Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Plant Physiol ; 195(3): 1775-1795, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38530638

RESUMEN

In flowering plants, male gametes are immotile and carried by dry pollen grains to the female organ. Dehydrated pollen is thought to withstand abiotic stress when grains are dispersed from the anther to the pistil, after which sperm cells are delivered via pollen tube growth for fertilization and seed set. Yet, the underlying molecular changes accompanying dehydration and the impact on pollen development are poorly understood. To gain a systems perspective, we analyzed published transcriptomes and proteomes of developing Arabidopsis thaliana pollen. Waves of transcripts are evident as microspores develop to bicellular, tricellular, and mature pollen. Between the "early"- and "late"-pollen-expressed genes, an unrecognized cluster of transcripts accumulated, including those encoding late-embryogenesis abundant (LEA), desiccation-related protein, transporters, lipid-droplet associated proteins, pectin modifiers, cysteine-rich proteins, and mRNA-binding proteins. Results suggest dehydration onset initiates after bicellular pollen is formed. Proteins accumulating in mature pollen like ribosomal proteins, initiation factors, and chaperones are likely components of mRNA-protein condensates resembling "stress" granules. Our analysis has revealed many new transcripts and proteins that accompany dehydration in developing pollen. Together with published functional studies, our results point to multiple processes, including (1) protect developing pollen from hyperosmotic stress, (2) remodel the endomembrane system and walls, (3) maintain energy metabolism, (4) stabilize presynthesized mRNA and proteins in condensates of dry pollen, and (5) equip pollen for compatibility determination at the stigma and for recovery at rehydration. These findings offer novel models and molecular candidates to further determine the mechanistic basis of dehydration and desiccation tolerance in plants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Regulación de la Expresión Génica de las Plantas , Polen , Polen/genética , Polen/crecimiento & desarrollo , Polen/fisiología , Arabidopsis/genética , Arabidopsis/fisiología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Deshidratación , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transcriptoma/genética , Perfilación de la Expresión Génica
2.
Physiol Plant ; 176(2): e14228, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38413387

RESUMEN

P4 ATPases (i.e., lipid flippases) are eukaryotic enzymes that transport lipids across membrane bilayers. In plants, P4 ATPases are named Aminophospholipid ATPases (ALAs) and are organized into five phylogenetic clusters. Here we generated an Arabidopsis mutant lacking all five cluster-2 ALAs (ala8/9/10/11/12), which is the most highly expressed ALA subgroup in vegetative tissues. Plants harboring the quintuple knockout (KO) show rosettes that are 2.2-fold smaller and display chlorotic lesions. A similar but less severe phenotype was observed in an ala10/11 double KO. The growth and lesion phenotypes of ala8/9/10/11/12 mutants were reversed by expressing a NahG transgene, which encodes an enzyme that degrades salicylic acid (SA). A role for SA in promoting the lesion phenotype was further supported by quantitative PCR assays showing increased mRNA abundance for an SA-biosynthesis gene ISOCHORISMATE SYNTHASE 1 (ICS1) and two SA-responsive genes PATHOGENESIS-RELATED GENE 1 (PR1) and PR2. Lesion phenotypes were also reversed by growing plants in liquid media containing either low calcium (~0.1 mM) or high nitrogen concentrations (~24 mM), which are conditions known to suppress SA-dependent autoimmunity. Yeast-based fluorescent lipid uptake assays revealed that ALA10 and ALA11 display overlapping substrate specificities, including the transport of LysoPC signaling lipids. Together, these results establish that the biochemical functions of ALA8-12 are at least partially overlapping, and that deficiencies in cluster-2 ALAs result in an SA-dependent autoimmunity phenotype that has not been observed for flippase mutants with deficiencies in other ALA clusters.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ácido Salicílico/metabolismo , Filogenia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Adenosina Trifosfatasas/genética , Lípidos
3.
Plant Reprod ; 36(3): 263-272, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37222783

RESUMEN

During angiosperm sexual reproduction, pollen tubes must penetrate through multiple cell types in the pistil to mediate successful fertilization. Although this process is highly choreographed and requires complex chemical and mechanical signaling to guide the pollen tube to its destination, aspects of our understanding of pollen tube penetration through the pistil are incomplete. Our previous work demonstrated that disruption of the Arabidopsis thaliana O-FUCOSYLTRANSFERASE1 (OFT1) gene resulted in decreased pollen tube penetration through the stigma-style interface. Here, we demonstrate that second site mutations of Arabidopsis GALACTURONOSYLTRANSFERASE 14 (GAUT14) effectively suppress the phenotype of oft1 mutants, partially restoring silique length, seed set, pollen transmission, and pollen tube penetration deficiencies in navigating the female reproductive tract. These results suggest that disruption of pectic homogalacturonan (HG) synthesis can alleviate the penetrative defects associated with the oft1 mutant and may implicate pectic HG deposition in the process of pollen tube penetration through the stigma-style interface in Arabidopsis. These results also support a model in which OFT1 function directly or indirectly modifies structural features associated with the cell wall, with the loss of oft1 leading to an imbalance in the wall composition that can be compensated for by a reduction in pectic HG deposition.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Tubo Polínico/genética , Tubo Polínico/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Polen/genética
4.
Plant Physiol ; 191(4): 2276-2287, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36708195

RESUMEN

A potential strategy to mitigate oxidative damage in plants is to increase the abundance of antioxidants, such as ascorbate (i.e. vitamin C). In Arabidopsis (A. thaliana), a rate-limiting step in ascorbate biosynthesis is a phosphorylase encoded by Vitamin C Defective 2 (VTC2). To specifically overexpress VTC2 (VTC2 OE) in pollen, the coding region was expressed using a promoter from a gene with ∼150-fold higher expression in pollen, leading to pollen grains with an eight-fold increased VTC2 mRNA. VTC2 OE resulted in a near-sterile phenotype with a 50-fold decrease in pollen transmission efficiency and a five-fold reduction in the number of seeds per silique. In vitro assays revealed pollen grains were more prone to bursting (greater than two-fold) or produced shorter, morphologically abnormal pollen tubes. The inclusion of a genetically encoded Ca2+ reporter, mCherry-GCaMP6fast (CGf), revealed pollen tubes with altered tip-focused Ca2+ dynamics and increased bursting frequency during periods of oscillatory and arrested growth. Despite these phenotypes, VTC2 OE pollen failed to show expected increases in ascorbate or reductions in reactive oxygen species, as measured using a redox-sensitive dye or a roGFP2. However, mRNA expression analyses revealed greater than two-fold reductions in mRNA encoding two enzymes critical to biosynthetic pathways related to cell walls or glyco-modifications of lipids and proteins: GDP-d-mannose pyrophosphorylase (GMP) and GDP-d-mannose 3',5' epimerase (GME). These results support a model in which the near-sterile defects resulting from VTC2 OE in pollen are associated with feedback mechanisms that can alter one or more signaling or metabolic pathways critical to pollen tube growth and fertility.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Señalización del Calcio , Polen , Arabidopsis/enzimología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fertilidad/genética , Señalización del Calcio/genética , Expresión Génica , Polen/enzimología , Polen/genética , Tubo Polínico/enzimología , Tubo Polínico/genética , Regiones Promotoras Genéticas/genética
5.
Plant Physiol ; 191(4): 2534-2550, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36715402

RESUMEN

Calcium ion transporting systems control cytosol Ca2+ levels ([Ca2+]cyt) and generate transient calcium (Ca2+) signatures that are key to environmental responses. Here, we report an impact of resting [Ca2+]cyt on plants from the functional study of calmodulin-regulated Ca2+ pumps or Ca2+-ATPases in Arabidopsis (Arabidopsis thaliana). The plasma membrane-localized pumps ACA8 (autoinhibited Ca2+-ATPase) and ACA10, as well as the vacuole-localized pumps ACA4 and ACA11, were critical in maintaining low resting [Ca2+]cyt and essential for plant survival under chilling and heat-stress conditions. Their loss-of-function mutants aca8 aca10 and aca4 aca11 had autoimmunity at normal temperatures, and this deregulated immune activation was enhanced by low temperature, leading to chilling lethality. Furthermore, these mutants showed an elevated resting [Ca2+]cyt, and a reduction of external Ca2+ lowered [Ca2+]cyt and repressed their autoimmunity and cold susceptibility. The aca8 aca10 and the aca4 aca11 mutants were also susceptible to heat, likely resulting from more closed stomata and higher leaf surface temperature than the wild type. These observations support a model in which the regulation of resting [Ca2+]cyt is critical to how plants regulate biotic and abiotic responses.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Calcio/metabolismo , Citosol/metabolismo , Membrana Celular/metabolismo , ATPasas Transportadoras de Calcio/genética , ATPasas Transportadoras de Calcio/metabolismo
6.
Sci Total Environ ; 851(Pt 1): 158101, 2022 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-35987220

RESUMEN

Atmospheric elemental mercury (Hg(0)) enters plant stomata, becomes oxidized, and is then transferred to annual growth rings providing an archive of air Hg(0) concentrations. To better understand the processes of Hg accumulation and translocation, the foliage of quaking aspen and Austrian pine were exposed to Hg(0), and methylmercury (MeHg) or Me198Hg via roots, in controlled exposures during the summer. Isotopic measurements demonstrated, in a laboratory setting, that the natural mass-dependent fractionation observed was the same as that measured in field studies, with the lighter isotopes being preferentially taken up by the leaves. Hg was measured in plant tissues across seasons. Aspen trees moved Hg into new growth immediately after exposure, resorbed Hg in the fall, and then distributed Hg to new growth tissues in the spring. Austrian pine did not reallocate Hg. Mercury measured in aspen leaf fractions of trees exposed to Hg(0) demonstrated that 85 % of Hg was in the cell wall. It was also found that redox-active molecules, such as H2O2, could potentiate the release of cell wall-bound Hg from aspen leaves, providing a potential mechanism for remobilization. Regardless of the mechanism, the ability of aspen to reallocate Hg to new tissues indicates that Hg distribution in tree rings from aspen do not provide a reliable record of yearly changes in atmospheric Hg(0).


Asunto(s)
Mercurio , Compuestos de Metilmercurio , Pinus , Monitoreo del Ambiente , Peróxido de Hidrógeno , Isótopos , Mercurio/análisis , Isótopos de Mercurio
7.
Plant Cell ; 34(11): 4143-4172, 2022 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-35961044

RESUMEN

Ethiopian mustard (Brassica carinata) is an ancient crop with remarkable stress resilience and a desirable seed fatty acid profile for biofuel uses. Brassica carinata is one of six Brassica species that share three major genomes from three diploid species (AA, BB, and CC) that spontaneously hybridized in a pairwise manner to form three allotetraploid species (AABB, AACC, and BBCC). Of the genomes of these species, that of B. carinata is the least understood. Here, we report a chromosome scale 1.31-Gbp genome assembly with 156.9-fold sequencing coverage for B. carinata, completing the reference genomes comprising the classic Triangle of U, a classical theory of the evolutionary relationships among these six species. Our assembly provides insights into the hybridization event that led to the current B. carinata genome and the genomic features that gave rise to the superior agronomic traits of B. carinata. Notably, we identified an expansion of transcription factor networks and agronomically important gene families. Completion of the Triangle of U comparative genomics platform has allowed us to examine the dynamics of polyploid evolution and the role of subgenome dominance in the domestication and continuing agronomic improvement of B. carinata and other Brassica species.


Asunto(s)
Brassica , Brassica/genética , Tetraploidía , Genoma de Planta/genética , Poliploidía , Diploidia
8.
Plant Physiol ; 187(4): 2361-2380, 2021 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-34601610

RESUMEN

Sexual reproduction in flowering plants takes place without an aqueous environment. Sperm are carried by pollen through air to reach the female gametophyte, though the molecular basis underlying the protective strategy of the male gametophyte is poorly understood. Here we compared the published transcriptomes of Arabidopsis thaliana pollen, and of heat-responsive genes, and uncovered insights into how mature pollen (MP) tolerates desiccation, while developing and germinating pollen are vulnerable to heat stress. Germinating pollen expresses molecular chaperones or "heat shock proteins" in the absence of heat stress. Furthermore, pollen tubes that grew through pistils at basal temperature showed induction of the endoplasmic reticulum (ER) stress response, which is a characteristic of stressed vegetative tissues. Recent studies show MP contains mRNA-protein (mRNP) aggregates that resemble "stress" granules triggered by heat or other stresses to protect cells. Based on these observations, we postulate that mRNP particles are formed in maturing pollen in response to developmentally programmed dehydration. Dry pollen can withstand harsh conditions as it is dispersed in air. We propose that, when pollen lands on a compatible pistil and hydrates, mRNAs stored in particles are released, aided by molecular chaperones, to become translationally active. Pollen responds to osmotic, mechanical, oxidative, and peptide cues that promote ER-mediated proteostasis and membrane trafficking for tube growth and sperm discharge. Unlike vegetative tissues, pollen depends on stress-protection strategies for its normal development and function. Thus, heat stress during reproduction likely triggers changes that interfere with the normal pollen responses, thereby compromising male fertility. This holistic perspective provides a framework to understand the basis of heat-tolerant strains in the reproduction of crops.


Asunto(s)
Adaptación Fisiológica/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Retículo Endoplásmico/metabolismo , Fertilidad/genética , Respuesta al Choque Térmico/genética , Tubo Polínico/crecimiento & desarrollo , Tubo Polínico/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Variación Genética , Genotipo , Chaperonas Moleculares/metabolismo , Transcriptoma
9.
Nat Plants ; 7(9): 1301-1313, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34326530

RESUMEN

Stomata of most plants close to preserve water when the demand for CO2 by photosynthesis is reduced. Stomatal responses are slow compared with photosynthesis, and this kinetic difference erodes assimilation and water-use efficiency under fluctuating light. Despite a deep knowledge of guard cells that regulate the stoma, efforts to enhance stomatal kinetics are limited by our understanding of its control by foliar CO2. Guided by mechanistic modelling that incorporates foliar CO2 diffusion and mesophyll photosynthesis, here we uncover a central role for endomembrane Ca2+ stores in guard cell responsiveness to fluctuating light and CO2. Modelling predicted and experiments demonstrated a delay in Ca2+ cycling that was enhanced by endomembrane Ca2+-ATPase mutants, altering stomatal conductance and reducing assimilation and water-use efficiency. Our findings illustrate the power of modelling to bridge the gap from the guard cell to whole-plant photosynthesis, and they demonstrate an unforeseen latency, or 'carbon memory', of guard cells that affects stomatal dynamics, photosynthesis and water-use efficiency.


Asunto(s)
Adaptación Ocular/fisiología , Proteínas de Arabidopsis/metabolismo , Dióxido de Carbono/metabolismo , Fotosíntesis/fisiología , Estomas de Plantas/fisiología , Canales de Potasio/fisiología , Agua/metabolismo
10.
Front Plant Sci ; 12: 672368, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34093629

RESUMEN

Climate change has created an environment where heat stress conditions are becoming more frequent as temperatures continue to raise in crop production areas around the world. This situation leads to decreased crop production due to plant sensitivity to heat stress. Reproductive success is critically dependent on plants' ability to produce functional pollen grains, which are the most thermo-sensitive tissue. Flavonols are plant secondary metabolites known for their potent antioxidative activity, essential for male fertility in several species including tomato, and implicated in heat stress tolerance. Since flavonols are highly abundant in fruits of the tomato high pigment 2 (hp2) mutant, we tested the level of flavonols in pollen of this mutant, under the hypothesis that increased accumulation of flavonols would render pollen more tolerant to heat stress. Indeed, pollen from two alleles of the hp2 mutant was found to have flavonols levels increased by 18 and 280% compared with wild-type (WT) under moderate chronic heat stress (MCHS) conditions. This mutant produced on average 7.8-fold higher levels of viable pollen and displayed better germination competence under heat stress conditions. The percentage of fully seeded fruits and the number of seeds per fruit were maintained in the mutant under heat stress conditions while decreased in wild-type plants. Our results strongly suggest that increased concentrations of pollen flavonols enhance pollen thermotolerance and reproductive success under heat stress conditions. Thus, the high flavonols trait may help frame the model for improving crop resilience to heat stress.

11.
World J Microbiol Biotechnol ; 37(5): 87, 2021 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-33881629

RESUMEN

Being around for several decades, there is a vast amount of academic research on biomining, and yet it contributes less to the mining industry compared to other conventional technologies. This critique briefly comments on the current status of biomining research, enumerates a number of primary challenges, and elaborates on some kinetically-oriented strategies and bottom-up policies to sustain biomining with focus on critical material extraction and rare earth elements (REEs). Finally, we present some edge cutting developments which may promote new potentials in biomining.


Asunto(s)
Metales de Tierras Raras/aislamiento & purificación , Minería/instrumentación , Humanos , Microbiología Industrial , Minería/legislación & jurisprudencia
12.
Plant Physiol ; 185(3): 619-631, 2021 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-33822217

RESUMEN

The lipid bilayer of biological membranes has a complex composition, including high chemical heterogeneity, the presence of nanodomains of specific lipids, and asymmetry with respect to lipid composition between the two membrane leaflets. In membrane trafficking, membrane vesicles constantly bud off from one membrane compartment and fuse with another, and both budding and fusion events have been proposed to require membrane lipid asymmetry. One mechanism for generating asymmetry in lipid bilayers involves the action of the P4 ATPase family of lipid flippases; these are biological pumps that use ATP as an energy source to flip lipids from one leaflet to the other. The model plant Arabidopsis (Arabidopsis thaliana) contains 12 P4 ATPases (AMINOPHOSPHOLIPID ATPASE1-12; ALA1-12), many of which are functionally redundant. Studies of P4 ATPase mutants have confirmed the essential physiological functions of these pumps and pleiotropic mutant phenotypes have been observed, as expected when genes required for basal cellular functions are disrupted. For instance, phenotypes associated with ala3 (dwarfism, pollen defects, sensitivity to pathogens and cold, and reduced polar cell growth) can be related to membrane trafficking problems. P5 ATPases are evolutionarily related to P4 ATPases, and may be the counterpart of P4 ATPases in the endoplasmic reticulum. The absence of P4 and P5 ATPases from prokaryotes and their ubiquitous presence in eukaryotes make these biological pumps a defining feature of eukaryotic cells. Here, we review recent advances in the field of plant P4 and P5 ATPases.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Arabidopsis/metabolismo , Membrana Celular/metabolismo , Lípidos de la Membrana/metabolismo , Fosfolípidos/metabolismo , Estructura Molecular
13.
Plant Physiol ; 185(4): 1966-1985, 2021 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-33575795

RESUMEN

Generating cellular Ca2+ signals requires coordinated transport activities from both Ca2+ influx and efflux pathways. In Arabidopsis (Arabidopsis thaliana), multiple efflux pathways exist, some of which involve Ca2+-pumps belonging to the Autoinhibited Ca2+-ATPase (ACA) family. Here, we show that ACA1, 2, and 7 localize to the endoplasmic reticulum (ER) and are important for plant growth and pollen fertility. While phenotypes for plants harboring single-gene knockouts (KOs) were weak or undetected, a triple KO of aca1/2/7 displayed a 2.6-fold decrease in pollen transmission efficiency, whereas inheritance through female gametes was normal. The triple KO also resulted in smaller rosettes showing a high frequency of lesions. Both vegetative and reproductive phenotypes were rescued by transgenes encoding either ACA1, 2, or 7, suggesting that all three isoforms are biochemically redundant. Lesions were suppressed by expression of a transgene encoding NahG, an enzyme that degrades salicylic acid (SA). Triple KO mutants showed elevated mRNA expression for two SA-inducible marker genes, Pathogenesis-related1 (PR1) and PR2. The aca1/2/7 lesion phenotype was similar but less severe than SA-dependent lesions associated with a double KO of vacuolar pumps aca4 and 11. Imaging of Ca2+ dynamics triggered by blue light or the pathogen elicitor flg22 revealed that aca1/2/7 mutants display Ca2+ transients with increased magnitudes and durations. Together, these results indicate that ER-localized ACAs play important roles in regulating Ca2+ signals, and that the loss of these pumps results in male fertility and vegetative growth deficiencies.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Arabidopsis/metabolismo , ATPasas Transportadoras de Calcio/metabolismo , Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Polen/crecimiento & desarrollo , Polen/metabolismo , Retículo Endoplásmico/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Desarrollo de la Planta , Polen/genética
14.
Front Plant Sci ; 12: 777975, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34975960

RESUMEN

Land plants evolved to quickly sense and adapt to temperature changes, such as hot days and cold nights. Given that calcium (Ca2+) signaling networks are implicated in most abiotic stress responses, heat-triggered changes in cytosolic Ca2+ were investigated in Arabidopsis leaves and pollen. Plants were engineered with a reporter called CGf, a ratiometric, genetically encoded Ca2+ reporter with an mCherry reference domain fused to an intensiometric Ca2+ reporter GCaMP6f. Relative changes in [Ca2+]cyt were estimated based on CGf's apparent K D around 220 nM. The ratiometric output provided an opportunity to compare Ca2+ dynamics between different tissues, cell types, or subcellular locations. In leaves, CGf detected heat-triggered cytosolic Ca2+ signals, comprised of three different signatures showing similarly rapid rates of Ca2+ influx followed by differing rates of efflux (50% durations ranging from 5 to 19 min). These heat-triggered Ca2+ signals were approximately 1.5-fold greater in magnitude than blue light-triggered signals in the same leaves. In contrast, growing pollen tubes showed two different heat-triggered responses. Exposure to heat caused tip-focused steady growth [Ca2+]cyt oscillations to shift to a pattern characteristic of a growth arrest (22%), or an almost undetectable [Ca2+]cyt (78%). Together, these contrasting examples of heat-triggered Ca2+ responses in leaves and pollen highlight the diversity of Ca2+ signals in plants, inviting speculations about their differing kinetic features and biological functions.

15.
Methods Mol Biol ; 2160: 29-40, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32529427

RESUMEN

During sexual reproduction in flowering plants, pollen grains germinate on the stigma surface and grow through the stigma-style tissue to reach the ovary and deliver sperm cells for fertilization. Here, we outline a method to test whether a pollen fertility mutation specifically disrupts pollen penetration through the stigma-style barrier. This method surgically removes the stigma-style (stigma decapitation) to test whether transferring pollen directly onto an exposed ovary surface significantly improves the transmission efficiency (TE) of a mutant allele. To illustrate this technique, we applied stigma decapitation to investigate a loss-of-function mutation in Arabidopsis OFT1, a gene encoding a putative o-fucosyl transferase functioning in the secretory pathway. oft1-3 mutant pollen showed a significant decrease in transmission efficiency compared to wild type. Decapitation crosses (described here) indicated that the removal of the stigma-style barrier alleviated the transmission deficiency from 858-fold to a 2.6-fold, providing evidence that most, but not all, oft1 pollen deficiencies can be attributed to a reduced ability to penetrate through the stigma-style barrier. This method outlines a genetic strategy to quantify a mutation's impact on the ability of pollen to navigate through the stigma-style barrier on its journey to the ovule.


Asunto(s)
Cruzamientos Genéticos , Hibridación Genética , Mutación con Pérdida de Función , Infertilidad Vegetal/genética , Tubo Polínico/genética , Arabidopsis , Proteínas de Arabidopsis/genética , Fucosiltransferasas/genética , Tubo Polínico/fisiología
16.
Plant Physiol ; 182(4): 2111-2125, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32051180

RESUMEN

Aminophospholipid ATPases (ALAs) are lipid flippases involved in transporting specific lipids across membrane bilayers. Arabidopsis (Arabidopsis thaliana) contains 12 ALAs in five phylogenetic clusters, including four in cluster 3 (ALA4-ALA7). ALA4/5 and ALA6/7, are expressed primarily in vegetative tissues and pollen, respectively. Previously, a double knockout of ALA6/7 was shown to result in pollen fertility defects. Here we show that a double knockout of ALA4/5 results in dwarfism, characterized by reduced growth in rosettes (6.5-fold), roots (4.3-fold), bolts (4.5-fold), and hypocotyls (2-fold). Reduced cell size was observed for multiple vegetative cell types, suggesting a role for ALA4/5 in cellular expansion. Members of the third ALA cluster are at least partially interchangeable, as transgenes expressing ALA6 in vegetative tissues partially rescued ala4/5 mutant phenotypes, and expression of ALA4 transgenes in pollen fully rescued ala6/7 mutant fertility defects. ALA4-GFP displayed plasma membrane and endomembrane localization patterns when imaged in both guard cells and pollen. Lipid profiling revealed ala4/5 rosettes had perturbations in glycerolipid and sphingolipid content. Assays in yeast revealed that ALA5 can flip a variety of glycerolipids and the sphingolipid sphingomyelin across membranes. These results support a model whereby the flippase activity of ALA4 and ALA5 impacts the homeostasis of both glycerolipids and sphingolipids and is important for cellular expansion during vegetative growth.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Hipocótilo/genética , Hipocótilo/metabolismo , Esfingolípidos/metabolismo
17.
Annu Rev Plant Biol ; 70: 809-837, 2019 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-30822112

RESUMEN

In flowering plants, pollen tubes undergo tip growth to deliver two nonmotile sperm to the ovule where they fuse with an egg and central cell to achieve double fertilization. This extended journey involves rapid growth and changes in gene activity that manage compatible interactions with at least seven different cell types. Nearly half of the genome is expressed in haploid pollen, which facilitates genetic analysis, even of essential genes. These unique attributes make pollen an ideal system with which to study plant cell-cell interactions, tip growth, cell migration, the modulation of cell wall integrity, and gene expression networks. We highlight the signaling systems required for pollen tube navigation and the potential roles of Ca2+ signals. The dynamics of pollen development make sexual reproduction highly sensitive to heat stress. Understanding this vulnerability may generate strategies to improve seed crop yields that are under threat from climate change.


Asunto(s)
Magnoliopsida , Tubo Polínico , Fertilización , Germinación , Óvulo Vegetal
18.
BMC Genomics ; 19(1): 549, 2018 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-30041596

RESUMEN

BACKGROUND: In flowering plants, the male gametophyte (pollen) is one of the most vulnerable cells to temperature stress. In Arabidopsis thaliana, a pollen-specific Cyclic Nucleotide-Gated cation Channel 16 (cngc16), is required for plant reproduction under temperature-stress conditions. Plants harboring a cncg16 knockout are nearly sterile under conditions of hot days and cold nights. To understand the underlying cause, RNA-Seq was used to compare the pollen transcriptomes of wild type (WT) and cngc16 under normal and heat stress (HS) conditions. RESULTS: Here we show that a heat-stress response (HSR) in WT pollen resulted in 2102 statistically significant transcriptome changes (≥ 2-fold changes with adjusted p-value ≤0.01), representing approximately 15% of 14,226 quantified transcripts. Of these changes, 89 corresponded to transcription factors, with 27 showing a preferential expression in pollen over seedling tissues. In contrast to WT, cngc16 pollen showed 1.9-fold more HS-dependent changes (3936 total, with 2776 differences between WT and cngc16). In a quantitative direct comparison between WT and cngc16 transcriptomes, the number of statistically significant differences increased from 21 pre-existing differences under normal conditions to 192 differences under HS. Of the 20 HS-dependent changes in WT that were most different in cngc16, half corresponded to genes encoding proteins predicted to impact cell wall features or membrane dynamics. CONCLUSIONS: Results here define an extensive HS-dependent reprogramming of approximately 15% of the WT pollen transcriptome, and identify at least 27 transcription factor changes that could provide unique contributions to a pollen HSR. The number of statistically significant transcriptome differences between WT and cngc16 increased by more than 9-fold under HS, with most of the largest magnitude changes having the potential to specifically impact cell walls or membrane dynamics, and thereby potentiate cngc16 pollen to be hypersensitive to HS. However, HS-hypersensitivity could also be caused by the extensive number of differences throughout the transcriptome having a cumulative effect on multiple cellular pathways required for tip growth and fertilization. Regardless, results here support a model in which a functional HS-dependent reprogramming of the pollen transcriptome requires a specific calcium-permeable Cyclic Nucleotide-Gated cation Channel, CNGC16.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética , Respuesta al Choque Térmico/genética , Polen/genética , Transcriptoma , Arabidopsis/metabolismo , Señalización del Calcio/genética , Técnicas de Inactivación de Genes , Polen/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
19.
Plant Physiol ; 176(4): 2804-2818, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29467178

RESUMEN

During pollen-pistil interactions in angiosperms, the male gametophyte (pollen) germinates to produce a pollen tube. To fertilize ovules located within the female pistil, the pollen tube must physically penetrate specialized tissues. Whereas the process of pollen tube penetration through the pistil has been anatomically well described, the genetic regulation remains poorly understood. In this study, we identify a novel Arabidopsis (Arabidopsis thaliana) gene, O-FUCOSYLTRANSFERASE1 (AtOFT1), which plays a key role in pollen tube penetration through the stigma-style interface. Semi-in vivo growth assays demonstrate that oft1 mutant pollen tubes have a reduced ability to penetrate the stigma-style interface, leading to a nearly 2,000-fold decrease in oft1 pollen transmission efficiency and a 5- to 10-fold decreased seed set. We also demonstrate that AtOFT1 is localized to the Golgi apparatus, indicating its potential role in cellular glycosylation events. Finally, we demonstrate that AtOFT1 and other similar Arabidopsis genes represent a novel clade of sequences related to metazoan protein O-fucosyltransferases and that mutation of residues that are important for O-fucosyltransferase activity compromises AtOFT1 function in vivo. The results of this study elucidate a physiological function for AtOFT1 in pollen tube penetration through the stigma-style interface and highlight the potential importance of protein O-glycosylation events in pollen-pistil interactions.


Asunto(s)
Proteínas de Arabidopsis/genética , Flores/genética , Fucosiltransferasas/genética , Tubo Polínico/genética , Polinización/genética , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Fertilización/genética , Flores/metabolismo , Fucosiltransferasas/clasificación , Fucosiltransferasas/metabolismo , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Mutación , Filogenia , Plantas Modificadas Genéticamente , Tubo Polínico/crecimiento & desarrollo , Tubo Polínico/metabolismo , Homología de Secuencia de Aminoácido
20.
Plant J ; 90(4): 698-707, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28112437

RESUMEN

Plants show a rapid systemic response to a wide range of environmental stresses, where the signals from the site of stimulus perception are transmitted to distal organs to elicit plant-wide responses. A wide range of signaling molecules are trafficked through the plant, but a trio of potentially interacting messengers, reactive oxygen species (ROS), Ca2+ and electrical signaling ('trio signaling') appear to form a network supporting rapid signal transmission. The molecular components underlying this rapid communication are beginning to be identified, such as the ROS producing NAPDH oxidase RBOHD, the ion channel two pore channel 1 (TPC1), and glutamate receptor-like channels GLR3.3 and GLR3.6. The plant cell wall presents a plant-specific route for possible propagation of signals from cell to cell. However, the degree to which the cell wall limits information exchange between cells via transfer of small molecules through an extracellular route, or whether it provides an environment to facilitate transmission of regulators such as ROS or H+ remains to be determined. Similarly, the role of plasmodesmata as both conduits and gatekeepers for the propagation of rapid cell-to-cell signaling remains a key open question. Regardless of how signals move from cell to cell, they help prepare distant parts of the plant for impending challenges from specific biotic or abiotic stresses.


Asunto(s)
Calcio/metabolismo , Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Señalización del Calcio/genética , Señalización del Calcio/fisiología , Comunicación Celular/genética , Comunicación Celular/fisiología , Raíces de Plantas/metabolismo , Plasmodesmos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA