Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 246
Filtrar
1.
Science ; 384(6698): eadh4265, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38781378

RESUMEN

Nucleotide variants in cell type-specific gene regulatory elements in the human brain are risk factors for human disease. We measured chromatin accessibility in 1932 aliquots of sorted neurons and non-neurons from 616 human postmortem brains and identified 34,539 open chromatin regions with chromatin accessibility quantitative trait loci (caQTLs). Only 10.4% of caQTLs are shared between neurons and non-neurons, which supports cell type-specific genetic regulation of the brain regulome. Incorporating allele-specific chromatin accessibility improves statistical fine-mapping and refines molecular mechanisms that underlie disease risk. Using massively parallel reporter assays in induced excitatory neurons, we screened 19,893 brain QTLs and identified the functional impact of 476 regulatory variants. Combined, this comprehensive resource captures variation in the human brain regulome and provides insights into disease etiology.


Asunto(s)
Encefalopatías , Encéfalo , Cromatina , Regulación de la Expresión Génica , Elementos Reguladores de la Transcripción , Humanos , Alelos , Encéfalo/metabolismo , Encefalopatías/genética , Cromatina/metabolismo , Neuronas/metabolismo , Sitios de Carácter Cuantitativo , Masculino , Femenino
2.
Science ; 384(6698): eadg5136, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38781388

RESUMEN

The complexity and heterogeneity of schizophrenia have hindered mechanistic elucidation and the development of more effective therapies. Here, we performed single-cell dissection of schizophrenia-associated transcriptomic changes in the human prefrontal cortex across 140 individuals in two independent cohorts. Excitatory neurons were the most affected cell group, with transcriptional changes converging on neurodevelopment and synapse-related molecular pathways. Transcriptional alterations included known genetic risk factors, suggesting convergence of rare and common genomic variants on neuronal population-specific alterations in schizophrenia. Based on the magnitude of schizophrenia-associated transcriptional change, we identified two populations of individuals with schizophrenia marked by expression of specific excitatory and inhibitory neuronal cell states. This single-cell atlas links transcriptomic changes to etiological genetic risk factors, contextualizing established knowledge within the human cortical cytoarchitecture and facilitating mechanistic understanding of schizophrenia pathophysiology and heterogeneity.


Asunto(s)
Predisposición Genética a la Enfermedad , Neuroglía , Neuronas , Corteza Prefrontal , Esquizofrenia , Análisis de la Célula Individual , Adulto , Femenino , Humanos , Masculino , Estudios de Cohortes , Neuronas/metabolismo , Corteza Prefrontal/metabolismo , Factores de Riesgo , Esquizofrenia/genética , Sinapsis/metabolismo , Transcriptoma , Adulto Joven , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Neuroglía/metabolismo
3.
Res Sq ; 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38343831

RESUMEN

Microglia are resident immune cells of the brain and are implicated in the etiology of Alzheimer's Disease (AD) and other diseases. Yet the cellular and molecular processes regulating their function throughout the course of the disease are poorly understood. Here, we present the transcriptional landscape of primary microglia from 189 human postmortem brains, including 58 healthy aging individuals and 131 with a range of disease phenotypes, including 63 patients representing the full spectrum of clinical and pathological severity of AD. We identified transcriptional changes associated with multiple AD phenotypes, capturing the severity of dementia and neuropathological lesions. Transcript-level analyses identified additional genes with heterogeneous isoform usage and AD phenotypes. We identified changes in gene-gene coordination in AD, dysregulation of co-expression modules, and disease subtypes with distinct gene expression. Taken together, these data further our understanding of the key role of microglia in AD biology and nominate candidates for therapeutic intervention.

4.
medRxiv ; 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38076956

RESUMEN

Microglia, the innate immune cells of the central nervous system, have been genetically implicated in multiple neurodegenerative diseases. We previously mapped the genetic regulation of gene expression and mRNA splicing in human microglia, identifying several loci where common genetic variants in microglia-specific regulatory elements explain disease risk loci identified by GWAS. However, identifying genetic effects on splicing has been challenging due to the use of short sequencing reads to identify causal isoforms. Here we present the isoform-centric microglia genomic atlas (isoMiGA) which leverages the power of long-read RNA-seq to identify 35,879 novel microglia isoforms. We show that the novel microglia isoforms are involved in stimulation response and brain region specificity. We then quantified the expression of both known and novel isoforms in a multi-ethnic meta-analysis of 555 human microglia short-read RNA-seq samples from 391 donors, the largest to date, and found associations with genetic risk loci in Alzheimer's disease and Parkinson's disease. We nominate several loci that may act through complex changes in isoform and splice site usage.

5.
Res Sq ; 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37886514

RESUMEN

Non-coding variants increase risk of neuropsychiatric disease. However, our understanding of the cell-type specific role of the non-coding genome in disease is incomplete. We performed population scale (N=1,393) chromatin accessibility profiling of neurons and non-neurons from two neocortical brain regions: the anterior cingulate cortex and dorsolateral prefrontal cortex. Across both regions, we observed notable differences in neuronal chromatin accessibility between schizophrenia cases and controls. A per-sample disease pseudotime was positively associated with genetic liability for schizophrenia. Organizing chromatin into cis- and trans-regulatory domains, identified a prominent neuronal trans-regulatory domain (TRD1) active in immature glutamatergic neurons during fetal development. Polygenic risk score analysis using genetic variants within chromatin accessibility of TRD1 successfully predicted susceptibility to schizophrenia in the Million Veteran Program cohort. Overall, we present the most extensive resource to date of chromatin accessibility in the human cortex, yielding insights into the cell-type specific etiology of schizophrenia.

6.
medRxiv ; 2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37873320

RESUMEN

Non-coding variants increase risk of neuropsychiatric disease. However, our understanding of the cell-type specific role of the non-coding genome in disease is incomplete. We performed population scale (N=1,393) chromatin accessibility profiling of neurons and non-neurons from two neocortical brain regions: the anterior cingulate cortex and dorsolateral prefrontal cortex. Across both regions, we observed notable differences in neuronal chromatin accessibility between schizophrenia cases and controls. A per-sample disease pseudotime was positively associated with genetic liability for schizophrenia. Organizing chromatin into cis- and trans-regulatory domains, identified a prominent neuronal trans-regulatory domain (TRD1) active in immature glutamatergic neurons during fetal development. Polygenic risk score analysis using genetic variants within chromatin accessibility of TRD1 successfully predicted susceptibility to schizophrenia in the Million Veteran Program cohort. Overall, we present the most extensive resource to date of chromatin accessibility in the human cortex, yielding insights into the cell-type specific etiology of schizophrenia.

7.
Sci Data ; 10(1): 602, 2023 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-37684260

RESUMEN

Alzheimer's disease (AD) is the most common form of dementia worldwide, with a projection of 151 million cases by 2050. Previous genetic studies have identified three main genes associated with early-onset familial Alzheimer's disease, however this subtype accounts for less than 5% of total cases. Next-generation sequencing has been well established and holds great promise to assist in the development of novel therapeutics as well as biomarkers to prevent or slow the progression of this devastating disease. Here we present a public resource of functional genomic data from the parahippocampal gyrus of 201 postmortem control, mild cognitively impaired (MCI) and AD individuals from the Mount Sinai brain bank, of which whole-genome sequencing (WGS), and bulk RNA sequencing (RNA-seq) were previously published. The genomic data include bulk proteomics and DNA methylation, as well as cell-type-specific RNA-seq and assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) data. We have performed extensive preprocessing and quality control, allowing the research community to access and utilize this public resource available on the Synapse platform at https://doi.org/10.7303/syn51180043.2 .


Asunto(s)
Enfermedad de Alzheimer , Giro Parahipocampal , Humanos , Enfermedad de Alzheimer/genética , Bioensayo , Multiómica
8.
Mol Neurodegener ; 18(1): 39, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37340466

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is a progressive and age-associated neurodegenerative disorder that affects women disproportionally. However, the underlying mechanisms are poorly characterized. Moreover, while the interplay between sex and ApoE genotype in AD has been investigated, multi-omics studies to understand this interaction are limited. Therefore, we applied systems biology approaches to investigate sex-specific molecular networks of AD. METHODS: We integrated large-scale human postmortem brain transcriptomic data of AD from two cohorts (MSBB and ROSMAP) via multiscale network analysis and identified key drivers with sexually dimorphic expression patterns and/or different responses to APOE genotypes between sexes. The expression patterns and functional relevance of the top sex-specific network driver of AD were further investigated using postmortem human brain samples and gene perturbation experiments in AD mouse models. RESULTS: Gene expression changes in AD versus control were identified for each sex. Gene co-expression networks were constructed for each sex to identify AD-associated co-expressed gene modules shared by males and females or specific to each sex. Key network regulators were further identified as potential drivers of sex differences in AD development. LRP10 was identified as a top driver of the sex differences in AD pathogenesis and manifestation. Changes of LRP10 expression at the mRNA and protein levels were further validated in human AD brain samples. Gene perturbation experiments in EFAD mouse models demonstrated that LRP10 differentially affected cognitive function and AD pathology in sex- and APOE genotype-specific manners. A comprehensive mapping of brain cells in LRP10 over-expressed (OE) female E4FAD mice suggested neurons and microglia as the most affected cell populations. The female-specific targets of LRP10 identified from the single cell RNA-sequencing (scRNA-seq) data of the LRP10 OE E4FAD mouse brains were significantly enriched in the LRP10-centered subnetworks in female AD subjects, validating LRP10 as a key network regulator of AD in females. Eight LRP10 binding partners were identified by the yeast two-hybrid system screening, and LRP10 over-expression reduced the association of LRP10 with one binding partner CD34. CONCLUSIONS: These findings provide insights into key mechanisms mediating sex differences in AD pathogenesis and will facilitate the development of sex- and APOE genotype-specific therapies for AD.


Asunto(s)
Enfermedad de Alzheimer , Femenino , Humanos , Ratones , Masculino , Animales , Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Transcriptoma , Redes Reguladoras de Genes , Apolipoproteínas E/metabolismo , Proteínas Relacionadas con Receptor de LDL/genética , Proteínas Relacionadas con Receptor de LDL/metabolismo
9.
Res Sq ; 2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-37205331

RESUMEN

Advances in single-cell and -nucleus transcriptomics have enabled generation of increasingly large-scale datasets from hundreds of subjects and millions of cells. These studies promise to give unprecedented insight into the cell type specific biology of human disease. Yet performing differential expression analyses across subjects remains difficult due to challenges in statistical modeling of these complex studies and scaling analyses to large datasets. Our open-source R package dreamlet (DiseaseNeurogenomics.github.io/dreamlet) uses a pseudobulk approach based on precision-weighted linear mixed models to identify genes differentially expressed with traits across subjects for each cell cluster. Designed for data from large cohorts, dreamlet is substantially faster and uses less memory than existing workflows, while supporting complex statistical models and controlling the false positive rate. We demonstrate computational and statistical performance on published datasets, and a novel dataset of 1.4M single nuclei from postmortem brains of 150 Alzheimer's disease cases and 149 controls.

10.
bioRxiv ; 2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-37090548

RESUMEN

Nucleotide variants in cell type-specific gene regulatory elements in the human brain are major risk factors of human disease. We measured chromatin accessibility in sorted neurons and glia from 1,932 samples of human postmortem brain and identified 34,539 open chromatin regions with chromatin accessibility quantitative trait loci (caQTL). Only 10.4% of caQTL are shared between neurons and glia, supporting the cell type specificity of genetic regulation of the brain regulome. Incorporating allele specific chromatin accessibility improves statistical fine-mapping and refines molecular mechanisms underlying disease risk. Using massively parallel reporter assays in induced excitatory neurons, we screened 19,893 brain QTLs, identifying the functional impact of 476 regulatory variants. Combined, this comprehensive resource captures variation in the human brain regulome and provides novel insights into brain disease etiology.

11.
Neuromolecular Med ; 25(3): 388-401, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37005977

RESUMEN

The S100 proteins family is known to affect neuroinflammation and astrocyte activation, which have been suggested to be contributors to the pathogenesis of schizophrenia. We conducted a systematic meta-analysis of S100 genes differential expression in postmortem samples of patients with schizophrenia vs. healthy controls, following the commonly used Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. Twelve microarray datasets met the inclusion criteria (overall 511 samples, 253 schizophrenia and 258 controls were analyzed). Nine out of 21 genes were significantly up-regulated or with tendency for up-regulation. A per-sample fold change analysis indicated that the S100 genes' up-regulation was concentrated in a subgroup of the patients. None of the genes have been found to be down-regulated. ANXA3, which encodes Annexin 3 protein and was associated with neuroinflammation, was up-regulated and positively correlated with the S100 genes' expression pattern. In addition, astrocytes and endothelial cell markers were significantly correlated with S100A8 expression. S100 correlation with ANXA3 and endothelial cell markers suggests that the up-regulation we detected reflects increased inflammation. However, it might also reflect astrocytes abundance or activation. The fact that S100 proteins were shown to be up-regulated in blood samples and other body fluids of patients with schizophrenia suggests a potential role as biomarkers, which might help disease subtyping, and the development of etiological treatments for immune dysregulation in schizophrenia.


Asunto(s)
Esquizofrenia , Humanos , Regulación hacia Arriba , Esquizofrenia/genética , Enfermedades Neuroinflamatorias , Encéfalo/metabolismo , Proteínas S100/genética , Proteínas S100/metabolismo
12.
Schizophr Res ; 255: 274-282, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37079947

RESUMEN

Multiple lines of evidence argue for lower levels of cortical muscarinic M1 receptors (CHRM1) in people with schizophrenia which is possibly due to a sub-group within the disorder who have a marked loss of CHRM1 (muscarinic receptor deficit sub-group (MRDS)). In this study we sought to determine if the lower levels of CHRM1 was apparent in older people with schizophrenia and whether the loss of CHRM1 was associated with symptom severity by measuring levels of cortical [3H]pirenzepine binding to CHRM1 from 56 people with schizophrenia and 43 controls. Compared to controls (173 ± 6.3 fmol / mg protein), there were lower levels of cortical [3H]pirenzepine binding in the people with schizophrenia (mean ± SEM: 153 ± 6.0 fmol / mg protein; p = 0.02; Cohen's d = - 0.46). [3H]pirenzepine binding in the people with schizophrenia, but not controls, was not normally distributed and best fitted a two-population solution. The nadir of binding separating the two groups of people with schizophrenia was 121 fmol / mg protein and levels of [3H]pirenzepine binding below this value had a 90.7 % specificity for the disorder. Compared to controls, the score from the Clinical Dementia Rating Scale (CDR) did not differ significantly in MRDS but were significantly higher in the sub-group with normal radioligand binding. Positive and Negative Syndrome Scale scores did not differ between the two sub-groups with schizophrenia. Our current study replicates and earlier finding showing a MRDS within schizophrenia and, for the first time, suggest this sub-group have less severe cognitive deficits others with schizophrenia.


Asunto(s)
Trastornos del Conocimiento , Esquizofrenia , Humanos , Anciano , Pirenzepina , Esquizofrenia/metabolismo , Receptor Muscarínico M1/metabolismo , Cognición
13.
bioRxiv ; 2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36993704

RESUMEN

Advances in single-cell and -nucleus transcriptomics have enabled generation of increasingly large-scale datasets from hundreds of subjects and millions of cells. These studies promise to give unprecedented insight into the cell type specific biology of human disease. Yet performing differential expression analyses across subjects remains difficult due to challenges in statistical modeling of these complex studies and scaling analyses to large datasets. Our open-source R package dreamlet (DiseaseNeurogenomics.github.io/dreamlet) uses a pseudobulk approach based on precision-weighted linear mixed models to identify genes differentially expressed with traits across subjects for each cell cluster. Designed for data from large cohorts, dreamlet is substantially faster and uses less memory than existing workflows, while supporting complex statistical models and controlling the false positive rate. We demonstrate computational and statistical performance on published datasets, and a novel dataset of 1.4M single nuclei from postmortem brains of 150 Alzheimer's disease cases and 149 controls.

14.
Alzheimers Dement ; 19(8): 3472-3495, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36811307

RESUMEN

INTRODUCTION: Recent studies revealed the association of abnormal methylomic changes with Alzheimer's disease (AD) but there is a lack of systematic study of the impact of methylomic alterations over the molecular networks underlying AD. METHODS: We profiled genome-wide methylomic variations in the parahippocampal gyrus from 201 post mortem control, mild cognitive impaired, and AD brains. RESULTS: We identified 270 distinct differentially methylated regions (DMRs) associated with AD. We quantified the impact of these DMRs on each gene and each protein as well as gene and protein co-expression networks. DNA methylation had a profound impact on both AD-associated gene/protein modules and their key regulators. We further integrated the matched multi-omics data to show the impact of DNA methylation on chromatin accessibility, which further modulates gene and protein expression. DISCUSSION: The quantified impact of DNA methylation on gene and protein networks underlying AD identified potential upstream epigenetic regulators of AD. HIGHLIGHTS: A cohort of DNA methylation data in the parahippocampal gyrus was developed from 201 post mortem control, mild cognitive impaired, and Alzheimer's disease (AD) brains. Two hundred seventy distinct differentially methylated regions (DMRs) were found to be associated with AD compared to normal control. A metric was developed to quantify methylation impact on each gene and each protein. DNA methylation was found to have a profound impact on not only the AD-associated gene modules but also key regulators of the gene and protein networks. Key findings were validated in an independent multi-omics cohort in AD. The impact of DNA methylation on chromatin accessibility was also investigated by integrating the matched methylomic, epigenomic, transcriptomic, and proteomic data.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Epigénesis Genética , Redes Reguladoras de Genes , Proteómica , Metilación de ADN
15.
Res Sq ; 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36798327

RESUMEN

Background: The apolipoprotein E (APOE, gene; apoE, protein) ε4 allele is the most common identified genetic risk factor for typical late-onset sporadic Alzheimer's disease (AD). Each APOE ε4 allele roughly triples the relative risk for AD compared to that of the reference allele, APOE ε3. Methods: We have employed hyperspectral fluorescence imaging with an amyloidspecific, conformation-sensing probe, p-FTAA, to elucidate protein aggregate structure and morphology in fresh frozen prefrontal cortex samples from human postmortem AD brain tissue samples from patients homozygous for either APOE ε3 or APOE ε4. Results: As expected APOE ε4/ε4 tissues had significantly larger load of CAA than APOE ε3/ε3. APOE isoform-dependent morphological differences in amyloid plaques were also observed. Amyloid plaques in APOE ε3/ε3 tissue had small spherical cores and large corona while amyloid plaques in APOE ε4/ε4 tissues had large irregular and multilobulated plaques with relatively smaller corona. Despite the different morphologies of their cores, the p-FTAA stained APOE ε3/ε3 amyloid plaque cores had spectral properties identical to those of APOE ε4/ε4 plaque cores. Conclusions: These data support the hypothesis that one mechanism by which the APOE ε4 allele affects AD is by modulating the macrostructure of pathological protein deposits in brain. APOE ε4 is associated with a higher density of amyloid plaques (as compared to APOE ε3). We speculate that multilobulated APOE ε4-associated plaques arise from multiple initiation foci that coalesce as the plaques grow.

17.
Elife ; 112022 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-36052994

RESUMEN

There is increasing evidence that anterior pituitary hormones, traditionally thought to have unitary functions in regulating single endocrine targets, act on multiple somatic tissues, such as bone, fat, and liver. There is also emerging evidence for anterior pituitary hormone action on brain receptors in mediating central neural and peripheral somatic functions. Here, we have created the most comprehensive neuroanatomical atlas on the expression of TSHR, LHCGR, and FSHR. We have used RNAscope, a technology that allows the detection of mRNA at single-transcript level, together with protein level validation, to document Tshr expression in 173 and Fshr expression in 353 brain regions, nuclei and subnuclei identified using the Atlas for the Mouse Brain in Stereotaxic Coordinates. We also identified Lhcgr transcripts in 401 brain regions, nuclei and subnuclei. Complementarily, we used ViewRNA, another single-transcript detection technology, to establish the expression of FSHR in human brain samples, where transcripts were co-localized in MALAT1-positive neurons. In addition, we show high expression for all three receptors in the ventricular region-with yet unknown functions. Intriguingly, Tshr and Fshr expression in the ependymal layer of the third ventricle was similar to that of the thyroid follicular cells and testicular Sertoli cells, respectively. In contrast, Fshr was localized to NeuN-positive neurons in the granular layer of the dentate gyrus in murine and human brain-both are Alzheimer's disease-vulnerable regions. Our atlas thus provides a vital resource for scientists to explore the link between the stimulation or inactivation of brain glycoprotein hormone receptors on somatic function. New actionable pathways for human disease may be unmasked through further studies.


Asunto(s)
Glicoproteínas , Células de Sertoli , Animales , Encéfalo , Hormonas , Humanos , Masculino , Ratones , Testículo/fisiología
18.
Nat Neurosci ; 25(10): 1366-1378, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36171428

RESUMEN

To characterize the dysregulation of chromatin accessibility in Alzheimer's disease (AD), we generated 636 ATAC-seq libraries from neuronal and nonneuronal nuclei isolated from the superior temporal gyrus and entorhinal cortex of 153 AD cases and 56 controls. By analyzing a total of ~20 billion read pairs, we expanded the repertoire of known open chromatin regions (OCRs) in the human brain and identified cell-type-specific enhancer-promoter interactions. We show that interindividual variability in OCRs can be leveraged to identify cis-regulatory domains (CRDs) that capture the three-dimensional structure of the genome (3D genome). We identified AD-associated effects on chromatin accessibility, the 3D genome and transcription factor (TF) regulatory networks. For one of the most AD-perturbed TFs, USF2, we validated its regulatory effect on lysosomal genes. Overall, we applied a systematic approach to understanding the role of the 3D genome in AD. We provide all data as an online resource for widespread community-based analysis.


Asunto(s)
Enfermedad de Alzheimer , Cromatina , Enfermedad de Alzheimer/genética , Humanos , Regiones Promotoras Genéticas , Factores de Transcripción/genética
19.
Nat Genet ; 54(10): 1493-1503, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36163279

RESUMEN

Identification of risk variants for neuropsychiatric diseases within enhancers underscores the importance of understanding population-level variation in enhancer function in the human brain. Besides regulating tissue-specific and cell-type-specific transcription of target genes, enhancers themselves can be transcribed. By jointly analyzing large-scale cell-type-specific transcriptome and regulome data, we cataloged 30,795 neuronal and 23,265 non-neuronal candidate transcribed enhancers. Examination of the transcriptome in 1,382 brain samples identified robust expression of transcribed enhancers. We explored gene-enhancer coordination and found that enhancer-linked genes are strongly implicated in neuropsychiatric disease. We identified expression quantitative trait loci (eQTLs) for both genes and enhancers and found that enhancer eQTLs mediate a substantial fraction of neuropsychiatric trait heritability. Inclusion of enhancer eQTLs in transcriptome-wide association studies enhanced functional interpretation of disease loci. Overall, our study characterizes the gene-enhancer regulome and genetic mechanisms in the human cortex in both healthy and diseased states.


Asunto(s)
Estudio de Asociación del Genoma Completo , Sitios de Carácter Cuantitativo , Encéfalo , Elementos de Facilitación Genéticos/genética , Humanos , Sitios de Carácter Cuantitativo/genética , Secuencias Reguladoras de Ácidos Nucleicos , Transcriptoma/genética
20.
Nat Genet ; 54(8): 1145-1154, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35931864

RESUMEN

Microglia are brain myeloid cells that play a critical role in neuroimmunity and the etiology of Alzheimer's disease (AD), yet our understanding of how the genetic regulatory landscape controls microglial function and contributes to AD is limited. Here, we performed transcriptome and chromatin accessibility profiling in primary human microglia from 150 donors to identify genetically driven variation and cell-specific enhancer-promoter (E-P) interactions. Integrative fine-mapping analysis identified putative regulatory mechanisms for 21 AD risk loci, of which 18 were refined to a single gene, including 3 new candidate risk genes (KCNN4, FIBP and LRRC25). Transcription factor regulatory networks captured AD risk variation and identified SPI1 as a key putative regulator of microglia expression and AD risk. This comprehensive resource capturing variation in the human microglia regulome provides insights into the etiology of neurodegenerative disease.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Proteínas Portadoras/genética , Humanos , Proteínas de la Membrana/genética , Microglía/metabolismo , Transcriptoma/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA