Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Mol Microbiol ; 118(1-2): 77-91, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35703459

RESUMEN

Gram-negative pathogens like Burkholderia pseudomallei use trimeric autotransporter adhesins such as BpaC as key molecules in their pathogenicity. Our 1.4 Å crystal structure of the membrane-proximal part of the BpaC head domain shows that the domain is exclusively made of left-handed parallel ß-roll repeats. This, the largest such structure solved, has two unique features. First, the core, rather than being composed of the canonical hydrophobic Ile and Val, is made up primarily of the hydrophilic Thr and Asn, with two different solvent channels. Second, comparing BpaC to all other left-handed parallel ß-roll structures showed that the position of the head domain in the protein correlates with the number and type of charged residues. In BpaC, only negatively charged residues face the solvent-in stark contrast to the primarily positive surface charge of the left-handed parallel ß-roll "type" protein, YadA. We propose extending the definitions of these head domains to include the BpaC-like head domain as a separate subtype, based on its unusual sequence, position, and charge. We speculate that the function of left-handed parallel ß-roll structures may differ depending on their position in the structure.


Asunto(s)
Burkholderia pseudomallei , Adhesinas Bacterianas/metabolismo , Burkholderia pseudomallei/genética , Burkholderia pseudomallei/metabolismo , Solventes , Sistemas de Secreción Tipo V , Virulencia
2.
Am J Sports Med ; 50(9): 2542-2551, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34432554

RESUMEN

BACKGROUND: Sports-related concussion (SRC) assessment tools are primarily based on subjective assessments of somatic, cognitive, and psychosocial/emotional symptoms. SRC symptoms remain underreported, and objective measures of SRC impairments would be valuable to assist diagnosis. Measurable impairments to vestibular and oculomotor processing have been shown to occur after SRC and may provide valid objective assessments. PURPOSE: Determine the diagnostic accuracy of sideline tests of vestibular and oculomotor dysfunction to identify SRC in adults. STUDY DESIGN: Systematic review; Level of evidence, 4. METHODS: Electronic databases and gray literature were searched from inception until February 12, 2020. Physically active individuals (>16 years of age) who participated in sports were included. The reference standard for SRC was a combination of clinical signs and symptoms (eg, the Sport Concussion Assessment Tool [SCAT]), and index tests included any oculomotor assessment tool. The QUADAS tool was used to assess risk of bias, with the credibility of the evidence being rated according to GRADE. RESULTS: A total of 8 studies were included in this review. All included studies used the King-Devick test, with no other measures being identified. Meta-analysis was performed on 4 studies with a summary sensitivity and specificity of 0.77 and 0.82, respectively. The overall credibility of the evidence was rated as very low. CONCLUSION: Caution must be taken when interpreting these results given the very low credibility of the evidence, and the true summary sensitivity and specificity may substantially differ from the values calculated within this systematic review. Therefore, we recommend that clinicians using the King-Devick test to diagnose SRC in adults do so in conjunction with other tools such as the SCAT. PROSPERO REGISTRATION: CRD42018106632.


Asunto(s)
Traumatismos en Atletas , Conmoción Encefálica , Medicina Deportiva , Deportes , Traumatismos en Atletas/diagnóstico , Conmoción Encefálica/diagnóstico , Humanos , Sensibilidad y Especificidad , Medicina Deportiva/métodos
3.
Chem Sci ; 12(40): 13492-13505, 2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34777769

RESUMEN

The RNA helicase (non-structural protein 13, NSP13) of SARS-CoV-2 is essential for viral replication, and it is highly conserved among the coronaviridae family, thus a prominent drug target to treat COVID-19. We present here structural models and dynamics of the helicase in complex with its native substrates based on thorough analysis of homologous sequences and existing experimental structures. We performed and analysed microseconds of molecular dynamics (MD) simulations, and our model provides valuable insights to the binding of the ATP and ssRNA at the atomic level. We identify the principal motions characterising the enzyme and highlight the effect of the natural substrates on this dynamics. Furthermore, allosteric binding sites are suggested by our pocket analysis. Our obtained structural and dynamical insights are important for subsequent studies of the catalytic function and for the development of specific inhibitors at our characterised binding pockets for this promising COVID-19 drug target.

4.
Nat Commun ; 12(1): 1053, 2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33594049

RESUMEN

In the cell, DNA is arranged into highly-organised and topologically-constrained (supercoiled) structures. It remains unclear how this supercoiling affects the detailed double-helical structure of DNA, largely because of limitations in spatial resolution of the available biophysical tools. Here, we overcome these limitations, by a combination of atomic force microscopy (AFM) and atomistic molecular dynamics (MD) simulations, to resolve structures of negatively-supercoiled DNA minicircles at base-pair resolution. We observe that negative superhelical stress induces local variation in the canonical B-form DNA structure by introducing kinks and defects that affect global minicircle structure and flexibility. We probe how these local and global conformational changes affect DNA interactions through the binding of triplex-forming oligonucleotides to DNA minicircles. We show that the energetics of triplex formation is governed by a delicate balance between electrostatics and bonding interactions. Our results provide mechanistic insight into how DNA supercoiling can affect molecular recognition, that may have broader implications for DNA interactions with other molecular species.


Asunto(s)
Emparejamiento Base/genética , ADN Superhelicoidal/química , Conformación de Ácido Nucleico , Oligonucleótidos/química , ADN Circular/química , Microscopía de Fuerza Atómica , Simulación de Dinámica Molecular
5.
Hum Mutat ; 42(5): 567-576, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33600052

RESUMEN

Amelogenesis imperfecta (AI) describes a heterogeneous group of developmental enamel defects that typically have Mendelian inheritance. Exome sequencing of 10 families with recessive hypomaturation AI revealed four novel and one known variants in the matrix metallopeptidase 20 (MMP20) gene that were predicted to be pathogenic. MMP20 encodes a protease that cleaves the developing extracellular enamel matrix and is necessary for normal enamel crystal growth during amelogenesis. New homozygous missense changes were shared between four families of Pakistani heritage (c.625G>C; p.(Glu209Gln)) and two of Omani origin (c.710C>A; p.(Ser237Tyr)). In two families of UK origin and one from Costa Rica, affected individuals were homozygous for the previously reported c.954-2A>T; p.(Ile319Phefs*19) variant. For each of these variants, microsatellite haplotypes appeared to exclude a recent founder effect, but elements of haplotype were conserved, suggesting more distant founding ancestors. New compound heterozygous changes were identified in one family of the European heritage: c.809_811+12delinsCCAG; p.(?) and c.1122A>C; p.(Gln374His). This report further elucidates the mutation spectrum of MMP20 and the probable impact on protein function, confirms a consistent hypomaturation phenotype and shows that mutations in MMP20 are a common cause of autosomal recessive AI in some communities.


Asunto(s)
Amelogénesis Imperfecta , Metaloproteinasa 20 de la Matriz , Amelogénesis Imperfecta/genética , Amelogénesis Imperfecta/patología , Efecto Fundador , Homocigoto , Humanos , Metaloproteinasa 20 de la Matriz/genética , Linaje
6.
Methods ; 185: 39-48, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32007556

RESUMEN

Cytoplasmic dynein is responsible for intra-cellular transport in eukaryotic cells. Using Fluctuating Finite Element Analysis (FFEA), a novel algorithm that represents proteins as continuum viscoelastic solids subject to thermal noise, we are building computational tools to study the mechanics of these molecular machines. Here we present a methodology for obtaining the material parameters required to represent the flexibility of cytoplasmic dynein within FFEA from atomistic molecular dynamics (MD) simulations, and show that this continuum representation is sufficient to capture the principal dynamic properties of the motor.


Asunto(s)
Dineínas Citoplasmáticas/metabolismo , Análisis de Elementos Finitos , Simulación de Dinámica Molecular , Algoritmos , Dineínas Citoplasmáticas/química
7.
Biophys Rev ; 13(6): 995-1005, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35059023

RESUMEN

The structure of B-DNA, the physiological form of the DNA molecule, has been a central topic in biology, chemistry and physics. Far from uniform and rigid, the double helix was revealed as a flexible and structurally polymorphic molecule. Conformational changes that lead to local and global changes in the helix geometry are mediated by a complex choreography of base and backbone rearrangements affecting the ability of the B-DNA to recognize ligands and consequently on its functionality. In this sense, the knowledge obtained from the sequence-dependent structural properties of B-DNA has always been thought crucial to rationalize how ligands and, most notably, proteins recognize B-DNA and modulate its activity, i.e. the structural basis of gene regulation. Honouring the anniversary of the first high-resolution X-ray structure of a B-DNA molecule, in this contribution, we present the most important discoveries of the last 40 years on the sequence-dependent structural and dynamical properties of B-DNA, from the early beginnings to the current frontiers in the field.

8.
Hum Mutat ; 42(2): 164-176, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33252155

RESUMEN

Biallelic mutations in G-Protein coupled receptor kinase 1 (GRK1) cause Oguchi disease, a rare subtype of congenital stationary night blindness (CSNB). The purpose of this study was to identify disease causing GRK1 variants and use in-depth bioinformatic analyses to evaluate how their impact on protein structure could lead to pathogenicity. Patients' genomic DNA was sequenced by whole genome, whole exome or focused exome sequencing. Disease associated variants, published and novel, were compared to nondisease associated missense variants. The impact of GRK1 missense variants at the protein level were then predicted using a series of computational tools. We identified twelve previously unpublished cases with biallelic disease associated GRK1 variants, including eight novel variants, and reviewed all GRK1 disease associated variants. Further structure-based scoring revealed a hotspot for missense variants in the kinase domain. In addition, to aid future clinical interpretation, we identified the bioinformatics tools best able to differentiate disease associated from nondisease associated variants. We identified GRK1 variants in Oguchi disease patients and investigated how disease-causing variants may impede protein function in-silico.


Asunto(s)
Enfermedades Hereditarias del Ojo , Quinasa 1 del Receptor Acoplado a Proteína-G , Ceguera Nocturna , Enfermedades Hereditarias del Ojo/genética , Quinasa 1 del Receptor Acoplado a Proteína-G/genética , Humanos , Ceguera Nocturna/genética
9.
Biophys J ; 119(11): 2240-2250, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33121942

RESUMEN

Assessing the structural properties of large proteins is important to gain an understanding of their function in, e.g., biological systems or biomedical applications. We propose a method to examine the mechanical properties of proteins subject to applied forces by means of multiscale simulation. Both stretching and torsional forces are considered, and these may be applied independently of each other. As a proof of principle, we apply torsional forces to a coarse-grained continuum model of the antibody protein immunoglobulin G using fluctuating finite element analysis and use it to identify the area of strongest deformation. This region is essential to the torsional properties of the molecule as a whole because it represents the softest, most deformable domain. Zooming in, this part of the molecule is subjected to torques and stretching forces using molecular dynamics simulations on an atomistically resolved level to investigate its torsional properties. We calculate the torsional resistance as a function of the rotation of the domain while subjecting it to various stretching forces. From this, we assess how the measured twist-torque profiles develop with increasing stretching force and show that they exhibit torsion stiffening, in qualitative agreement with experimental findings. We argue that combining the twist-torque profiles for various stretching forces effectively results in a combined force-torque spectroscopy analysis, which may serve as a mechanical signature for a biological macromolecule.


Asunto(s)
Torque , Análisis de Elementos Finitos , Rotación , Análisis Espectral , Torsión Mecánica
10.
Q Rev Biophys ; 53: e9, 2020 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-32772965

RESUMEN

Flagellar dyneins are the molecular motors responsible for producing the propagating bending motions of cilia and flagella. They are located within a densely packed and highly organised super-macromolecular cytoskeletal structure known as the axoneme. Using the mesoscale simulation technique Fluctuating Finite Element Analysis (FFEA), which represents proteins as viscoelastic continuum objects subject to explicit thermal noise, we have quantified the constraints on the range of molecular conformations that can be explored by dynein-c within the crowded architecture of the axoneme. We subsequently assess the influence of crowding on the 3D exploration of microtubule-binding sites, and specifically on the axial step length. Our calculations combine experimental information on the shape, flexibility and environment of dynein-c from three distinct sources; negative stain electron microscopy, cryo-electron microscopy (cryo-EM) and cryo-electron tomography (cryo-ET). Our FFEA simulations show that the super-macromolecular organisation of multiple protein complexes into higher-order structures can have a significant influence on the effective flexibility of the individual molecular components, and may, therefore, play an important role in the physical mechanisms underlying their biological function.


Asunto(s)
Axonema/química , Dineínas/química , Flagelos/metabolismo , Sustancias Macromoleculares/química , Sitios de Unión , Cilios/metabolismo , Simulación por Computador , Microscopía por Crioelectrón , Citoesqueleto/metabolismo , Módulo de Elasticidad , Análisis de Elementos Finitos , Hidrólisis , Cinética , Microtúbulos/metabolismo , Movimiento (Física) , Probabilidad , Unión Proteica , Conformación Proteica , Termodinámica
11.
Soft Matter ; 16(32): 7544-7555, 2020 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-32706006

RESUMEN

KOBRA (KirchOff Biological Rod Algorithm) is an algorithm and software package designed to perform dynamical simulations of elongated biomolecules such as those containing alpha-helices and coiled-coils. It represents these as coarsely-discretised Kirchoff rods, with linear elements that can stretch, bend and twist independently. These rods can have anisotropic and inhomogeneous parameters and bent or twisted equilibrium structures, allowing for a coarse-grained parameterisation of complex biological structures. Each element is non-inertial and subject to thermal fluctuations. The speed and simplicity of the algorithm allows KOBRA rods to easily access timescales from nanoseconds to seconds. To demonstrate this functionality, a KOBRA rod was parameterised using data from all-atom simulations of the Ndc80 protein complex, and compared against these simulations and negative-stain EM images. The distribution of bend angles and principal components were highly correlated between KOBRA, all-atom molecular dynamics, and experimental data. The properties of a hinge region, thought to be found at an unstructured loop, were studied. A C++ implementation of KOBRA is available under the GNU GPLv3 free software licence.


Asunto(s)
Simulación de Dinámica Molecular , Proteínas , Algoritmos
12.
Sci Rep ; 9(1): 18712, 2019 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-31822696

RESUMEN

The E. coli membrane protein ZipA, binds to the tubulin homologue FtsZ, in the early stage of cell division. We isolated ZipA in a Styrene Maleic Acid lipid particle (SMALP) preserving its position and integrity with native E. coli membrane lipids. Direct binding of ZipA to FtsZ is demonstrated, including FtsZ fibre bundles decorated with ZipA. Using Cryo-Electron Microscopy, small-angle X-ray and neutron scattering, we determine the encapsulated-ZipA structure in isolation, and in complex with FtsZ to a resolution of 1.6 nm. Three regions can be identified from the structure which correspond to, SMALP encapsulated membrane and ZipA transmembrane helix, a separate short compact tether, and ZipA globular head which binds FtsZ. The complex extends 12 nm from the membrane in a compact structure, supported by mesoscale modelling techniques, measuring the movement and stiffness of the regions within ZipA provides molecular scale analysis and visualisation of the early divisome.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/metabolismo , División Celular/fisiología , Proteínas del Citoesqueleto/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas Bacterianas/fisiología , Proteínas Portadoras/fisiología , Proteínas Portadoras/ultraestructura , Proteínas de Ciclo Celular/fisiología , Proteínas de Ciclo Celular/ultraestructura , Microscopía por Crioelectrón/métodos , Proteínas del Citoesqueleto/fisiología , Escherichia coli/metabolismo , Proteínas de Escherichia coli/fisiología , Proteínas de Escherichia coli/ultraestructura , Proteínas de la Membrana/metabolismo , Unión Proteica
13.
PLoS Comput Biol ; 15(5): e1006958, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31095554

RESUMEN

Improvements in technology often drive scientific discovery. Therefore, research requires sustained investment in the latest equipment and training for the researchers who are going to use it. Prioritising and administering infrastructure investment is challenging because future needs are difficult to predict. In the past, highly computationally demanding research was associated primarily with particle physics and astronomy experiments. However, as biology becomes more quantitative and bioscientists generate more and more data, their computational requirements may ultimately exceed those of physical scientists. Computation has always been central to bioinformatics, but now imaging experiments have rapidly growing data processing and storage requirements. There is also an urgent need for new modelling and simulation tools to provide insight and understanding of these biophysical experiments. Bioscience communities must work together to provide the software and skills training needed in their areas. Research-active institutions need to recognise that computation is now vital in many more areas of discovery and create an environment where it can be embraced. The public must also become aware of both the power and limitations of computing, particularly with respect to their health and personal data.


Asunto(s)
Biología Computacional/tendencias , Curaduría de Datos/tendencias , Animales , Simulación por Computador/tendencias , Humanos , Modelos Biológicos , Programas Informáticos
14.
Methods Enzymol ; 607: 93-130, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30149870

RESUMEN

Membrane-bound pyrophosphatases couple the hydrolysis of inorganic pyrophosphate to the pumping of ions (sodium or protons) across a membrane in order to generate an electrochemical gradient. This class of membrane protein is widely conserved across plants, fungi, archaea, and bacteria, but absent in multicellular animals, making them a viable target for drug design against protozoan parasites such as Plasmodium falciparum. An excellent understanding of many of the catalytic states throughout the enzymatic cycle has already been afforded by crystallography. However, the dynamics and kinetics of the catalytic cycle between these static snapshots remain to be elucidated. Here, we employ single-molecule Förster resonance energy transfer (FRET) measurements to determine the dynamic range and frequency of conformations available to the enzyme in a lipid bilayer during the catalytic cycle. First, we explore issues related to the introduction of fluorescent dyes by cysteine mutagenesis; we discuss the importance of residue selection for dye attachment, and the balance between mutating areas of the protein that will provide useful dynamics while not altering highly conserved residues that could disrupt protein function. To complement and guide the experiments, we used all-atom molecular dynamics simulations and computational methods to estimate FRET efficiency distributions for dye pairs at different sites in different protein conformational states. We present preliminary single-molecule FRET data that points to insights about the binding modes of different membrane-bound pyrophosphatase substrates and inhibitors.


Asunto(s)
Pruebas de Enzimas/métodos , Transferencia Resonante de Energía de Fluorescencia/métodos , Simulación de Dinámica Molecular , Pirofosfatasas/metabolismo , Imagen Individual de Molécula/métodos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/metabolismo , Membrana Celular/metabolismo , Diseño de Fármacos , Pruebas de Enzimas/instrumentación , Transferencia Resonante de Energía de Fluorescencia/instrumentación , Colorantes Fluorescentes/química , Microscopía Fluorescente/instrumentación , Microscopía Fluorescente/métodos , Mutagénesis , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Proteínas Protozoarias/aislamiento & purificación , Proteínas Protozoarias/metabolismo , Pirofosfatasas/química , Pirofosfatasas/genética , Pirofosfatasas/aislamiento & purificación , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae , Alineación de Secuencia , Imagen Individual de Molécula/instrumentación , Programas Informáticos
15.
PLoS Comput Biol ; 14(3): e1005897, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29570700

RESUMEN

Fluctuating Finite Element Analysis (FFEA) is a software package designed to perform continuum mechanics simulations of proteins and other globular macromolecules. It combines conventional finite element methods with stochastic thermal noise, and is appropriate for simulations of large proteins and protein complexes at the mesoscale (length-scales in the range of 5 nm to 1 µm), where there is currently a paucity of modelling tools. It requires 3D volumetric information as input, which can be low resolution structural information such as cryo-electron tomography (cryo-ET) maps or much higher resolution atomistic co-ordinates from which volumetric information can be extracted. In this article we introduce our open source software package for performing FFEA simulations which we have released under a GPLv3 license. The software package includes a C ++ implementation of FFEA, together with tools to assist the user to set up the system from Electron Microscopy Data Bank (EMDB) or Protein Data Bank (PDB) data files. We also provide a PyMOL plugin to perform basic visualisation and additional Python tools for the analysis of FFEA simulation trajectories. This manuscript provides a basic background to the FFEA method, describing the implementation of the core mechanical model and how intermolecular interactions and the solvent environment are included within this framework. We provide prospective FFEA users with a practical overview of how to set up an FFEA simulation with reference to our publicly available online tutorials and manuals that accompany this first release of the package.


Asunto(s)
Biología Computacional/métodos , Análisis de Elementos Finitos , Proteínas , Programas Informáticos , Simulación de Dinámica Molecular , Unión Proteica , Proteínas/química , Proteínas/metabolismo , Proteínas/ultraestructura
16.
Proc Natl Acad Sci U S A ; 115(1): E72-E81, 2018 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-29247053

RESUMEN

Protein-protein interactions are essential for the control of cellular functions and are critical for regulation of the immune system. One example is the binding of Fc regions of IgG to the Fc gamma receptors (FcγRs). High sequence identity (98%) between the genes encoding FcγRIIIa (expressed on macrophages and natural killer cells) and FcγRIIIb (expressed on neutrophils) has prevented the development of monospecific agents against these therapeutic targets. We now report the identification of FcγRIIIa-specific artificial binding proteins called "Affimer" that block IgG binding and abrogate FcγRIIIa-mediated downstream effector functions in macrophages, namely TNF release and phagocytosis. Cocrystal structures and molecular dynamics simulations have revealed the structural basis of this specificity for two Affimer proteins: One binds directly to the Fc binding site, whereas the other acts allosterically.


Asunto(s)
Complejo Antígeno-Anticuerpo/química , Inmunoglobulina G/química , Simulación de Dinámica Molecular , Receptores de IgG/química , Regulación Alostérica , Complejo Antígeno-Anticuerpo/inmunología , Humanos , Inmunoglobulina G/inmunología , Receptores de IgG/inmunología
17.
Biopolymers ; 2017 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-29127706

RESUMEN

Self-assembling peptides can be used as versatile, natural, and multifunctional building blocks to produce a variety of well-defined nanostructures, materials and devices for applications in medicine and nanotechnology. Here, we concentrate on the 1D self-assembly of de novo designed Px-2 peptide ß-strands into anti-parallel ß-sheet tapes and higher order aggregates. We study six members of the Px-2 family, ranging from 3 amino acids (aa) to 13 aa in length, using a range of complementary experimental techniques, computer simulation and theoretical statistical mechanics. The critical concentration for self-assembly (c*) is found to increase systematically with decreasing peptide length. The shortest peptide found to self-assemble into soluble ß-tapes in water is a 5 amino acid residue peptide. These investigations help decipher the role of the peptide length in controlling self-assembly, aggregate morphology, and material properties. By extracting free energies from these data using a statistical mechanical analysis and combining the results with computer simulations at the atomistic level, we can extract the entropy of association for individual ß-strands.

18.
Biophys J ; 112(3): 523-531, 2017 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-28108011

RESUMEN

We have explored the interdependence of the binding of a DNA triplex and a repressor protein to distal recognition sites on supercoiled DNA minicircles using MD simulations. We observe that the interaction between the two ligands through their influence on their DNA template is determined by a subtle interplay of DNA mechanics and electrostatics, that the changes in flexibility induced by ligand binding play an important role and that supercoiling can instigate additional ligand-DNA contacts that would not be possible in simple linear DNA sequences.


Asunto(s)
ADN Superhelicoidal/química , ADN Superhelicoidal/metabolismo , ADN/química , ADN/metabolismo , Secuencia de Bases , ADN/genética , ADN Superhelicoidal/genética , Ligandos , Simulación de Dinámica Molecular , Conformación de Ácido Nucleico , Unión Proteica
19.
Nucleic Acids Res ; 44(19): 9121-9130, 2016 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-27664220

RESUMEN

It is well established that gene regulation can be achieved through activator and repressor proteins that bind to DNA and switch particular genes on or off, and that complex metabolic networks determine the levels of transcription of a given gene at a given time. Using three complementary computational techniques to study the sequence-dependence of DNA denaturation within DNA minicircles, we have observed that whenever the ends of the DNA are constrained, information can be transferred over long distances directly by the transmission of mechanical stress through the DNA itself, without any requirement for external signalling factors. Our models combine atomistic molecular dynamics (MD) with coarse-grained simulations and statistical mechanical calculations to span three distinct spatial resolutions and timescale regimes. While they give a consensus view of the non-locality of sequence-dependent denaturation in highly bent and supercoiled DNA loops, each also reveals a unique aspect of long-range informational transfer that occurs as a result of restraining the DNA within the closed loop of the minicircles.


Asunto(s)
Simulación por Computador , ADN Circular/química , Modelos Moleculares , Conformación de Ácido Nucleico , Estrés Mecánico , Algoritmos , ADN Superhelicoidal/química , Desnaturalización de Ácido Nucleico
20.
Nat Struct Mol Biol ; 23(9): 786-793, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27455461

RESUMEN

The trimeric chaperone Skp sequesters outer-membrane proteins (OMPs) within a hydrophobic cage, thereby preventing their aggregation during transport across the periplasm in Gram-negative bacteria. Here, we studied the interaction between Escherichia coli Skp and five OMPs of varying size. Investigations of the kinetics of OMP folding revealed that higher Skp/OMP ratios are required to prevent the folding of 16-stranded OMPs compared with their 8-stranded counterparts. Ion mobility spectrometry-mass spectrometry (IMS-MS) data, computer modeling and molecular dynamics simulations provided evidence that 10- to 16-stranded OMPs are encapsulated within an expanded Skp substrate cage. For OMPs that cannot be fully accommodated in the expanded cavity, sequestration is achieved by binding of an additional Skp trimer. The results suggest a new mechanism for Skp chaperone activity involving the coordination of multiple copies of Skp in protecting a single substrate from aggregation.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/química , Proteínas de Unión al ADN/química , Proteínas de Escherichia coli/química , Chaperonas Moleculares/química , Proteínas de Unión al ADN/fisiología , Proteínas de Escherichia coli/fisiología , Cinética , Chaperonas Moleculares/fisiología , Simulación de Dinámica Molecular , Unión Proteica , Conformación Proteica en Lámina beta , Pliegue de Proteína , Dominios y Motivos de Interacción de Proteínas , Estructura Cuaternaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA