Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38897351

RESUMEN

BACKGROUND: Community-acquired (CA), community-onset methicillin-resistant Staphylococcus aureus (CO-MRSA) infection presents a significant public health challenge, even where MRSA rates are historically lower. Despite successes in reducing hospital-onset MRSA, CO-MRSA rates are increasing globally, with a need to understand this trend, and the potential risk factors for re-emergence. OBJECTIVES: This review aims to explore the characteristics of outbreaks of community-acquired community-onset methicillin-resistant Staphylococcus aureus in low-prevalence areas, to understand the factors involved in its rise, and to translate this knowledge into public health policy and further research needs. SOURCES: PubMed, EMBASE, and Google Scholar were searched using combinations of the terms 'transmission', 'acquisition', 'community-acquired', 'MRSA', 'CA-MRSA', 'low prevalence', 'genomic', 'outbreak', 'colonisation', and 'carriage'. Wherever evidence was limited, additional articles were sought specifically, via PubMed searches. Papers where materials were not available in English were excluded. CONTENT: Challenges in defining low-prevalence areas and the significance of exposure to various risk factors for community acquisition, such as healthcare settings, travel, livestock, and environmental factors, are discussed. The importance of genomic surveillance in identifying outbreak strains and understanding the transmission dynamics is highlighted, along with the need for robust public health policies and control measures. IMPLICATIONS: The findings emphasise the complexity of CO-MRSA transmission and the necessity of a multifaceted approach in low-prevalence areas. This includes integrated and systematic surveillance of hospital-onset-, CO-, and livestock-associated MRSA, as has been effective in some Northern European countries. The evolution of CO-MRSA underscores the need for global collaboration, routine genomic surveillance, and comprehensive antimicrobial stewardship to mitigate the rise of CO-MRSA and address the broader challenge of antimicrobial resistance. These efforts are crucial for maintaining low MRSA prevalence and managing the increasing burden of CO-MRSA in both low and higher prevalence regions.

2.
Microb Genom ; 10(4)2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38630616

RESUMEN

Genomic epidemiology enhances the ability to detect and refute methicillin-resistant Staphylococcus aureus (MRSA) outbreaks in healthcare settings, but its routine introduction requires further evidence of benefits for patients and resource utilization. We performed a 12 month prospective study at Cambridge University Hospitals NHS Foundation Trust in the UK to capture its impact on hospital infection prevention and control (IPC) decisions. MRSA-positive samples were identified via the hospital microbiology laboratory between November 2018 and November 2019. We included samples from in-patients, clinic out-patients, people reviewed in the Emergency Department and healthcare workers screened by Occupational Health. We sequenced the first MRSA isolate from 823 consecutive individuals, defined their pairwise genetic relatedness, and sought epidemiological links in the hospital and community. Genomic analysis of 823 MRSA isolates identified 72 genetic clusters of two or more isolates containing 339/823 (41 %) of the cases. Epidemiological links were identified between two or more cases for 190 (23 %) individuals in 34/72 clusters. Weekly genomic epidemiology updates were shared with the IPC team, culminating in 49 face-to-face meetings and 21 written communications. Seventeen clusters were identified that were consistent with hospital MRSA transmission, discussion of which led to additional IPC actions in 14 of these. Two outbreaks were also identified where transmission had occurred in the community prior to hospital presentation; these were escalated to relevant IPC teams. We identified 38 instances where two or more in-patients shared a ward location on overlapping dates but carried unrelated MRSA isolates (pseudo-outbreaks); research data led to de-escalation of investigations in six of these. Our findings provide further support for the routine use of genomic epidemiology to enhance and target IPC resources.


Asunto(s)
Infección Hospitalaria , Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Humanos , Staphylococcus aureus Resistente a Meticilina/genética , Infección Hospitalaria/microbiología , Infecciones Estafilocócicas/microbiología , Estudios Prospectivos , Genómica
3.
Lancet Microbe ; 5(2): e151-e163, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38219758

RESUMEN

BACKGROUND: DNA sequencing could become an alternative to in vitro antibiotic susceptibility testing (AST) methods for determining antibiotic resistance by detecting genetic determinants associated with decreased antibiotic susceptibility. Here, we aimed to assess and improve the accuracy of antibiotic resistance determination from Enterococcus faecium genomes for diagnosis and surveillance purposes. METHODS: In this retrospective diagnostic accuracy study, we first conducted a literature search in PubMed on Jan 14, 2021, to compile a catalogue of genes and mutations predictive of antibiotic resistance in E faecium. We then evaluated the diagnostic accuracy of this database to determine susceptibility to 12 different, clinically relevant antibiotics using a diverse population of 4382 E faecium isolates with available whole-genome sequences and in vitro culture-based AST phenotypes. Isolates were obtained from various sources in 11 countries worldwide between 2000 and 2018. We included isolates tested with broth microdilution, Vitek 2, and disc diffusion, and antibiotics with at least 50 susceptible and 50 resistant isolates. Phenotypic resistance was derived from raw minimum inhibitory concentrations and measured inhibition diameters, and harmonised primarily using the breakpoints set by the European Committee on Antimicrobial Susceptibility Testing. A bioinformatics pipeline was developed to process raw sequencing reads, identify antibiotic resistance genetic determinants, and report genotypic resistance. We used our curated database, as well as ResFinder, AMRFinderPlus, and LRE-Finder, to assess the accuracy of genotypic predictions against phenotypic resistance. FINDINGS: We curated a catalogue of 228 genetic markers involved in resistance to 12 antibiotics in E faecium. Very accurate genotypic predictions were obtained for ampicillin (sensitivity 99·7% [95% CI 99·5-99·9] and specificity 97·9% [95·8-99·0]), ciprofloxacin (98·0% [96·4-98·9] and 98·8% [95·9-99·7]), vancomycin (98·8% [98·3-99·2] and 98·8% [98·0-99·3]), and linezolid resistance (after re-testing false negatives: 100·0% [90·8-100·0] and 98·3% [97·8-98·7]). High sensitivity was obtained for tetracycline (99·5% [99·1-99·7]), teicoplanin (98·9% [98·4-99·3]), and high-level resistance to aminoglycosides (97·7% [96·6-98·4] for streptomycin and 96·8% [95·8-97·5] for gentamicin), although at lower specificity (60-90%). Sensitivity was expectedly low for daptomycin (73·6% [65·1-80·6]) and tigecycline (38·3% [27·1-51·0]), for which the genetic basis of resistance is not fully characterised. Compared with other antibiotic resistance databases and bioinformatic tools, our curated database was similarly accurate at detecting resistance to ciprofloxacin and linezolid and high-level resistance to streptomycin and gentamicin, but had better sensitivity for detecting resistance to ampicillin, tigecycline, daptomycin, and quinupristin-dalfopristin, and better specificity for ampicillin, vancomycin, teicoplanin, and tetracycline resistance. In a validation dataset of 382 isolates, similar or improved diagnostic accuracies were also achieved. INTERPRETATION: To our knowledge, this work represents the largest published evaluation to date of the accuracy of antibiotic susceptibility predictions from E faecium genomes. The results and resources will facilitate the adoption of whole-genome sequencing as a tool for the diagnosis and surveillance of antimicrobial resistance in E faecium. A complete characterisation of the genetic basis of resistance to last-line antibiotics, and the mechanisms mediating antibiotic resistance silencing, are needed to close the remaining sensitivity and specificity gaps in genotypic predictions. FUNDING: Wellcome Trust, UK Department of Health, British Society for Antimicrobial Chemotherapy, Academy of Medical Sciences and the Health Foundation, Medical Research Council Newton Fund, Vietnamese Ministry of Science and Technology, and European Society of Clinical Microbiology and Infectious Disease.


Asunto(s)
Daptomicina , Enterococcus faecium , Enterococcus faecium/genética , Vancomicina/farmacología , Linezolid , Tigeciclina , Teicoplanina , Estudios Retrospectivos , Antibacterianos/farmacología , Ampicilina/farmacología , Farmacorresistencia Microbiana , Ciprofloxacina , Fenotipo , Gentamicinas , Estreptomicina
4.
Microb Genom ; 9(10)2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37843887

RESUMEN

16S rRNA gene sequencing is widely used to characterize human and environmental microbiomes. Sequencing at scale facilitates better powered studies but is limited by cost and time. We identified two areas in our 16S rRNA gene library preparation protocol where modifications could provide efficiency gains, including (1) pooling of multiple PCR amplifications per sample to reduce PCR drift and (2) manual preparation of mastermix to reduce liquid handling. Using nasal samples from healthy human participants and a serially diluted mock microbial community, we compared alpha and beta diversity, and compositional abundance where the PCR amplification was conducted in triplicate, duplicate or as a single reaction, and where manually prepared or premixed mastermix was used. One hundred and fifty-eight 16S rRNA gene sequencing libraries were prepared, including a replicate experiment. Comparing PCR pooling strategies, we found no significant difference in high-quality read counts and alpha diversity, and beta diversity by Bray-Curtis index clustered by replicate on principal coordinate analysis (PCoA) and non-metric dimensional scaling (NMDS) analysis. Choice of mastermix had no significant impact on high-quality read and alpha diversity, and beta diversity by Bray-Curtis index clustered by replicate in PCoA and NMDS analysis. Importantly, we observed contamination and variability of rare species (<0.01 %) across replicate experiments; the majority of contaminants were accounted for by removal of species present at <0.1 %, or were linked to reagents (including a primer stock). We demonstrate no requirement for pooling of PCR amplifications or manual preparation of PCR mastermix, resulting in a more efficient 16S rRNA gene PCR protocol.


Asunto(s)
Bacterias , Humanos , ARN Ribosómico 16S/genética , Bacterias/genética , Análisis de Secuencia de ADN/métodos , Genes de ARNr , Reacción en Cadena de la Polimerasa/métodos
5.
Nat Commun ; 14(1): 6479, 2023 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-37838722

RESUMEN

Global spread of multidrug-resistant, hospital-adapted Staphylococcus epidermidis lineages underscores the need for new therapeutic strategies. Here we show that many S. epidermidis isolates belonging to these lineages display cryptic susceptibility to penicillin/ß-lactamase inhibitor combinations under in vitro conditions, despite carrying the methicillin resistance gene mecA. Using a mouse thigh model of S. epidermidis infection, we demonstrate that single-dose treatment with amoxicillin/clavulanic acid significantly reduces methicillin-resistant S. epidermidis loads without leading to detectable resistance development. On the other hand, we also show that methicillin-resistant S. epidermidis is capable of developing increased resistance to amoxicillin/clavulanic acid during long-term in vitro exposure to these drugs. These findings suggest that penicillin/ß-lactamase inhibitor combinations could be a promising therapeutic candidate for treatment of a high proportion of methicillin-resistant S. epidermidis infections, although the in vivo risk of resistance development needs to be further addressed before they can be incorporated into clinical trials.


Asunto(s)
Penicilinas , Infecciones Estafilocócicas , Humanos , Penicilinas/farmacología , Penicilinas/uso terapéutico , Inhibidores de beta-Lactamasas/farmacología , Staphylococcus epidermidis , Infecciones Estafilocócicas/tratamiento farmacológico , Ácido Clavulánico/farmacología , Ácido Clavulánico/uso terapéutico , Amoxicilina/farmacología , Amoxicilina/uso terapéutico , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Antibacterianos/uso terapéutico
6.
Microb Genom ; 9(4)2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37074324

RESUMEN

Aggregation of children in schools has been established to be a key driver of transmission of infectious diseases. Mathematical models of transmission used to predict the impact of control measures, such as vaccination and testing, commonly depend on self-reported contact data. However, the link between self-reported social contacts and pathogen transmission has not been well described. To address this, we used Staphylococcus aureus as a model organism to track transmission within two secondary schools in England and test for associations between self-reported social contacts, test positivity and the bacterial strain collected from the same students. Students filled out a social contact survey and their S. aureus colonization status was ascertained through self-administered swabs from which isolates were sequenced. Isolates from the local community were also sequenced to assess the representativeness of school isolates. A low frequency of genome-linked transmission precluded a formal analysis of links between genomic and social networks, suggesting that S. aureus transmission within schools is too rare to make it a viable tool for this purpose. Whilst we found no evidence that schools are an important route of transmission, increased colonization rates found within schools imply that school-age children may be an important source of community transmission.


Asunto(s)
Ciencia Ciudadana , Infecciones Estafilocócicas , Niño , Humanos , Staphylococcus aureus/genética , Infecciones Estafilocócicas/microbiología , Instituciones Académicas , Inglaterra
7.
Antibiotics (Basel) ; 11(12)2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36551383

RESUMEN

Abattoir workers have been identified as high-risk for livestock-associated Staphylococcus aureus carriage. This study investigated S. aureus carriage in abattoir workers in Western Kenya. Nasal swabs were collected once from participants between February-November 2012. S. aureus was isolated using bacterial culture and antibiotic susceptibility testing performed using the VITEK 2 instrument and disc diffusion methods. Isolates underwent whole genome sequencing and Multi Locus Sequence Types were derived from these data. S. aureus (n = 126) was isolated from 118/737 (16.0%) participants. Carriage was higher in HIV-positive (24/89, 27.0%) than HIV−negative participants (94/648, 14.5%; p = 0.003). There were 23 sequence types (STs) identified, and half of the isolates were ST152 (34.1%) or ST8 (15.1%). Many isolates carried the Panton-Valentine leucocidin toxin gene (42.9%). Only three isolates were methicillin resistant S. aureus (MRSA) (3/126, 2.4%) and the prevalence of MRSA carriage was 0.4% (3/737). All MRSA were ST88. Isolates from HIV-positive participants (37.0%) were more frequently resistant to sulfamethoxazole/trimethoprim compared to isolates from HIV-negative participants (6.1%; p < 0.001). Similarly, trimethoprim resistance genes were more frequently detected in isolates from HIV-positive (81.5%) compared to HIV-negative participants (60.6%; p = 0.044). S. aureus in abattoir workers were representative of major sequence types in Africa, with a high proportion being toxigenic isolates. HIV-positive individuals were more frequently colonized by antimicrobial resistant S. aureus which may be explained by prophylactic antimicrobial use.

8.
Pathogens ; 11(12)2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36558838

RESUMEN

Staphylococcus aureus is an important pathogen associated with hospital, community, and livestock-acquired infections, with the ability to develop resistance to antibiotics. Nasal carriage by hospital inpatients is a risk for opportunistic infections. Antibiotic susceptibility patterns, virulence genes and genetic population structure of S. aureus nasal isolates, from inpatients at Busia County Referral Hospital (BCRH) were analyzed. A total of 263 inpatients were randomly sampled, from May to July 2015. The majority of inpatients (85.9%) were treated empirically with antimicrobials, including ceftriaxone (65.8%) and metronidazole (49.8%). Thirty S. aureus isolates were cultured from 29 inpatients with a prevalence of 11% (10.3% methicillin-susceptible S. aureus (MSSA), 0.8% methicillin resistant S. aureus (MRSA)). Phenotypic and genotypic resistance was highest to penicillin-G (96.8%), trimethoprim (73.3%), and tetracycline (13.3%) with 20% of isolates classified as multidrug resistant. Virulence genes, Panton-Valentine leukocidin (pvl), toxic shock syndrome toxin-1 (tsst-1), and sasX gene were detected in 16.7%, 23.3% and 3.3% of isolates. Phylogenetic analysis showed 4 predominant clonal complexes CC152, CC8, CC80, and CC508. This study has identified that inpatients of BCRH were carriers of S. aureus harbouring virulence genes and resistance to a range of antibiotics. This may indicate a public health risk to other patients and the community.

9.
Virus Evol ; 8(2): veac080, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36533153

RESUMEN

The first SARS-CoV-2 variant of concern (VOC) to be designated was lineage B.1.1.7, later labelled by the World Health Organization as Alpha. Originating in early autumn but discovered in December 2020, it spread rapidly and caused large waves of infections worldwide. The Alpha variant is notable for being defined by a long ancestral phylogenetic branch with an increased evolutionary rate, along which only two sequences have been sampled. Alpha genomes comprise a well-supported monophyletic clade within which the evolutionary rate is typical of SARS-CoV-2. The Alpha epidemic continued to grow despite the continued restrictions on social mixing across the UK and the imposition of new restrictions, in particular, the English national lockdown in November 2020. While these interventions succeeded in reducing the absolute number of cases, the impact of these non-pharmaceutical interventions was predominantly to drive the decline of the SARS-CoV-2 lineages that preceded Alpha. We investigate the only two sampled sequences that fall on the branch ancestral to Alpha. We find that one is likely to be a true intermediate sequence, providing information about the order of mutational events that led to Alpha. We explore alternate hypotheses that can explain how Alpha acquired a large number of mutations yet remained largely unobserved in a region of high genomic surveillance: an under-sampled geographical location, a non-human animal population, or a chronically infected individual. We conclude that the latter provides the best explanation of the observed behaviour and dynamics of the variant, although the individual need not be immunocompromised, as persistently infected immunocompetent hosts also display a higher within-host rate of evolution. Finally, we compare the ancestral branches and mutation profiles of other VOCs and find that Delta appears to be an outlier both in terms of the genomic locations of its defining mutations and a lack of the rapid evolutionary rate on its ancestral branch. As new variants, such as Omicron, continue to evolve (potentially through similar mechanisms), it remains important to investigate the origins of other variants to identify ways to potentially disrupt their evolution and emergence.

10.
J Med Microbiol ; 71(7)2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35867942

RESUMEN

Introduction. We recently revealed that a significant proportion of clinical methicillin-resistant Staphylococcus aureus (MRSA) isolates are susceptible to pencillins and clavulanic acid (potentiated penicillins), including widely available combinations such as co-amoxiclav. These isolates also showed increased susceptibility to oxacillin on Iso-Sensitest Agar (ISA).Hypothesis/Gap Statement. The increased susceptibility to oxacillin displayed on ISA by these MRSA isolates may be used to distinguish them from the resistant ones.Aim. We aimed to develop a method to simultaneously screen a S. aureus clinical isolate for its susceptibility to methicillin and potentiated penicillins.Methodology. A double-disc diffusion method using 10 µg cefoxitin and 1 µg oxacillin discs on ISA was developed and tested against a panel of 120 whole genome-sequenced MRSA isolates. The sensitivity of the method was compared with that of previously published genotypic and phenotypic methods. In addition, double-disc diffusion was performed for all isolates on Müller-Hinton agar (MHA) following the European Committee on Antimicrobial Susceptibility Testing (EUCAST) protocol.Results. All isolates (120/120) were reconfirmed to be phenotypically MRSA, as indicated by the result of cefoxitin disc diffusion testing. All isolates (40/40) that had a pencillins and clavulanic acid (Pen-Clav)-resistant genotype were not inhibited by oxacillin, while 77/80 (96.3 %) isolates that had a Pen-Clav-susceptible genotype were inhibited by oxacillin on ISA. The results also showed that the EUCAST method using MHA correctly identified all isolates as MRSA but failed to distinguish the Pen-Clav-susceptible isolates from the Pen-Clav-resistant isolates.Conclusions. This double-disc diffusion method using ISA could be used to accurately screen for clinical MRSA isolates and determine their susceptibility to Pen-Clav simultaneously, rapidly identifying MRSA infections that might be suitable for treatment with potentiated penicillins.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Agar , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Cefoxitina/farmacología , Ácido Clavulánico , Humanos , Pruebas de Sensibilidad Microbiana , Oxacilina/farmacología , Staphylococcus aureus
11.
Antimicrob Agents Chemother ; 66(6): e0025222, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35575577

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA) strains are a leading cause of many invasive clinical syndromes, and pose treatment difficulties due to their in vitro resistance to most ß-lactams on standard laboratory testing. A novel phenotype frequently identified in MRSA strains, termed 'NaHCO3-responsiveness', is a property whereby strains are susceptible in vitro to many ß-lactams in the presence of NaHCO3. Specific mecA genotypes, repression of mecA/PBP2a expression and perturbed maturation of PBP2a by NaHCO3 have all been associated with this phenotype. The aim of this study was to define the relationship between specific mecA genotypes and PBP2a substitutions, on the one hand, with NaHCO3-responsiveness in vitro. Mutations were made in the mecA ribosomal binding site (RBS -7) and at amino acid position 246 of its coding region in parental strains MW2 (NaHCO3-responsive) and C36 (NaHCO3- nonresponsive) to generate 'swap' variants, each harboring the other's mecA-RBS/coding region genotypes. Successful swaps were confirmed by both sequencing, as well as predicted swap of in vitro penicillin-clavulanate susceptibility phenotypes. MW2 swap variants harboring the nonresponsive mecA genotypes became NaHCO3-nonresponsive (resistant to the ß-lactam, oxacillin [OXA]), in the presence of NaHCO3. Moreover, these swap variants had lost NaHCO3-mediated repression of mecA/PBP2a expression. In contrast, C36 swap variants harboring the NaHCO3-responsive mecA genotypes remained NaHCO3-nonresponsive phenotypically, and still exhibited nonrepressible mecA/PBP2a expression. These data demonstrate that in addition to the mecA genotype, NaHCO3-responsiveness may also depend on strain-specific genetic backgrounds.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Genotipo , Staphylococcus aureus Resistente a Meticilina/genética , Pruebas de Sensibilidad Microbiana , Oxacilina , Proteínas de Unión a las Penicilinas/genética , Fenotipo , Bicarbonato de Sodio , beta-Lactamas
12.
Virus Evol ; 8(1): veac023, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35502202

RESUMEN

COG-UK Mutation Explorer (COG-UK-ME, https://sars2.cvr.gla.ac.uk/cog-uk/-last accessed date 16 March 2022) is a web resource that displays knowledge and analyses on SARS-CoV-2 virus genome mutations and variants circulating in the UK, with a focus on the observed amino acid replacements that have an antigenic role in the context of the human humoral and cellular immune response. This analysis is based on more than 2 million genome sequences (as of March 2022) for UK SARS-CoV-2 data held in the CLIMB-COVID centralised data environment. COG-UK-ME curates these data and displays analyses that are cross-referenced to experimental data collated from the primary literature. The aim is to track mutations of immunological importance that are accumulating in current variants of concern and variants of interest that could alter the neutralising activity of monoclonal antibodies (mAbs), convalescent sera, and vaccines. Changes in epitopes recognised by T cells, including those where reduced T cell binding has been demonstrated, are reported. Mutations that have been shown to confer SARS-CoV-2 resistance to antiviral drugs are also included. Using visualisation tools, COG-UK-ME also allows users to identify the emergence of variants carrying mutations that could decrease the neutralising activity of both mAbs present in therapeutic cocktails, e.g. Ronapreve. COG-UK-ME tracks changes in the frequency of combinations of mutations and brings together the curated literature on the impact of those mutations on various functional aspects of the virus and therapeutics. Given the unpredictable nature of SARS-CoV-2 as exemplified by yet another variant of concern, Omicron, continued surveillance of SARS-CoV-2 remains imperative to monitor virus evolution linked to the efficacy of therapeutics.

13.
Nat Commun ; 13(1): 751, 2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35136068

RESUMEN

Understanding SARS-CoV-2 transmission in higher education settings is important to limit spread between students, and into at-risk populations. In this study, we sequenced 482 SARS-CoV-2 isolates from the University of Cambridge from 5 October to 6 December 2020. We perform a detailed phylogenetic comparison with 972 isolates from the surrounding community, complemented with epidemiological and contact tracing data, to determine transmission dynamics. We observe limited viral introductions into the university; the majority of student cases were linked to a single genetic cluster, likely following social gatherings at a venue outside the university. We identify considerable onward transmission associated with student accommodation and courses; this was effectively contained using local infection control measures and following a national lockdown. Transmission clusters were largely segregated within the university or the community. Our study highlights key determinants of SARS-CoV-2 transmission and effective interventions in a higher education setting that will inform public health policy during pandemics.


Asunto(s)
COVID-19/epidemiología , COVID-19/transmisión , SARS-CoV-2/genética , Universidades , COVID-19/prevención & control , COVID-19/virología , Trazado de Contacto , Genoma Viral/genética , Genómica , Humanos , Filogenia , ARN Viral/genética , Factores de Riesgo , SARS-CoV-2/clasificación , SARS-CoV-2/aislamiento & purificación , Estudiantes , Reino Unido/epidemiología , Universidades/estadística & datos numéricos
14.
Nat Commun ; 13(1): 1012, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35197443

RESUMEN

Mitigation of SARS-CoV-2 transmission from international travel is a priority. We evaluated the effectiveness of travellers being required to quarantine for 14-days on return to England in Summer 2020. We identified 4,207 travel-related SARS-CoV-2 cases and their contacts, and identified 827 associated SARS-CoV-2 genomes. Overall, quarantine was associated with a lower rate of contacts, and the impact of quarantine was greatest in the 16-20 age-group. 186 SARS-CoV-2 genomes were sufficiently unique to identify travel-related clusters. Fewer genomically-linked cases were observed for index cases who returned from countries with quarantine requirement compared to countries with no quarantine requirement. This difference was explained by fewer importation events per identified genome for these cases, as opposed to fewer onward contacts per case. Overall, our study demonstrates that a 14-day quarantine period reduces, but does not completely eliminate, the onward transmission of imported cases, mainly by dissuading travel to countries with a quarantine requirement.


Asunto(s)
COVID-19/prevención & control , Enfermedades Transmisibles Importadas/prevención & control , Cuarentena/legislación & jurisprudencia , SARS-CoV-2/genética , COVID-19/epidemiología , COVID-19/transmisión , Enfermedades Transmisibles Importadas/epidemiología , Enfermedades Transmisibles Importadas/transmisión , Trazado de Contacto , Inglaterra/epidemiología , Genoma Viral/genética , Genómica , Evaluación del Impacto en la Salud , Humanos , SARS-CoV-2/clasificación , Viaje/legislación & jurisprudencia , Enfermedad Relacionada con los Viajes
15.
Antibiotics (Basel) ; 10(9)2021 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-34572671

RESUMEN

Antimicrobial susceptibility testing (AST) is routinely used to establish predictive antibiotic resistance metrics to guide the treatment of bacterial pathogens. Recently, a novel phenotype termed "bicarbonate (NaHCO3)-responsiveness" was identified in a relatively high frequency of clinical MRSA strains, wherein isolates demonstrate in vitro "susceptibility" to standard ß-lactams (oxacillin [OXA]; cefazolin [CFZ]) in the presence of NaHCO3, and in vivo susceptibility to these ß-lactams in experimental endocarditis models. We investigated whether a targeted phenotypic-genotypic screening of MRSA could rule in or rule out NaHCO3 susceptibility upfront. We studied 30 well-characterized clinical MRSA bloodstream isolates, including 15 MIC-susceptible to CFZ and OXA in NaHCO3-supplemented Mueller-Hinton Broth (MHB); and 15 MIC-resistant to both ß-lactams in this media. Using a two-tiered strategy, isolates were first screened by standard disk diffusion for susceptibility to a combination of amoxicillin-clavulanate [AMC]. Isolates then underwent genomic sequence typing: MLST (clonal complex [CC]); agr; SCCmec; and mecA promoter and coding region. The combination of AMC disk susceptibility testing plus mecA and spa genotyping was able to predict MRSA strains that were more or less likely to be NaHCO3-responsive in vitro, with a high degree of sensitivity and specificity. Validation of this screening algorithm was performed in six strains from the overall cohort using an ex vivo model of endocarditis. This ex vivo model recapitulated the in vitro predictions of NaHCO3-responsiveness vs. nonresponsiveness above in five of the six strains.

16.
Elife ; 102021 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-34387545

RESUMEN

Monitoring the spread of SARS-CoV-2 and reconstructing transmission chains has become a major public health focus for many governments around the world. The modest mutation rate and rapid transmission of SARS-CoV-2 prevents the reconstruction of transmission chains from consensus genome sequences, but within-host genetic diversity could theoretically help identify close contacts. Here we describe the patterns of within-host diversity in 1181 SARS-CoV-2 samples sequenced to high depth in duplicate. 95.1% of samples show within-host mutations at detectable allele frequencies. Analyses of the mutational spectra revealed strong strand asymmetries suggestive of damage or RNA editing of the plus strand, rather than replication errors, dominating the accumulation of mutations during the SARS-CoV-2 pandemic. Within- and between-host diversity show strong purifying selection, particularly against nonsense mutations. Recurrent within-host mutations, many of which coincide with known phylogenetic homoplasies, display a spectrum and patterns of purifying selection more suggestive of mutational hotspots than recombination or convergent evolution. While allele frequencies suggest that most samples result from infection by a single lineage, we identify multiple putative examples of co-infection. Integrating these results into an epidemiological inference framework, we find that while sharing of within-host variants between samples could help the reconstruction of transmission chains, mutational hotspots and rare cases of superinfection can confound these analyses.


The COVID-19 pandemic has had major health impacts across the globe. The scientific community has focused much attention on finding ways to monitor how the virus responsible for the pandemic, SARS-CoV-2, spreads. One option is to perform genetic tests, known as sequencing, on SARS-CoV-2 samples to determine the genetic code of the virus and to find any differences or mutations in the genes between the viral samples. Viruses mutate within their hosts and can develop into variants that are able to more easily transmit between hosts. Genetic sequencing can reveal how genetically similar two SARS-CoV-2 samples are. But tracking how SARS-CoV-2 moves from one person to the next through sequencing can be tricky. Even a sample of SARS-CoV-2 viruses from the same individual can display differences in their genetic material or within-host variants. Could genetic testing of within-host variants shed light on factors driving SARS-CoV-2 to evolve in humans? To get to the bottom of this, Tonkin-Hill, Martincorena et al. probed the genetics of SARS-CoV-2 within-host variants using 1,181 samples. The analyses revealed that 95.1% of samples contained within-host variants. A number of variants occurred frequently in many samples, which were consistent with mutational hotspots in the SARS-CoV-2 genome. In addition, within-host variants displayed mutation patterns that were similar to patterns found between infected individuals. The shared within-host variants between samples can help to reconstruct transmission chains. However, the observed mutational hotspots and the detection of multiple strains within an individual can make this challenging. These findings could be used to help predict how SARS-CoV-2 evolves in response to interventions such as vaccines. They also suggest that caution is needed when using information on within-host variants to determine transmission between individuals.


Asunto(s)
COVID-19/genética , COVID-19/fisiopatología , Variación Genética , Genoma Viral , Interacciones Huésped-Patógeno/genética , Mutación , SARS-CoV-2/genética , Secuencia de Bases , Humanos , Pandemias , Filogenia
17.
Genome Biol ; 22(1): 196, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34210356

RESUMEN

In response to the ongoing SARS-CoV-2 pandemic in the UK, the COVID-19 Genomics UK (COG-UK) consortium was formed to rapidly sequence SARS-CoV-2 genomes as part of a national-scale genomic surveillance strategy. The network consists of universities, academic institutes, regional sequencing centres and the four UK Public Health Agencies. We describe the development and deployment of CLIMB-COVID, an encompassing digital infrastructure to address the challenge of collecting and integrating both genomic sequencing data and sample-associated metadata produced across the COG-UK network.


Asunto(s)
Nube Computacional , Genómica/organización & administración , SARS-CoV-2/genética , COVID-19/epidemiología , Monitoreo Epidemiológico , Genoma Viral , Humanos , Análisis de Secuencia de ADN , Reino Unido , Interfaz Usuario-Computador , Secuenciación Completa del Genoma
18.
Nat Rev Microbiol ; 19(7): 409-424, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34075212

RESUMEN

Although most mutations in the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genome are expected to be either deleterious and swiftly purged or relatively neutral, a small proportion will affect functional properties and may alter infectivity, disease severity or interactions with host immunity. The emergence of SARS-CoV-2 in late 2019 was followed by a period of relative evolutionary stasis lasting about 11 months. Since late 2020, however, SARS-CoV-2 evolution has been characterized by the emergence of sets of mutations, in the context of 'variants of concern', that impact virus characteristics, including transmissibility and antigenicity, probably in response to the changing immune profile of the human population. There is emerging evidence of reduced neutralization of some SARS-CoV-2 variants by postvaccination serum; however, a greater understanding of correlates of protection is required to evaluate how this may impact vaccine effectiveness. Nonetheless, manufacturers are preparing platforms for a possible update of vaccine sequences, and it is crucial that surveillance of genetic and antigenic changes in the global virus population is done alongside experiments to elucidate the phenotypic impacts of mutations. In this Review, we summarize the literature on mutations of the SARS-CoV-2 spike protein, the primary antigen, focusing on their impacts on antigenicity and contextualizing them in the protein structure, and discuss them in the context of observed mutation frequencies in global sequence datasets.


Asunto(s)
COVID-19/virología , Evasión Inmune , SARS-CoV-2/genética , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/clasificación , Aminoácidos/química , Aminoácidos/genética , Variación Antigénica/genética , Variación Antigénica/fisiología , COVID-19/inmunología , COVID-19/prevención & control , COVID-19/transmisión , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/normas , Epítopos/química , Epítopos/genética , Epítopos/inmunología , Humanos , Evasión Inmune/genética , Mutación , Conformación Proteica , SARS-CoV-2/clasificación , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología
19.
Elife ; 102021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33650490

RESUMEN

COVID-19 poses a major challenge to care homes, as SARS-CoV-2 is readily transmitted and causes disproportionately severe disease in older people. Here, 1167 residents from 337 care homes were identified from a dataset of 6600 COVID-19 cases from the East of England. Older age and being a care home resident were associated with increased mortality. SARS-CoV-2 genomes were available for 700 residents from 292 care homes. By integrating genomic and temporal data, 409 viral clusters within the 292 homes were identified, indicating two different patterns - outbreaks among care home residents and independent introductions with limited onward transmission. Approximately 70% of residents in the genomic analysis were admitted to hospital during the study, providing extensive opportunities for transmission between care homes and hospitals. Limiting viral transmission within care homes should be a key target for infection control to reduce COVID-19 mortality in this population.


Asunto(s)
COVID-19/epidemiología , COVID-19/transmisión , Casas de Salud , SARS-CoV-2/genética , Anciano de 80 o más Años , COVID-19/virología , Brotes de Enfermedades , Inglaterra/epidemiología , Femenino , Humanos , Transmisión de Enfermedad Infecciosa de Paciente a Profesional , Transmisión de Enfermedad Infecciosa de Profesional a Paciente , Masculino , Polimorfismo de Nucleótido Simple , Análisis de Secuencia , Factores de Tiempo
20.
Comput Struct Biotechnol J ; 19: 415-423, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33489010

RESUMEN

The human nasal microbiome is characterized by biodiversity and undergoes changes during the span of life. In granulomatosis with polyangiitis (GPA), the persistent nasal colonization by Staphylococcus aureus (S. aureus) assessed by culture-based detection methods has been associated with increased relapse frequency. Different research groups have characterized the nasal microbiome in patients with GPA and found that patients have a distinct nasal microbiome compared to controls, but the reported results between studies differed. In order to increase comparability, there is a need to standardize patient selection, sample preparation, and analytical methodology; particularly as low biomass samples like those obtained by nasal swabbing are impacted by reagent contamination. Optimization in obtaining a sample and processing with the inclusion of critical controls is needed for consistent comparative studies. Ongoing studies will analyze the nasal microbiome in GPA in a longitudinal way and the results will inform whether or not targeted antimicrobial management in a clinical trial should be pursued or not. This review focuses on the proposed role of S. aureus in GPA, the (healthy) nasal microbiome, findings in the first pilot studies in GPA, and will discuss future strategies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA