Total Environ ; 855: 158576, 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36084772

RESUMEN

Microplastics (<5 mm) are a threat to marine biodiversity however their effects on animal cognition and behaviour are unclear. We investigated whether microplastic exposure affects shell selection behaviour and motivation in the common European hermit crab, Pagurus bernhardus. Subjects were maintained for 5 days in tanks containing either: polyethylene microplastic spheres (n = 40), or no plastic (n = 40). They were then placed in low-quality shells and presented with an alternative high-quality shell. When they first touched the high-quality shell, the hermit crabs were startled using visual and aural stimuli. We recorded the post-startle latency to re-contact the high-quality shell, quantifying motivation to explore and acquire a better shell. Plastic-exposed females were more likely to select the high-quality shell than control females. As hypothesised, female hermit crabs had longer initial contact latencies, startle durations, and shell entry latencies than males. We also found an interaction effect on shell investigation duration: females from the control treatment spent longer investigating the high-quality shell compared to males. This was absent in the microplastic treatment with females behaving similar to males. This controlled study serves as a starting point to investigate the effects of microplastics and sex differences on behaviour when under predatory threat, and demonstrated sex dependent sensitivity to an environmental pollutant of global concern.


Asunto(s)
Anomuros , Animales , Femenino , Masculino , Microplásticos , Plásticos , Motivación , Conducta Animal
20.
NPJ Sci Food ; 6(1): 60, 2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36577751

RESUMEN

Colorectal cancer (CRC) is the second most prevelant malignancy in Europe and diet is an important modifiable risk factor. Processed meat consumption, including meats with preservative salts such as sodium nitrite, have been implicated in CRC pathogenesis. This study investigated how the CRC pathology and metabolic status of adenomatous polyposis coli (APC) multiple intestinal neoplasia (min) mice was perturbed following 8 weeks of pork meat consumption. Dietary inclusions (15%) of either nitrite-free pork, nitrite-free sausage, or nitrite-containing sausage (frankfurter) were compared against a parallel control group (100% chow). Comprehensive studies investigated: gastrointestinal tract histology (tumours), aberrant crypt foci (ACF), mucin deplin foci (MDF), lipid peroxidation (urine and serum), faecal microbiota, and serum metabolomics (599 metabolites). After 8 weeks mice consuming the frankfurter diet had 53% more (P = 0.014) gastrointestinal tumours than control, although ACF and MDF did not differ. Urine and serum lipid peroxidation markers were 59% (P = 0.001) and 108% (P = 0.001) higher, respectively in the frankfurter group. Gut dysbiosis was evident in these mice with comparably fewer Bacteriodes and more Firmicutes. Fasting serum levels of trimethylamine N-oxide (TMAO) and numerous triglycerides were elevated. Various serum phosphotidylcholine species were decreased. These results demonstrate that nitrite-containing sausages may exaccerbate the development of CRC pathology in APCMin mice to a greater extent than nitrite-free sausages, and this is associated with greater lipid peroxidation, wide-ranging metabolic alternation and gut dysbiosis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA