Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-38826304

RESUMEN

Efficient behavior is supported by humans' ability to rapidly recognize acoustically distinct sounds as members of a common category. Within auditory cortex, there are critical unanswered questions regarding the organization and dynamics of sound categorization. Here, we performed intracerebral recordings in the context of epilepsy surgery as 20 patient-participants listened to natural sounds. We built encoding models to predict neural responses using features of these sounds extracted from different layers within a sound-categorization deep neural network (DNN). This approach yielded highly accurate models of neural responses throughout auditory cortex. The complexity of a cortical site's representation (measured by the depth of the DNN layer that produced the best model) was closely related to its anatomical location, with shallow, middle, and deep layers of the DNN associated with core (primary auditory cortex), lateral belt, and parabelt regions, respectively. Smoothly varying gradients of representational complexity also existed within these regions, with complexity increasing along a posteromedial-to-anterolateral direction in core and lateral belt, and along posterior-to-anterior and dorsal-to-ventral dimensions in parabelt. When we estimated the time window over which each recording site integrates information, we found shorter integration windows in core relative to lateral belt and parabelt. Lastly, we found a relationship between the length of the integration window and the complexity of information processing within core (but not lateral belt or parabelt). These findings suggest hierarchies of timescales and processing complexity, and their interrelationship, represent a functional organizational principle of the auditory stream that underlies our perception of complex, abstract auditory information.

2.
bioRxiv ; 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38617227

RESUMEN

Prior lesion, noninvasive-imaging, and intracranial-electroencephalography (iEEG) studies have documented hierarchical, parallel, and distributed characteristics of human speech processing. Yet, there have not been direct, intracranial observations of the latency with which regions outside the temporal lobe respond to speech, or how these responses are impacted by task demands. We leveraged human intracranial recordings via stereo-EEG to measure responses from diverse forebrain sites during (i) passive listening to /bi/ and /pi/ syllables, and (ii) active listening requiring /bi/-versus-/pi/ categorization. We find that neural response latency increases from a few tens of ms in Heschl's gyrus (HG) to several tens of ms in superior temporal gyrus (STG), superior temporal sulcus (STS), and early parietal areas, and hundreds of ms in later parietal areas, insula, frontal cortex, hippocampus, and amygdala. These data also suggest parallel flow of speech information dorsally and ventrally, from HG to parietal areas and from HG to STG and STS, respectively. Latency data also reveal areas in parietal cortex, frontal cortex, hippocampus, and amygdala that are not responsive to the stimuli during passive listening but are responsive during categorization. Furthermore, multiple regions-spanning auditory, parietal, frontal, and insular cortices, and hippocampus and amygdala-show greater neural response amplitudes during active versus passive listening (a task-related effect). Overall, these results are consistent with hierarchical processing of speech at a macro level and parallel streams of information flow in temporal and parietal regions. These data also reveal regions where the speech code is stimulus-faithful and those that encode task-relevant representations.

3.
Curr Res Neurobiol ; 6: 100127, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38511174

RESUMEN

The human voice is a critical stimulus for the auditory system that promotes social connection, informs the listener about identity and emotion, and acts as the carrier for spoken language. Research on voice processing in adults has informed our understanding of the unique status of the human voice in the mature auditory cortex and provided potential explanations for mechanisms that underly voice selectivity and identity processing. There is evidence that voice perception undergoes developmental change starting in infancy and extending through early adolescence. While even young infants recognize the voice of their mother, there is an apparent protracted course of development to reach adult-like selectivity for human voice over other sound categories and recognition of other talkers by voice. Gaps in the literature do not allow for an exact mapping of this trajectory or an adequate description of how voice processing and its neural underpinnings abilities evolve. This review provides a comprehensive account of developmental voice processing research published to date and discusses how this evidence fits with and contributes to current theoretical models proposed in the adult literature. We discuss how factors such as cognitive development, neural plasticity, perceptual narrowing, and language acquisition may contribute to the development of voice processing and its investigation in children. We also review evidence of voice processing abilities in premature birth, autism spectrum disorder, and phonagnosia to examine where and how deviations from the typical trajectory of development may manifest.

4.
Childs Nerv Syst ; 38(5): 961-970, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35274185

RESUMEN

BACKGROUND: MRI-guided laser interstitial thermal therapy (MRgLITT) is a promising alternative to open surgery for treatment of drug-resistant epilepsy, offering significant advantages over traditional approaches for candidate patients, including minimally invasive approach, shorter hospitalization, and decreased patient post-operative discomfort. LITT uses a stereotactically placed fiber optic laser probe to ablate tissue under real-time MR thermometry. METHODS: Retrospective chart review of intraoperative and perioperative characteristics was performed for 28 cases of MRgLITT in 25 pediatric patients, ages 4-21 years old, at our institution between 2019 and 2021. MRgLITT ablation of the mesial temporal lobe was performed in 8 cases, extratemporal epileptogenic foci in 9 cases, and for corpus callosotomy in 11 cases. RESULTS: At 1 year of follow-up, 53% of all patients experienced improvement in seizure frequency (Engel I or II) (class I: 38%, class II: 15%, class III: 17%, class IV: 31%), including 37% of MTL ablations and 80% extratemporal SOZ ablations. After MRgLITT corpus callosotomy, 71% of patients were free from atonic seizures at most recent follow-up. Median length of hospitalization was 2 days (1-3), including a median ICU stay of 1 day (1-2). CONCLUSION: This series demonstrates the safety of MRgLITT as an approach for seizure control in drug-resistant epilepsy. We provide additional evidence that MRgLITT is an effective procedure that is well-tolerated by pediatric patients and is accompanied by an acceptable rate of complications and relatively short hospital stay.


Asunto(s)
Epilepsia Refractaria , Terapia por Láser , Adolescente , Adulto , Niño , Preescolar , Epilepsia Refractaria/cirugía , Humanos , Imagenología Tridimensional , Terapia por Láser/efectos adversos , Terapia por Láser/métodos , Estudios Retrospectivos , Convulsiones/cirugía , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA