Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
PLoS Pathog ; 20(6): e1012329, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38900816

RESUMEN

Coronavirus (CoV) nonstructural protein 1 (nsp1) is considered a pathogenic factor due to its ability to inhibit host antiviral responses by inducing general shutoff of host protein synthesis. Nsp1 is expressed by α- and ß-CoVs, but its functions and strategies to induce host shutoff are not fully elucidated. We compared the nsp1s from two ß-CoVs (SARS-CoV and SARS-CoV-2) and two α-CoVs (NL63 and 229E) and found that NL63 nsp1 has the strongest shutoff activity. Unlike SARS-CoV nsp1s, which bind to 40S ribosomes and block translation of cellular mRNA, NL63 nsp1 did not inhibit translation of mRNAs transfected into cells. Instead, NL63 nsp1 localized to the nucleus and specifically inhibited transcription of genes under an RNA polymerase II (RNAPII) promoter. Further analysis revealed that NL63 nsp1 induces degradation of the largest subunit of RNAPII, Rpb1. This degradation was detected regardless of the phosphorylation state of Rpb1 and was blocked by the proteasome inhibitor MG132. We also found that Rpb1 was ubiquitinated in NL63-infected cells, and inhibition of ubiquitination by a ubiquitin activating enzyme inhibitor (TAK243) prevented degradation of Rpb1 in virus-infected cells. These data reveal an unrecognized strategy of host shutoff by human α-CoV NL63: targeting host transcription by inducing Rpb1 degradation to prevent host protein expression. Our study indicates that viruses within the same family can use completely distinct mechanisms to regulate host antiviral responses.


Asunto(s)
Biosíntesis de Proteínas , ARN Polimerasa II , Proteínas no Estructurales Virales , Humanos , Proteínas no Estructurales Virales/metabolismo , Proteínas no Estructurales Virales/genética , ARN Polimerasa II/metabolismo , Coronavirus Humano NL63/metabolismo , SARS-CoV-2 , Células HEK293
2.
Vaccines (Basel) ; 9(6)2021 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-34200539

RESUMEN

Influenza A virus (IAV) is a significant human pathogen that causes seasonal epidemics. Although various types of vaccines are available, IAVs still circulate among human populations, possibly due to their ability to circumvent host immune responses. IAV expresses two host shutoff proteins, PA-X and NS1, which antagonize the host innate immune response. By transcriptomic analysis, we previously showed that PA-X is a major contributor for general shutoff, while shutoff active NS1 specifically inhibits the expression of host cytokines, MHC molecules, and genes involved in innate immunity in cultured human cells. So far, the impact of these shutoff proteins in the acquired immune response in vivo has not been determined in detail. In this study, we analyzed the effects of PA-X and NS1 shutoff activities on immune response using recombinant influenza A/California/04/2009 viruses containing mutations affecting the expression of shutoff active PA-X and NS1 in a mouse model. Our data indicate that the virus without shutoff activities induced the strongest T and B cell responses. Both PA-X and NS1 reduced host immune responses, but shutoff active NS1 most effectively suppressed lymphocyte migration to the lungs, antibody production, and the generation of IAV specific CD4+ and CD8+ T cells. NS1 also prevented the generation of protective immunity against a heterologous virus challenge. These data indicate that shutoff active NS1 plays a major role in suppressing host immune responses against IAV infection.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA